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1 Introduction 

Tin' idotitilicalion of physical degrees of freedom of the non - Abelian gauge theory is 

a crucial point for understanding physical phenomena hidden in itR structure. The pro-

icdiiii- ot idcnlilicatiou of physical variables and their separation from uonphysical one.-, 

has been tailed the reduction procedure. There are two ways for Ihe realization of the 

reduction : gaugrlrsa and gaugt jixinij. In the former, independent physical variables are 

constructed by the explicit resolution of constraints. In this case nonphysical variables 

disappear and the remaining gauge invariant variables describe a usual unconstrained sys­

tem. To avoid the 'difficulties with the resolution of complete constraints, one commonly 

uses the general method of Dirac (1), gauge - fixing approach, based on the introduction 

into the theory of some new " gauge constraints ^ and on replacement of the Poisson 

bracket by Dirac's one. However, there are also some problems in the Dirac approach. 

In particular, the gauge fixing scheme is based on "gauge equivalence " theorem. The 

rigorous proof of gauge independence is known in the assumption of existence of asymp-

tolically free slates of elementary particles [2], [3]. The extension of this result to more 

general cases, including a non pert urba live one, is quite problematic. In this case to obtain 

gauge invariant results a greater accuracy is necessary to take into account nontrivial 

boundary conditions for gauge fields [l]. Another problem of gauge - fixing procedure lot 

I he noil - Abeliau gauge theory is Clribov's ambiguity |r>] : there are many equivalent 

gauge field configurations obeying the same gauge condition. After the study of the space 

of orbits ( the space of gauge fields modulo the group of gauge transformations ) [6J it 

lias been clear that Ihe gauge - fixing procedure is not quite painless and it needs more 

rigorous treatment. For these reasons from time to time a t tempts have been undertaken 

lo deal with the gaugeless method [7] [12]. 
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Ill this article we would like to demonstrate that the gauge less method of quaul izalion 

? 'lows us to describe the gauge* invariant content of ( I i ihovs ambiguity taking into account 

the collective variable inherent in gauge theory with nontriviai topological properties i>f 

gauge group. 

According to the gaugeless approach [7], [X), [12], the physical variables in the Yang • 

Mills theory is constructed in the following way : the поп - Л1мТ).чп Gauss' constraint is 

solved with respect to the nondynarnic.il time component of gauge lield, and then new 

3<tuge invariant variables are constructed with the help of the Hogoliuhov transformation 

|!!{{ in terms of the constraint solution. The solution of <iauss' equation for nondynamical 

v;niable is delinite within the arbitrary time - dependent fuintions. These ium lions for 

• i in pie cases (e.g.. elect rod у nan lies in iiilimle sp.ic-l in;e) иге excluded from cousideral ion 

owing to boundary conditions for gauge fields. In the genera! caue lhe>e fiiintioiis iiiise 

•и the kinetic term of the constrained action itud thus these /его modes are physical 

vaiiables. In particular, liogoliuhov's transformatio!! is <letuie<l within tlie arbitrary time 

d<'pendent phase. The appearance of this phase in the framework of gaugeloss method 

corresponds to the Cribov ambiguity in the gang** • fixing approach, where it can be 

ire.ited as a collective variable for the group of transformations remaining after imposing 

the gauge condition. 

The paper will be organized аь follows. In Section 2 we shall briefly describe the 

gaugeless method by example of QED in the four - dimensional Miukowskian space • time. 

Se< tiuu .1 is devoled to the construction of physical variables in (I +3) dimensional Sf!{2) 

Yang - Mills theory with zero mode sector of (jauss' law. The connection is shown of the 

phase zero mode variable with the winding number functional. We prove a no - go theorem 

about the local realization of the representation ol a homolopy group without the collective 

mode, and show that the presence of a zero mode leads to another realization different 

from the " iuslanton " one (1-1. 15]. In the last section the perturbation theory in terms 

of quasiparticles around the stable vacuum, corresponding to zero mode configuration, is 

proposed. ЛИ observable* are determined after the averaging over the collective variable. 

