


1 Introduction

The identification of physical degrees of freedom of the non - Abelian gauge theory is
a crucial point for understanding physical phenomena hidden in its structure. The pro-
cedure of identilication of physical variables and their separation from nonphysical onex
Las beere called the reduction procedure. There are two ways for the realization of the
reduction : gaugeless and gauge firing. In the former, independent physical variables are
constructed by the explicit resobution of constraints. In this case nonphysical variables
disappear and the remaining gauge invariant variables describe a usual unconstrained sys-
tenn. ‘To avoid the difficuities with the resolution of complete constraints, one commonly
uses the general method of Dirac 1], gauge - fixing approach, based on the introduction

" and on replacement of the Poisson

into the theory of sume new * gauge constraints
bracket by Dirac’s one. However, there are also some problems in the Dirac approach.
In particular, the gauge - fixing scheme is based on “gauge equivaleuce ™ theorem. The
rigorons proof of gauge independence is known in the assnmption of existence of asymp-
totically free states of elementary particles [2], [3]. The extension of this result to more
general cases, including a nonperturbative one. is quite problematic. In this case to olstain

gange iuvariant results a greater accuracy s necessary to take into account nontrivial
houndary conditions for gauge fields [1]. Another problemn of gauge - fixing procedure [or
the non - Abelian gange theory is Gribov's ambiguity |5] @ there are many equivalent
gauge field configurations obeying the same gauge condition. After the study of the space
of orbits { the space of gauge fields 1nodulo the group of gauge transformations ) [6} it
tias been clear that the gauge - fixing procedure is not yuite painless and it needs more

rigorous treatment. For these reasons from time to time attempts have been undertaken

10 deal with the gaugeless method (7] - {12].



I this article we would like to demonstrate that the gaugeless method ol guantization
#"lows us to deseribe the gauge invariant content of Gribov's ambiguity taking into account
the collective variable inherem i gacge theory with nontrivial tapological properties of

SANLEe group.

According to the gangeless approach [7), [8], (12], the physical variables in the Yang -
Mills theory is constructed in the following way : the non - Abelian Gauss” constraing s
solved with respect to the nondynamical time component of gauge field, and then  new
gauge invariant variables ave constructed with the help of the Bogoliubov transformation
{13] in terms of the constraint solution. The solution of Gauss” equation for nondynamical
viriable is definite within the arbitrary time - dependent functions. These functions for
wnple cases (e.g.. clectrodynanios in mfinite spacoaime) ave exeided from consideration
owing Lo boundary conditions for gauge fiekds. T the general case these fonctions atise
A the kinetie term of the constrnined action unl thus these zeso modes are physical
vindables. In particular, Bogolinbov's transformation is detined within the arbitrary time

dependent phase. The appearance of this phase in the framework of gaugeless method
corresponds to the Gribov ambiguity in the gauge - fixing approach, where it can be
treated as a collective variable for the group of transformations remaining after iniposing

the gange condition.

The paper will be organized as follows. In Section 2 we shall briefly describe the
gangeless method by example of QED in the four - dimensional Minkowskian space - time.
Sedction 3 is devoted to the construction of physical variables in (1+3) dimensional S1/(2)
Yang - Mills theory with zero mode sector of Gauss' law. The connection is shown of the
phase zero mode variable with the winding number functional. We prove a no - go theorem
about the local realization of the representation ol a humotopy group without the collective
mode, and show that the presence of a zero mmode leads Lo another realization different

from the = iustanton ™ one (14, 13]. In the last seetion the perturbation theory in terms
of quasiparticles around the stable vacuum. corresponding to zero mode configuration, is
pruposed. All observables are determined aflter the averaging over the collective variable.
It ix noted that the degeneration of physical states with respect to this collective variable

can be cause of the color confinement.
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2 Reduction of QED without gauge fixing

Tu introduce the method of gangeless reduction, let ns begin with an example of electro-

dyvnamdces in the instant form
Wit = /(l'.r (é[(i)y/l' ~ 9 Ap)* - B+ w(id - m)y + eJ“A“) s (2.1}

B, = ¢ ¥ A* .

