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1 Introduction 
The simplest way to tackle with almost any physical problem is 
to build a functional basis with the same symmetry as that of 
original problem or close to it. That's why the Ressel functions 
fit the problems with cylindrical symmetry, as well as spheri
cal functions fit the SO3 symmetrical ones. The application of 
this very idea to certain classes of stochastic processes found its 
implementation in wavelet analysis. 

The Brownian motion 

p(m ~X{to)) ~ -^щгщехр \—щг^оГ) 
- one of the most common random processes has long been 
known to be invariant under the scaling transformation (Sec e.g. 
[1] for details.) 

P{bl<2[X(bt) - Х(Ы0)]) = b-ip{X{t) - X{ie)) (I) 

Therefore, it seems quite natural to use decomposition with re
spect to affine group 

<< = ! ± A №) 
namely dilatations and translations, when studying Brownian 
motion, as well as other similar random processes. 
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Technically, decomposition is performed by convolution of 
function ф with certain function g(t). called wavelet, with the ar
gument shifted to b and dilated by /. It is essentia! that function 
g has limit supporter. Therefore, unlike to the Fourier trans
form, which is inherently nonlocal, wavelet analysis or synthesis 
can be performed locally on a signal (field). 

Based on the affine group representation, wavelet analysis 
and synthesis allow one to unfold a signal (a (ield). into space, 
time and direction. It works as a "microscope" discriminat
ing different scales and a polarizer separating different angular 
contributions. Wavelet analysis has been applied to signal pro
cessing, image coding, turbulence data analysis and some other 
fields. 

The numerous applications of wavelets to random data anal
ysis (See e.g. [3] and references therein.) has proved it to be a 
powerful tool for studying fractal signals and data on cascading 
processes. 

2 Definitions 
As a decomposition based on an affine group 

i —* аЛ + b, 

wavelet transform (VVT) of an arbitrary function f(x) can be 
written as 

\f)=J\a,b;g)dvi{a,b){a,bg\f) (3) 

where 

(a,bg\f) ~ Тя(1,Ь,в) = С;* [ f(x)g- п-(*)Ч^ Г <Гх 

C, = {2*rJjgCk)№ (4) 
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g(k) = О ) " " / <7(£)е-АЧГх (5) 
JR" 

The rotation tensor П belongs to the group S0„ rotations 
in Rn and depends on the Euler angles в. In terms of the Euler 
angles в and scale (length) / the reconstruction formula (3) takes 
the form 

/ ( j ) = ГД" JRj[L^}Tg[l,b,0)<rbd,l(0) (6) 

where 

is the 5 0 n invariant measure. 
It should be noted that an arbitrary function g(x) cannot 

be used as a wavelet in general: the admissibility condition (4), 
which guarantees the existence of inverse transformation (3), is 
required. 

Historically, the wavelet transform originated from Morlet's 
work [4] on seismic data analysis and Zimin's [5] hierarchical ba
sis for turbulence. Since these first works a lot of studies has 
been done with different wavelet functions g(x), because the ad
missibility condition allows a wide variety of functions: condition 
(4) practically means g(k = 0) = 0 . The most common chois of 
real wavelets, however, is restricted to the derivatives of Gauss 

dm ,2 k2 

gm(x) = ( - ! ) - — e - r , $»(*) = (гкГе-~ (7) 

Besides, one can also use complex-valued functions as wavelets 
[6, 8]. 

3 



3 Detection of random signal singu
larities with wavelets 

Wavelets has long been known as an attractive tool for analyzing 
function regularity [7, 8] as well as for searching singularities of 
random signals [9]. The latter application is significant for all 
kinds of spectrum recognition. A very instructive example of 
wavelet application to singular measures is the reconstruction 
of singularity spectrum from so-called "devil staircase" measure 
(See e.g. [3] and references therein.). 

The basic idea of the method is the following. Let us consider 
a measure fi(x) (with x € R1 for simplicity). Then, considering 
the integral measure 

s ( x ) = l'dr(x), (8) 
./о 

one can use the following theorem [10]: 

Theorem 1 If s(x) is a bounded locally integrable function that 
satisfies 

s(x) - s(x0) = 0(\x - x0\h), Л €[0,1] 

at some point x0 € R, then, provided the analyzing wavelet satisfy 
g € L1, xhg G L1 and the zero-mean condition 

j g{x)dx = 0, 

its wavelet transform behaves as 

Tg{a,x) = O(ah + \x-x0\h) 

Thus, a way to detect a singularity is to investigate the decay 
rate of the amplitude of wavelet transform 

Tg(a,x) = 0(ah) (9) 
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in the influence cone of singularity 

\x - .ro| < const • a. 

which can he naturally done by log — log plotting of Тя(а,х). 