It is noted that the degeneration of physical states with respect to this collective variable 

i\\\\ be cause o! the color confinement. 
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2 Reduction of QED without gauge fixing 

'I'D introduce the method of gaugeless reduction, let. us begin with an example of electro­

dynamics in the instant form 

l l ' [ . - U ' . f ] = [j,s(l-\{ciuA,-irA0)'-B?] + v№-m)i)- + eJl£AA, (2.1) 

li, = e l j t0M* . 

In the act ion (2.1) in accordance with the choice of time axis i\x — xa> the time component 

of vector field is distinguished. The main point of gangeless reduction for electrodynamics 

is to resolve explicitly the Lagrangian constraint 

Д Л , = ffiiuA, + •)„. (2.2) 

Within tin* zero modes of operalor Д (explanation will be given in the next section ) we 

can write down the solution for ('2.2) in the form of the following decomposition of Ац\ 

,4„ = AS + AJ
a . A'J = i (Mj.A') , AJ

0 = ! . / „ , (2-3) 

where AtT is varied under the gauge transformations 

A» -* A\ = A» + С*МЛ, 

while /ljj remains invariant. The kinetic term in eq.(2.1) according to this decomposition 

can he diagonalized with the help of the Bogolinbov transformation to the new variable» 

A't[A\ = г,[А\(А,,-,-дк)ЫА}Г\ 
f 

t'[A] = v[A]4-. (2.4) 

where 

v\A\ = e x p { . y dfA'0'} = e x p { i e i ^ ^ } . (2.5) 

These variables are the gauge invariant functionals from initial gauge fields 

A'[A + dA] = A'[A] 
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and satisfy, by the construction, the identity 

diA[[A\ = 0. (2.6) 

Note that this identity is the consequence of the explicit re.solution (2.3). Thus, the 

luuclional Л'[/4] contains only two observable transverse fields 

0 = 1.2 

without selecting the Coulomb gauge as the initial supposition. The initial action (2.1) 

on the constraint shell (2.2) in terms of the new variables gets llie form 

WH**[AI,1>,\ = j # * i £ ( 3 n a 0 " / O + pljii-j!Л! + -/•'(")--»•)»••' • (2.7) 

So, we are ready to pass to the llamiltoiiiaii form for our theory by using the conventional 

Legandre transformation for physical coordinates Л[. The quantization is achieved by 

imposing the canonical equal-time commutation relation between conjugate variables: 

[л0(х), £,;'(.,)] = M V - » ) • 

Out- can write down the generating functional for Green's function of the obtained un­

constrained system in the form 

Z™ls',s'j') = JY[DAlDi,lD4>!eM'""'{A'*'*']+,s\ (2.8) 

with the external source term 

S' = /</<x(iV + V1V + .AMI]). (2.9) 

As to gauge and relativistic covariance in gaugeless scheme, there is subtle 

realization of Poincare symmetry - mixing of this rigid symmetry with gauge one 

Ui\<(i)UL = S(L)exp(ie\(x,L))*(Lx), 

U[1AU(T)UL = ( i ) ; ; e x p ( . > A ( x , L ) ) ( / U L r ) + ^ „ ) e x p ( - ! e A ( x , Z , ) ) . (2.10) 

In particular, it has been proved that the infinitesimal Lorentz transformation of coor­

dinates with parameters e* corresponds to the transformation law for physical variables 

[II]: 

A',[A + 6LA] - A[[A\ = SLA' + d,\[A'\ , 



willi the convent ional Lorcnl/ variation Л/..-1 - /..-1 supplemented by the gauge One: 

A[,l'../] = = - ^ [ ( ^ | + <Л.А,] • 

This form was interpreted by llcisenbcrg and I'auli [Hi] (with reference to the unpublished 

note by von Neumann) as the transition from the Coulomb gauge with respect to the time 

axis in the rest frame i/J = (1.0.0,0) to I he Coulomb gauge with respect lo the time axis 

in the moving frame 

'/„ = 4 " + W - (/-'/"I,, 
'1 he Lorenlz covariancc of llie reduced tlieory was proved in the quantum theory by 

M.'/uiiiiiio 117] and ineitns 

/М,'.Л./'] = '/!l
t"'[l.,lJ.s,.U'}. (2.1!) 