In the action (2.1} in accordance with the choice of time axis 7-r = ry, the time component
of vector field is distinguished. The main point of gaugeless reduction for electrodynamics

is to resolve explicitly the Lagrangian constraint
Ao = ThA Do (22)

Within the zero modes of operator A (explanation will be given in the next section ) we

can write down the solution for (2.2) in the form of the following decomposition of Ay:

[P
Ao = A + AL AL = 3—(()(.(),.4’) . A = —d, (2.3)
where A' is varied under the gauge transformations

A, = A, = A, + 8.,

while A7 remains invariant. The kinetic term in eq.(2.1) according to this decomposition
can be diagonalized with the help of the Bogoliubov transformation to the new variables

[7):

ALA] = olA) A~ i13(lAD
wl[A] = o[AJp, (2.4)
where
v[A) =exp{i/ d'Af) = exp{ie]K(?’A,} . (2.5)

These variables are the gauge invariant functionals from initial gauge fields
AllA +0A) = A'[A]
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and satisfy, by the construction, the identity
dAllA]=0. (2.6)

Note that this identity is the consequence of the explicit resolution (2.3). Thus, the
luuctional A![A] contains only two observable transverse ficlds
Al=Y" el
a=12
without selecting the Coulomb gauge as the initial supposition. The initial action (2.1}
on the constraint shell (2.2) in terins of the new variables gets the form
1 | :
WAl 1] = f dr o3 BuAPAD + siapis — S+ 0 —m)it | L (2)
a=1,2
So, we are ready to pass to the Hamiltonian form for our theory by using the conventional
Legandre transformation for physical coordinates A!. The quantization is achieved by

imposing the canonical equal-time commutation relation between conjugate variables:
1 i :
(A=), E{(y)) = bu8”(x - y).

One can write down the generating functional for Green’s fuuction of the obtained un-

constrained system in the form

25431, 9] = [ [] DAL Dyt ™ s, (28)

with the external source term
s = /a“z (5! +wls +J1AY). (2.9)
As to gauge and relativistic covariance in gaugeless scheme, there is subtle

realization of Poincare symmetry - mixing of this rigid symmetry with gauge one
U'v(z)UL = S(L)exp(ieA(z, L))¥(Lz),
Ur'AL(n)Uy = (L), exp(ieA(z, L)) (A,,(LI) + %(’J,,) exp(—teA(zx, L)). (2.10)

In particular, it has been proved that the infinitesimal Lorentz transformation of coor-

dinates with parameters ¢* corresponds to the transformation law for physical variables

[1]:
AllA + 6,A) - Al[A] = 6,.4" +8,A[A"],
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with the conventional Lorentz variation 8,1 = LA supplemented by the gauge one:
b .
AL = ;AS [((oA]) + Sdy]

This form was interpreted by Heisenberg and Pauli [16] {with reference to the unpublished
note by von Newmann) as the transition from the Coulomb gauge with respect to the time
axis in the rest frame 38 = (1.0.0,0) to the Coulommb gauge with respect o the time axis
in the moving frime

=0t et = (Y,
{he Lorentz covariance of the reduced theory was proved in the guantun theory by

B.Zamino [17] and ineans

AR SN L A VSN AL (2.11)

2.1 Gauge equivalence theorem

The nsual form of the gange - fixing Faddeev-Popos imegral for generating functional of
Green functions in the gauge F{A) = 9 is

/ T pAl Dot Dot Abpsi p(aF )BTt o1t

n

/d‘.r (Mol + ot abal) (2.12)

2t 0

sF

where W s the initial action and Appis the Faddeev Popov (FP) determinant.

As was proved 2] 13] by the changing variables of integration of the type of (2.4).
this representation coincides with the gauge invariant reduced result (2.8) only for the
choice of the following form of the source term:

B L V0 ) i T S Y Y L S I L B Y A (2.13)
with the gauge transformation »{A*] defined in (2.5).
In the Feynman diagrams for Green function this gauge factor v[4%] leads to so-called

spurious diagrams (51). Just these spurious diagrams restore the Feynman rules (FR) for

the reduced functional (2.8). Thus, one can present the identity

(FRY +(SD) = (FR)  (for Green's functions) {(2.14)



as a consequence of independence of the functional iegral {2.12) of the choice of variables.
It can be verified that in calculation of the elements of 5- matrix transition between
the elementary asvmptotic  states these spurions diagrams disappear on the mass shell

surface. As a result, we get
(FRY = (FR)  (for elementary particles S- matrix ). (2.15)

This statemeut is known as the gauge equivalence or independence theorem (2], {3].
When the asymptotic states contain a composite particle or some collective excitations,

the equation (2.15) is quite problematic and we are sure only in the identity (2.1:1)

(FIY +(SD) = (FR)  (For § - matrix with composite particles). (2.16)