4 On possible applications of wavelets 
in nuclear physics 

Гр to now the most common applications of W T belonged to 
either turbulence data analysis, where scaling is an inherent fea-
lure of fluid physics, or to image processing, where the singular
ity detection and local reconstruction arc significant. The only 
known applications of W T to physics beyond turbulence, at least 
to the authors ' knowledge, are related to spectra analysis. Such 
a situation seems to be rather strange for a number of reasons. 

• Firstly, since the works of Zimin. W T proved to work efr 
ficiently in situations where cascade processes play signifi
cant role. Therefore, if the measure (J.{x) describes an event 
number at certain point x. (x £ R'1 in general), then the 
search for j< t events can be performed with the aid of W T , 
in a way similar to "devil staircase" singularity reconstruc
tion (See e.g. [3. 9] for details.) 

• Secondly, if x is regarded as t ime (or energy). W T works as 
a tool for studying time (or energy) scaling of the process 
described by t ime (or energy) event density fi(x). 

• Thirdly, being local in both x and Fourier space, W T 
can provide more information in spectral problems, where 
Fourier methods fail or work insufficiently. 

• The contributions of different frequency bands to W T are 
kept reasonably separated. This separation is achieved 
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with quite insignificant loss of resolution in time variable 
(if a signal is considered). That's why the reconstruction is 
"robust" in the sense of being stable under small perturba
tions, which enables one to distinguish between "usefull" 
low bands (in Fourier space) and contributions of close high 
frequencies u?i -U jSsO usually generated by t he noise. 

The situation turns to be even more strange if we take into 
account the well-known facts related to Local I'arton Hudron 
Duality [11], i.e. the similarity between momentum spectra of 
hadrons and those of partons. This similarity, which is closely 
related to n-partcn correlations and multiplicity moments be
havior in phase space, has been studied in [121. The fractal 
behavior of final multiparton states [14] was studied by several 
authors. They calculated the fractal dimension directly from 
multiplicity distribution moments and study the entropy of sec
ondary particles 

.V=-£P„ ln /V 

where Pn is the probability of having "тГ produced particles in 
the final state [15]. They found the scaling behavior, but. as 
the method was rather rude (see [3] for the shortcomings of the 
fractal dimension calculations without wavelets), the rare, but 
interesting events can be lost. Besides, the fractal analysis of 
multiparticle production in hadron-hadron collisions has been 
recently done by other authors [13]. 

That's why we are going to apply wavelet methods for sepa
ration of secondary particles (К mesons, in particular) in d+ Au 
interactions. 
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5 Secondary particle separation as 
an image recognition problem 

I he a im ol i he present paper is not to covei all the problems 
ment ioned above w i th the aid ol wavelet analvsis. In this pre-
l im inarv studv we )мм show its faci l i t ies lor energy versus t i m e 
of Might data I Fig. I I obtained from <l *•• Ли --* . . . reactions 
in exper iments earned out at I lie Xuc lo l ion using the in ternal 
target at deuleron moment urn of :\.H( ,'< I '/<• in March 1 !)!(•!. 

I'he fo l lowing detectors operated at present run : 

Two ident ical telescopes conta in ing lour sc in t i l la t ion counters 
each w i t h 2 x 2 x {)..") <III\ .'i A '•] x ()."> cui\ I \ I x ().."> e n ; ' and 
7..") x 7.") x ()."> c m ' , respect iveiv. The lirsl I hree counters a imed for 
Л I-", and Г 0 1 ' measi irei i iets. and t he last one lor 1 he measurement 
of charge part ic le energy K. The on- l ine scatter plot of I O F vs 
F.ncrgy loss in F ig . l ( i i ial i l at ivelv deinonsl lates 1 lie - . p. d . t and 
He separat ion capahi l i t \ . 

In Fig.2 we present the mass spect rum obta ined from the 
p r imary data bv the s tandard method of compar ing the t ime of 
flight and I iie energ\ 

i i . /:'- - :n-
* = - = - = ,/ — — — t i t ) i 

< >< \ I.-

Due to the presence of both 7Г —mesons and protons, which 
dominate4, in the central (dark , see Figs. I.II ) region of the plot 
(/'„' ~ 250 M e V ) . which contains the largest part of the registered 
part ic les, it is di f f icul t t o d is t inguish other events in th is region. 
Besides, high energy protons I/'. > 100 M e V ) due to decreasing 
energy loss give con t r ibu t ion main ly to the low energy region 
about 200 MeV . 
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6 Algorithm 
The main idea of implying a wavelet analysis to invesl igat ion 

of events in nuclear and hiiili energy olivsics is to use its good 
properties in separating events from noise. I'sing wavelet one-
can look at experimental data with various resolution. I his can 
ho used to searching for tracks of particles and different kind of 
events, e.t .c. 