2.1 Gauge equivalence theorem 

The usual form of the gauge - fixing Faddeev-Popov inlegral for generating functional of 

Clreen functions in tlie gauge F(A) ~ 0 is 

S'-' = Л/ 4 .r(.s' •'<,•'•' + f V + ^ ' . < ] ) (2.12) 

where IV is the initial action and Л/.-/* is the Faddeev Popov (KP) determinant. 

As was proved [2], [Л] l»y the changing variables of integration of the type of (2.1). 

this representation coincides with the gauge invariant reduced result (2.8) only for the 

choice of the following form of the source term: 

/ = ( | ' | / ] Г ' » ' . . s r = s '( . ' [ . l>']) . . / ; = ( ) . tf,./,f' = 0. (2.13) 

with the gauge transformation v[Ah] defined in (2.5). 

In the h'eynman diagrams for Green function this gauge factor c[.4'] leads to so-called 

spurious diagrams (SO). Just these spurious diagrams restore the I'Vynman rules ( H I ) for 

the reduced functional (2.8). Thus, one can present the identity 

[l-'lif + (>•£>) = ( / • '«) ' (for Greens functions) (2.11) 
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as a consequence of independence of the functional integral (2.12) of the choice of variables. 

It can he verified that in calculation of the elements of S- matrix transition between 

the elemmiarv asymptotic stales these spurious diagrams disappear on the mass shell 

surface. As a result, we gel 

(FR)*' - [FR]' (for elementary particles S- matrix ). (2.15) 

This statement is known an the gauge equivalence or independence theorem [2], [3]. 

When the asymptotic states contain a composite particle or some collective excitations, 

the equation (2.15) is quite problematic and we air sure only in the identity (2.1-1) 

[FRf + {SD\ = (FR)1 (For S - matrix with «omposite particles). (2.16) 

The violation of the gauge equivalence theorem (2.Jr)) in this case does not mean the 

gauge nouinvariance and relativistic noncovariance. This violation reflects the nonequiv-

alence of the different definitions of the sources (2.9) and (2.13) hecause of nontrivial 

boundary conditions and residual interactions forming asymptotic composite, or collec­

tive states.In this context, the notion "gauge", in fact, is the gauge of sources in the FP 

- functional integral, but not only the choice of definite Feynman rules. As the gaugeless 

scheme takes into account explicitly the whole physical information from constraints, it 

is more correct to use this gauge - invariant a r t d relativistic - covenant scheme for 

description of composite particles and collective excitations rather than the Dirac 

approach with an arbitrary relativistic invariant "gauge of sources". Hclow, we would 

like to demonstrate the preference of the gaugeless scheme with an example of collective 

excitations in the Yang - Mills theory. 
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3 G AUGELESS REDUCTION of YANG - MILLS 

THEORY 

3.1 Zero mode of Gauss' law 

Now we pass ID tin' reduction of the Yang - Mills theory with the local SU(2) group in 

lour • dimensional Miukowskian space - time 

wilh I he usual definitions of non-Abelian electric tension /•'„,: 

/•'о, = i)oA^-V{A)°bAl V? = (д'ьд, + e<" r t /1f) . 

;UK! magnetic one H": 

fl," = <„* (о,лц-'-<*'л* лк). 

I'lii' reduction consists in the explicit resolution of non-Abelian Causs' law: 

£ 1 = 0 = > [V'(A)]"'Ai = V".(A)duA
c, (3.2) 

arid next in dealing with the initial action (3.1) on the surface of these solutions; 

WH'd = W[ A. ] I ,B. (3.3) 

Let us choose some particular solution of the constraint (3.2) with the property 

lim ac
0[f,t) = 0 (3.4) 

|fl - oo 

and write down the general solution as a sum of this particular solution ao and the genera] 

solution Ф ( zero mode field) of the homogeneous equation: 

Ac
0 = -Фс + « J , [V>(A)]°cV = 0. (3.5) 

In the next step the QED gauge invariant variables (2.4) can be generalized as in ref. [7j: 

A[ = v'[A](Ak + dk)(v'[A\)-\ 

Ф' = v4A]*(v'lA))-1, A = e^f-, (3.6) 
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where the non - Abelian Bogoliubov transformation r'[.4] is given with the help of the 