The violation of the gauge equivalence theorein (2.1%5) in this case does not mean the
gauge noninvariance and relativistic noncovariance. This violation reflects the nonequiv-
alence of the different definitions of the sources (2.9) and (2.13) because of nontrivial
houndary conditivns and residual teractions lorming asvinptotic  composite. or collee-
tive states.In this context, the notion "gauge”, in fact, 15 the gauge of sources in the FP
- functional integral, but not only the choice of definite Feyniman rules. As the gaugeless
scheme takes into account explicitly the whole physical information from constraints, it
is more correct to use this  gauge - invariant and relativistic - covariant scheme for
description of composite particles and collective excitations rather than the Dirac
approach with an arbitrary relativistic  invariant "gauge of sources™. Below, we would
like to demonstrate the preference of the gaugeless scheme with an example of collective

excitations in the Yang - Mills theory.



3 GAUGELESS REDUCTION of YANG - MILLS
THEORY

3.1 Zero mode of Gauss’ law

Now we pass to the reduction of the Yang - Mills theory with the lacal SU(2) group in

four - dimensional Minkowskian space - time

WA, ] = -—%/d‘rl":,l",,“” = %/d‘r(l"u“,’— B, (3.1)
with the usual definitions of non-Abelian electric tension £,
Foo = thA® - F(A)N°AL, YV = (870, + e A7),
and magnetic one
B! = e (9,47 + fz(""" AL Ag).
The eduction consists in the explicit resolution of non-Abelian Gauss’ law:
(3.2)

[VHA))™ A = 9, (A)BuAS

M
A8 T
and next in dealing with the initial action {3.1) on the surface of these solutions:
/K
whd = wia !, (3.3)
H=o
Let us choose some particular solution of the constraint (3.2) with the property
(3.4)

lim  ay(7,t) =0
i a0
and write down the general solution as a sum of this particular solution ao and the general
solution @ ( zero mode field) of the homogeneous equation:

(V2] e =0. (3.5)

Ay = —9° + qg,

In the next step the QED gauge invariant variables (2.4) can be generalized as in ref. {7]

I

v [A)( Ak + 30 [A]) Y,
AT (3.6)

Al
A=

¢ = W(A1d( 14D,

[l
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where the non - Abelian Bogoliubov transformation ©/[A4] is given with the help of the
“good” solution ao(Z,1):

v'[A] = Texp{f dt'ao} .

(3.7)
In terms of these variables the reduced action takes the form
whe4l¢!] = % /d‘z [(Boal + v(A")9!')? - B]], (3.8)
where the fields (')DA!,

!, B, satisfy the geometrical constraints

v A" oAl
v Ahvr(al) o

I
=]

V(AN B AT)

I
<

(3.9)
It is clear that due to (3.9) the reduced action depends on the zero mode field ¢ only
through the surface terms on spatial infinity /g and fs:

Ig = / d“zaoA!V.-d’=[

= | #r0(84.0) = }{ds.(ao,q,'ml ., (3.10)
J @ -

a a1 : aye b RPYIRY .
le =1} ./d"’z(V.-d’) (V.9) = Z/dJ:A(tb ¥ o= 4j(d.,,c),(eb)‘|m ~ %(3.11)

Wi[a,¢] = %/d‘r [(@oAl)® - (507 + /dt(lg +1s). (3.12)

Emphasize that in accordance with the property (3.4) the field A’ at the spacial infinity
can be only stationary:

Al(#,1) . = b, (3.13)

that means the diagonalization of the kinetic term in the action (3.8): (/g

= 0).

The background field b(F) can be treated as the zero mode of the time derivative
operator in the Gauss law  &b! = 0. As a consequence, we have the factorizable form
for the zero mode field :

®(1,7)° a o = Pol)®(F).

{3.14)



To clear up the meaning of 2o(!) recall that by definition the variables A7 describe local
extitation, while zero mode field @ s assoctated with some global (collective) dynamics
of gauge fields. Such global properties of the theoey are connected with the well - known

topological invariant [11). {15]

! R
vo= e /d bk, (3.15)
On the constraiut shell the quantity ¢ can be represented as
i’
St - /d*..-(u(.,ﬂ LT0) B B = (3.16)
constraint dr?