Го use a mult iresolnt ion analysis I Hi] one should choose a 
family of closed suhspaces I ,„ С l.l(li).tn f. /.. such thai 

1 / i j | £ V „ <=• /! 2 » r i t I .„ - , 

2. . . . С V2 С \\ С V„ С V'-i С I - j С . . . . 
nv-;„ =о.иг„. = мм 

'•]. there is а о £_ li. such that its linear integer translations 

OtuAx] = ol-r -t- n) const i tute a basis in i<> (consequent ly. 

functions ©,„„ const i tute a basis in V,„ |. 

4. there exist 0 < A < В < oo, such tha t for all (cn)n£z <= 

The orthogonal projections of a function which we analyse on 
a chain of subspaces l'„, represent, snapshots of this function with 
different resolution. Choosing an appropriate basic function Ф. 
one could select different kinds of snapshots. 

To make the decomposition ciose. one should also define' a 
chain of subspaces W,„ ortogonal to V,„. such that 

v;„- . = v„, • w,„. ( i i) 
The coefficients of a projection on V„, and W,„ an-

•<: = j nxwwdr, 
<c = / / ( • • ' • )'/-•:(.'•)'/•'•- ( i2) 
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where in a discrete case a sum is implied. For the simplest 
case of Haar wavelel (Sec e.g. il6]) the basic functions are: 

*" = {»' ! for x € /,> 

elsewhere 
(13) 

•>-'12 for 2](k - 1 ) < j - < 2'(k - 1/2), 
чЦт) = \ -T>l'1 for 2Hk - 1/2) < r < Tk. (14) 

0 elsewhere 

Hie /£ denotes the supporter of j - \ \ \ level basic functions 

Ij = l{ = ( 2 J ( / t - l ) .2 J / t i . 

The approximate reconstruction formula has the form 

i\nf = Y,s™K + 4 E « П5) 
ч n. 

In our two-dimensional problem we used a pyramidal scheme 
with a basis taken in the form of a tensor product 

or explicitly. 

{huh2,h3} = {tt>i(x)i(>r(y),&i(x)<t>n(y),<i>i{x)il>i'(y)}- (Щ 

The corresponding coefficients can be easily derived from the 
formulae (12): 

=J+> - . „J 
•^A^- l^Jt , , - ! + л 2* х -1 ,2к» + ^гкх .гк , - ! + s2*x,: 2k, У 

2/t„ "(1)**,*» •S2*:J-1,2* ! /-1 *2/fcr-1.2fc» '^г^ .г* , , - ! ^ л2*:1, 

"(2);*!,*» • s2fc J- l .2fc s- l _ - ^ f c , , 2 * ^ - 1 + s2kI-l,2ky
 b2kx,2ka 

/ / J + 1 ~ <;•> - 1 - е - ' e J — «•* 
" ( З ) ; ^ , ^ S 2fc t - l ,2 fc„- l "+" S2kx,2kv-\ Ь2кх-\,2ку

 A2kx,2ky> 

where s° s tand for the primary data . 
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7 Results 
The primary data /',' — <ll plot for I he above meni ioned run is 
shown in Fig. l . I he .Y-axis corresponds to ADC channel num
bers. Y'-axis to TDC ones. (Moth axes are scaled by factor 1). In 
this plot, over a noisy background we can distinguish 1 wo con
trast regions: I IK- upper, which corresponds to sccondarv pro
tons, and the lower, which corresponds Iо ~-mesons. 

To clear out the eontribut ion of dominating processes we per
formed the wavelet analysis. Having calculated the wavelet im
age (the Haar wavelet was used) of the initial data plot we sub-
stracted the central domain, in which г/'2' coefficients I See Fig. 1) 
practically wanish. 

The resulting mass spec! rum is presenled in fi».">. We ident ifv 
the central peak near oOO MeV. clcarlv distinguished on mass 
histogramm with the A -mesons contribution. 

Besides, sequentially scaling the picture, we can clearly dis
tinguish 4 regions: 

• upper right region: secondary deuterons 

• two above-mentioned regions 

• a A'-meson branch. 

The authors are grateful to Dr. V.Kolesnikov for invaluable tech
nical aid in data acquisition. We are also grateful to prof. S.ltatti 
for st imulating discussions. One of the authors (S.A.) is grateful 
to Russian Fund for Fundamental Research, grant 'W-02-377H. 
for financial support . 
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