"good" solution a0(x,t): 

v'\A] = TexV{[ dt'a0). (3.7) 

In terms of these variables the reduced action takes the form 

W^lA1*'} = \jd*x[ (9oA! + У,(/1')Ф')3 - B,s] , (3.8) 

where the fields доА', Ф', Д satisfy the geometrical constraints 

V°V)Sb/ l " = 0, 

V?6(/l')V^(/l')<t,/'' = 0-

Vf(A')O^A') = 0. (3.9) 

It is clear that due to (3.9) the reduced action depends on the zero mode field Ф only 

through the surface terms on spatial infinity /E and /»: 

/ E = fd3xdoA',V&s f (Ртд,(доА,Ф) = /<^,(ЗЬ/1,'Ф)| 

/ • = i [<Рх№,Ф)°(\7,Ф)° = \ / Л й ( Ф ' ) ! = 7 Ids,d,W\ t 3 - 1 ' ) 
./ 4 J •» J l|*l - '*• 

, (3.10) 
|f| - CO 

И""|А,Ф] = l-fdtx[(d0Al)2-[U,)'\ + Jdt{IE + U). (3.12) 

Emphasize that in accordance with the property (3.4) the field A' at the spacial infinity 

can be only stationary: 

A\(x,t)\ = />,(•?), ( 3 . 1 3 ) 
l|£| - со 

that means the diagonalization of the kinetic term in the action (3.8): (/g = 0). 

The background field b{x) can be treated as the zero mode of the time derivative 

operator in the Gauss law dob\ = 0. As a consequence, we have the factorizable form 

for the zero mode field : 

Ф((,£)»| = v>o(0*S(-?)- (314) 
l|f| - CO 
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To clear lip tin- meaning of r"o(0 recall (hal In dcMnilioii tin* variables A1 describe local 

см italion. ivbile /.его mode Meld Ф is associated \\ il li some global (collectiveJ dynamics 

of gauge Melds. Sucli global properties ol the theory are connected with the well - known 

topological invariant [I Ij. (lr)J 

' , / / ' . ' / " " / ; „ . . (3.1Л) 
(HIT' \r~' J 

can he 

I = /(/'.с (м.л/ + v ,0 ) a,, tr; = 4—, /*;'• (3-й» 
(constraint У Ьтт* 

On the constraint shell the quantity и can be represented as 

We can find the connection between the time • dependent part of I he zero mode ; , ) ( ' ) 

I i his titpol.inii.il iii\aii.iiit after using the following dentiiiposil ion for v into the local 

and global parts: 

..""' = | , / / < А , . \ > [ , 1 ' . Ф ' ] . .wi.-1'.Ф] = .v,.[,i'J + .v u . (3.17 

H>7T* 7 -i 

%V„ = / л - Л . ^ . Ф = / ^ , ( Ф Д ) | ; : м я ) 

Comparing (3. II) and (3.19) we get the desirable connect ion 

r-.. - 'Л-Vu/w'. (3-20) 

where the constant /# is determined via the stationary part of Melds (3.13) at spatial 

infinity 

Finally, our reduced action gets the form 

WH"4A'..\'o] = 1Г,""'[Л'] + И ,?" ' . 

»'/"M'] = ;/<^[(<v-i . ' ) ' -(»,>2] . 
И/»'" = f,ll{i)o.\'u)'l. I = / „ / / J . (3.22) 

From the reduced action (3.22) with zero mode we get an unexpected result: 
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Tlifn is a static solution of fmrt Yauy - Mills Ihtonj irilh Jinitt intrgy in four - dimtn-

siotutl Minhowskiau spac* - turn [12]. 

One can show that one of such static solutions coincides with the well - known 13o-

goinoln'yi Prasad Sonimerficld (Ul'S) inoiiopoli' solution of the Yang - Mills • Higgs 

system [18]. To prove this statement, it is enough to observe thai the zero mode in lire 

action (.4.8) plays the role of the lliggs stationary field. Indeed, the Prasad Somiuerueld 

solution of the liogomolu'yi equation 

A* 

2* » Ф, = — ,11 ' 

sinh(/n') 

coll i ( / n ) • 

r=\r\. 