We can find the connection between the time - dependent part of the zero mode 2o(t)
aind this topological variant after ustng the following decomposition for + into the local

and global parts:

et /du}l,.\'r[:\’.‘bll. Ne[AL @) = N AT+ N (3.17)
ot " e P
A = ot /rl‘ rrge (AT O AL+ 3 AT AT AL (3.18)
hN, = /d“..»n,v,¢ = ?{ll,-, (1) . 1)
) [T SN
Comparing (3.14) and (3.19) we get the desirable connection
RN A (3.20)

where the constant 1y is determined via the stationary part of fields (3.13) at spatial
infinity

fy = ](./a,(qn,n,)’l!| o (3.21)

Finally, our reduced action gets the form

Hy-lizd[Al‘ o WHALAN] 4 e

Wi A = %/rf‘x' [((‘)le,’)z—(li.v)’ )
Wi - /,u((')l,/\'u)‘/. I = laf 1} (3.22)

From the reduced action (3.22) with zero mode we get an unexpected result:

9
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There is a static solution of pure Yang - Mills Hicory wdh finitc energy i four - dimen-

stonal Minkowskwan space - tame [12].

One can show that one of such static solutions coincides with the well - known Bo-
gomoln'yi  Prasad  Sommerfield (BPS) monopole solution of the Yang - Mills - Higgs
system (18], To prove this statement, it is cnough to observe that the zero mode in the
action (3.8) plays the role of the Higgs stationary ficld. [deed, the Prasad  Sonumnerfield

salution of the Bogomolu'yi equation

oy
V(A = 'fn,"(m. (3.23)
¢
1 [ 1 s .
48 = el P L. f_ . -
Al —e'm L’inh(;n*) r] :om T | 7],

1

2 1
o —"m” [('()lh {pr) - —--] {3.24)
t ur

uJ '
with g being the paraineter of the mass dimension, automatically satisties the zero mode
eguation (3.3) and our houndary conditions. For these field configuratious. the constants
(3.11). (3.21) are the following:

22 )?

2

(3.25)

It is interesting to note that there are argwmnents [19]. [20} in favour of stability of

this perturbation theory under small deformations around this vacuum background.

3.2 Zero mode and homotopy group

It is usually assumed that all nontrivial topological properties of the gauge theory are
connected with the existence of classical solutions of the Euclidean Euler - Lagrange
equations with finite action - instantons. Recall that instanton calculations are based
on consideration of the topological nontrivial gange symmetry group [14], [15]:

A A 4 : -1

Ay = Al=g9(Au+d)g .
with restriction on the class of stationary transformations {g(r}} with the asymptotic
property

lim ¢{(f)=1.
e 9(3)
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One can use the assuruption of compactification of three - dimensional space into a three-
sphere % o this case all maps {g{z)} : 8% - SU(2) can be split into the disjoint

homotopy classes characterized by the integer index n:
[ . P
"= /d“.’r Mot [v’. v, Vk] i Vi=g0ig7h

Thus, we can speak about the homotopy group m3(SU/(2)) = Z. The configurations be-
longing o the different classes cannot be deformed continuously into each other. ‘The
gauge transformations which are deformable to identity are called small, while homotogi-
cally nontrivial ones,n # 0,are large. For large gauge transformations the local tapological

variable N, [A] (3.18) varies as
N, [A%]) = N {A] + n. (3.26)

The group of these Lransformations is usually considered in the context of instanton ap-
proximation {14] for the Green functional in the Euclidean space

A; )

:E"“(AhA,;T}:/ [DAJe™Weer,

A
according to which the contribution from the self - dual fields (£ = £ B) dominates in
the vacuum sector. One can write the spectral decomposition of this functional

GRSl AGT) = e T, (A4 4a),

with wave functions satisfying the following set of equations:

H¥, = b, (3.27)
VE ¥, =0, (3.28)
T, = ¢’ ¢, (3.29)

The first equation is the stationary Schrodinger equation with the Hamiltonian
1 ;
H([AE]= /a!:’:5 (E2+ BT,

Eq.(3.28) reflects the invariance of the theory under the small gavge transformations,

while eq.(3.29) describes the covariance properties of the wave function under a large
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gauge transformation with the topologidal shift operator T represented in the following
form :
: d
T. = YRR e
c= o g
where Ny is the functional (3.18). This form is justified in refs. [14) by representing the

solution of (3.27) - (3.39) in the form of the Bloch wave function
Y (N, A) = PN w (4)
with the exact solution with energy ¢ = 0
vo=enp £ Wi}
¢

which represents the quantum version of the instanton solution (/:,'W(, = :t[}\llu). However,
Lhis solution is nonphysical (nonnormalizable). [t is casy to check also that the operators

Hy,, 11, do not cotnmute:
(He TL}# 0, ({(efll, T # 0.

therefore they cannot have a common system of physical eigenstates. So, for such local

realization of the topological shift operator 7}, the following statement is valid:
No - go theorem: There are no physical solutions for equations (3.27) -- (3.29).