(3.23) 

(3.24) 

with ft being the parameter of the mass dimension,automatically satisfies the zero mode 

equation (3.)) and our boundary conditions. Kor these field configurations, the constants 

(3.11). (3.21) are the following: 

lb 1 . / • = 
/»' 

(3.25) 

It is interesting to note that there are arguments [HI]. [20] in favour of stability of 

this perturbation theory under small deformations around this vacuum background. 

3.2 Zero mode and homotopy group 

It is usually assumed that all nontrivial topological properties of the gauge theory are 

connected with the existence of classical solutions of tfie Kuclidean Euler -- Lagrange 

equations with finite action - iustantons. Recall that iustautou calculations are based 

on consideration of the topological noutrivial gauge symmetry group [14], [15]: 

with restriction on the class of stationary transformations {<;(.?)} with the asymptotic 

properly 

Jim g{f) = 1 . 
|ff - CO 
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One can use the assumption of cornpactification of three - dimensional space into a three-

sphere SA. In this case all maps {fl(x)} : S3 —• SU{'2) can be split into the disjoint 

homotopy classes characterized by the integer index n: 

" = i b i л ' i""tr H ̂  4 ; *=я 8i9~K 

Thus, we ran speak about the homotopy group ir3(.S4'(2)) = Z. The configurations be­

longing to tin- different classes raiiuol be deformed continuously into each other. The 

gauge transformations which arc deformable to identity are called small, while homotopi-

cally iiontrivial ones,;/ / 0,are large. For large gauge transformations the local topological 

variable Л';,[Л] (3.18) varies as 

NL[A'\ = NL[A\ + n. (3.26) 

The group of these transformations is usually considered in the context of instanton ap­

proximation [1-1] for the Green functional in the Euclidean space 

6-£"''(.4,..<b;n= f"[DA)e-w°", 
J A, 

according to which the contribution from the self - dual fields (E — ±B) dominates in 

the vacuum sector. One can write the spectral decomposition of this functional 

G ^ U , . . ^ ; ' / ' ) = £ У ' Т Ч Ч Л , ) Ф ; ( . 4 2 ) , 

with wave functions satisfying the following set of equations: 

HL4>, = с * , , (3.27) 

V,£, Ф, = 0, (3.28) 

TL$, = e,s 4>,. (3.29) 

The first equation is the stationary Schrodinger equation with the Hamiltonian 

HL[A,E\ = J d3x]-(Ef + Bf). 

Eq.(3.28) reflects the invariance of the theory under the small gauge transformations, 

while eq.(3.29) describes the covariance properties of the wave function under a large 
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gauge transformation with the topological shift, operator 1\ represented in the following 

form : 

г ' = С Х 1 > { ^ й } ' 
where NL is the functional (3.18). This form is justified in refs. [14] by representing the 

solution of (3.27) - (3.39) in the form of the Bloch wave function 

*.{NL,A) = eiPNL Ф.И) 

with the exact solution with energy € = 0 

Ф„ = ехр{±^Л-,(Л]|, 

which represents the quantum version of the inslantoii solution (Etyu = ± / i * o ) - However, 

this solution is uonphysical (nonnonnalizablc). It is easy to check also that the operators 

lh.i'1't. <l° not commute: 

therefore they cannot have a common system of physical eigenstates. So, for such local 

realization of the topological shift operator 'l\ the following statement is valid: 

No - go theorem: TAere are no physical solutions for equations (3.27) (3.29). 

These obstacles can be overcome in our gaugeless consideration where the winding 

number is represented according to (3.17) as a sum of the local functional NL and some 

collective variable N0. Introduction of this new variable fllows a consistent description of 

the representation of the homotopy group. Indeed, starting with reduced action one can 

get the following Hamiltonian: 

HR'd = l-pi + HL[A',E'] (3.30) 

as the sum of the local Hamiltonian Hi. and the global one with canonical momentum 

conjugated to the global variable N0 

* - S}Qr1 - **• (3-3i) 
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The rcc|tiirciiicni of lite invariatice utidcr tin- large gauge transformations (3.20) leads 

In the region ol definition of the variable V„ |(l. I). In this ease eqs. (3.27)-(3.29) 

transform as follows: 

V . f , Ф, 

where 

Га = exp (>/ ' ) 

These equations a<lmil the factorization of the wave function into the plane wave describing 

the topological collective motion, with the momentum spectrum: 

/'„ = 'Ink + 0 

and into the oscillator - like part depending on transverse variables : 

Ф,(Л'и. A') =< l'u\i\0 > ¥,.[/»'] < Ги\\о > = е'''оЛ'0. (3.35) 

Thus, the consistent solution of the problem of the quantization of the Yang Mills 

theory with noutrlvial hoinotopy group is achieved by introducing an additional global 

variable arising in the process of reduction as zero mode of Gauss' constraint. 

3.3 Zero mode and topological confinement 

Generally speaking, for constrained system in the "gauge" 

V;,b(.-i)rA).lf = (l (:j.:«i) 

the generating functional for Green's function can be constructed [8] by using the con­

ventional Faddeev Popov functional integral [3]: 

Z[J\ = j^\DtAJ\Afl(V1(Ai))\i(Y,(A)OoAiyw[^*i^^. 

0 , 

+,. 

«Ли 

(3.32) 

(3.33) 

(3.31) 
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After the integration over Д„ it can be rewritten as 

Z\.l\ = f l),.-\,{,ivi{Vi(A.))],'2MVAA)')uA.)>,"'''J[Ah,slJ]- (3.37) 

Tilt* calculation of this functional integral faces the problems of the existence of zeroes 

of FP determinant well known as the Gribuv ambiguity of fixing variables [5]. In the 

gaugeless approach this ambiguity corresponds to the existence of the zero mode sector 

(3.5) and. accordingly, of two types of variables (3.<>) and 

Л* = v*{A't+OkH . , • ) " ' . 

v* = 7'exp{ / </r'4>'}. (3.38) 

satisfying one and the same gauge const mini (:),((>). The above introduced variables 

A1 (')•<>) are invariant under the small gauge tiaiibloniMtions, while the variables A* are 

invariant against the large one. Ну the const Miction, the gauge factor v* neutralizes the 

large gauge transformation, as the factor rl neutralized the small one in (3.(>),and the 

total topological variable has the form 

,VT = Л',.[Л'] + Л'„ = N,.[-4*1 + Invariant term. (3.39) 

In particular, for the HI'S fields (3.21). the second Hogoliuhov transformation is 

,,• = f..V0,"m"„(r) _ ( j щ 

with function ii(y) = 27r[coth (/jr) — - ^ ] , and the invariant term in eq.(3.39) has the 

following form: 
sin(2)rNu) 

Invariant term = . (' ' . 'Ill 
2 л" 

It is important to note that in the conventional llamiltonian approach Gauss' con­

straint is considered as the generator of small gauge transformations . In the gaugeless 

approach one can be convinced that Gauss' constraint is responsible for both gauge trans­

formations: small and large. The small gauge transformations are generated by Gauss ' 

constraint without zero mode, while the large by the zero mode (3.34). 

In the gaugeless approach, the requirement of gauge invariance of the observable quan­

tities under the whole group of transformations (small and large) means that we should 
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work ill terms of variables A*. 1 lie gaugeless reduced configuration space besides the 

variables -1* ciiiitaiiis also the above introduced topological variable N0 and, therefore, 

in the expression of the corresponding generating functional there is an additional func­

tional integral over it. To write down the generating functional we must separate the 

stationary asymptotic part £>, which is accompanied by NQ, from the dynamical one 

•4?(f .O = v* (bi(x) + dk + o J ( f , 0 ) f* = •'* (*£(*) + dk) v* + a*(x,t), 

where 

tin* matrix U',i(.r\\'u(t)) IVAHZCN the transformation (3.38) in the adjoint representation 

of OH* color group 

„• r>*) - ' '= ir"rb. 

III the following we shall call 6 the condensate and a the quasiparticle excitation. 

Thus, instead of (3.37) in the gaugeless reduce scheme we have the representation for 

the generating functional of Green's functions: 

Уро(0|=Я J 

I [D3a,] = / 0 3 a , [dr t <У(Ь' + a))] 1 / 2«(V,(6 ' + о)йЬп,) (3.42) 

with 

V*.*l = JsrJ?*'! ^ . /^AVO'VIAWO). 

The generating functional (3.42) is free from zeroes of KP determinant and corresponds 

to gauge invariant Green's functions of quasiparticles 

( . " • ( l , . . . , n ) = < vac P\T[a*(l)-a*{n)\ \vac Q > . (3.43) 

In Eq.(3.43) the vacuum vector \vac Q > means the state without quasiparticles and with 

definite topological momentum Q. 

The perturbation theory with respect to the quasiparticles in the background b is 

constructed by the decomposition of action 

,fud . Wh WG + Wa[b\ + l- jfxKdoa)2 - a{A)a] + Winl[a,b], (3.44) 
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where Д is the differential operator : 

(A);^ = *1J(V J(/,))"' + 2. /^(*i .-"- ' . 

After introducing the complete set of eigenfunclions 

(Atfff(x\w) = u.V.-•(•irl«•)''"/•'. 

we can write the following expansion for the field « ' : 

u'(s,t) = Yi ( г + ( . г ) / / ( г | « . ) . +""' + г-(ц.)УУ(Л'")< -"• ' ) • 
U' 

In the canonical operator quantization the coefficient c+(«')(c~(ir)) is the creation (anni­

hilation) operator of <|iia.siparticlcs with the asymptotic llainiltoniaii 

iiAsutituI \ ' 4-
". ' . = 2 _ "'''«•'«•• 

The function J'j[x\w) is tin1 amplitude of probability to lind the quasiparticle with the 

energy w at the point x. For observable miasiparlicle a* this amplitude has the form 

< vac F\aJc{i,0)\vac Q >= f dNe,Nil'-Q)Q"'(x\Nu{0) = N)ff{x\w). 
Jo 

The factor fi reflects the degeneration of the quasiparticle energy under the topological 

variable and leads to the sum of Kronecker symbols {р,д±,1цт)- This result can be treated 

as confinement of color states (8], [11]. For colorless states topological degeneration factors 

disappear and we get the conventional expressions for corresponding matrix elements. 

This scheme of topological confinement will be discussed in more detail in the forthcoming 

publication . It is worth to note that there are the values of the coupling constant e2 = 

2(| 2JT& + в | ) - 1 for which the background part \У0[Ь\ of the action (3.44) is compensated 

by the collective motion one WQ. 
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4 Summary 

We have di.M ussed (lie method of quantization of I he Yang Mills theory in which the 

noiidynamical variables are eliminated by the explicit rrMilving of the classical Ciauss 

constraint: 

X"(A)At, - VM-U 'Vl , = 0-

and then quantum theory is built up for the action on the constraint shell. We take into 

account the zero modes of all operators in the constraint: 

the condensate /*(.r) as a zero mode of the operator 0ц 

the phase angle Ф(.г) as а /его mode of the operator VJ(.-t) 

V2(/l)4> = 0. 

This /.его mode is associated with the collective coordinate which restores the gauge 

invariance of I he theory, broken in any particular solution of I his constraint. At this 

point the situation is quite similar to I lie case of semi classical soli I on quantization, based 

on the introduction of collective coordinates [21] for taking into account the breaking of 

rigid global symmetries (e.g., translation, rotation, etc.). The collective variable allows 

us to separate zero modes of the Faddeev - Popov determinant and to solve the problem 

of gaugeless version of Gribov's copies. 

There is a significant difference between the Yang • Mills tlxMity with the collective 

variables and the conventional one. In particular, it has been shown that in the former 

there is a static stable solution that corresponds to the well - known Prasad - Sommerfield 

solution in the conventional Yang -Mills theory interacting with Higgs' field. In the 

gaugeless reduce<l theory the zero mode Ф(х) plays the role of the Higgs held . 

The collective variable associated with the phase angle Ф describes the dynamical 

realization of the homotopy group x-j(Sl'{2)) = / in the Miukowskian space. In con­

trast to the instanton version with integer winding number functional, in the dynamical 

realization the collective variable as winding number is continuous. Just the averaging 

17 



over the continuous winding number leads to confinement of gauge invariant color fields 

configuration due to the phenomenon of the complete destructive interference. 
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