These obstacles can be overcome in our gaugeless cousideration where the winding
number is represented according to (3.17) as a sum of the local functional N, and some
collective variable Ny. Introduction of this new variable #llows a consistent description of
the representation of the homotopy group. Indeed, starting with reduced action one can

get the following Hamiltonian:

HF = 2’—1PJ+/1,,[A’.E‘] (3.30)

as the sum of the local Hamiltonian H, and the global one with canonical momentum

conjugated to the global variable N,

_ SWR’d(Nn)

e = ol (3.31)

Po

H
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The requirenient of the invariance under the farge gauge transformations {3.26) leads
to the region ol definition of the variable N, [0.1). In this case egs. (3.27)-(3.29)

transform as fotlows:

HM W, = b,

V.EWY = 0, (3.32)
Te¥, = %W, (3.33)
where
T = exp (il") = «-xp(i). (3.34)
! dNy

These equations adimit the factorization of the wave linction into the plane wave dexeribin
|

the topological collective motion. with the momentum spectrum:
Py =28k 40
and into the oscillator - like part depending on transverse variables
Y (No. AN =< BNy > Wi[AY] < D[Ny > = et (3.35)
Thus, the consistent solntion of the problem of the quantization of the Yang  Mills

theory with nontrivial homotopy group is achieved by introducing an additional global

variable arising in the process of reduction as zero mode of Gauss™ constraint.

3.3 Zero mode and topological confinement
Generally speaking, for constrained system in the “gauge™
TrhA) At = 0 {3.36)

the generating functional for Green's function can be constructed  [3] by using the con-

ventional Faddeev  Popov functional integral [3):

Z[J) - / [1 D' Auldet (T (ADNSIT.(A) doAi)e AT,
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After the integration over A, it can be rewritien as
Z[J] = /DHMNHWAMW%WLM%mhMMWMM. (3.37)

‘The caleulation of this functional integral faces the problems of the existence of zeroes
of FP determinant well known as the Gribov ambiguity of fixing variables [5]. In the
gaugeless approach this ambiguity corresponds 1o the existence of the zero mode sector

(3.5) and. accordingly, of twn types of vanables (3.6) and

A?
t
v TL‘)('){] (I{'é"}. (3.38)

oA+ det)

satisfying one and the same gauge constraint (3.36). The above - introduced variables
AL (3.6) are invariant under the small gange trausformations, while the variables A® are
invariant against the large one. By the constinction, the gange factor v? neutralizes the
large gauge transformation, as the factor ¢/ neutralized (he small one in (3.6), and the

total topological variable has the form
Ny = Ni[AT] + Ny = N [A%) + lovariant term. (3.39)
In particular, for the BPS fields (3.21). the sccond BBogoliubov transformation is
p? = etNorimistn) (3.40)

with function 3(r) = 2rx[coth{pr) — ‘%], and the invariant term in eq.(3.39) has the

following form:
sin(2r Ny)

ir

(3.41)

Invariant term = —

It is,‘important to note that in the conventional Hamiltonian approach Gauss’ con-
straint is considered as the generator of small gauge tansformations . In the gaugeless
approach one can he convinced that Gauss' constraint is respousible for both gauge trans-
formations: small and large. ‘The small gange transformations are generated by Gauss’

constraint without zero mode, while the large by the zero mode (3.34).

In the gaugeless approach, the requirement of gauge invariance of the observable quan-

tities under the whole group of transformations (small and large) mecans that we should

14



work in terms of variables A%, The gaugeless reduced configuration space besides the
variables A% contains also the above - intreduced topological variable Ny and, therefore,
in the expression of the corresponding generating functional there is an additional func-
tional integral over it. To write down the generating functional we must separate the

stationary asymptotic part b, which is accompanied by Ny, from the dynamical one
ANE) = o* (H(D) + 0+ al(7,0) v* = o (M7 +8.) v* +a%(@0),
where
(a®)" = Q(F| No(t) Ha' )
the matrix Q29 F|Np(t)) realizes the transformation (3.38) in the adjoinlt representation

of the color group

"Oiu(".)—l = QubT&.
In the following we shall call b the condensate and a the quasiparticle excitation.

Thus, instead of (3.37) in the gaugeless reduce scheme we have the representation for

the generating functional of Green’s functions:

Po(T)=Q
Zﬁg‘[./°] = / DI’ODNDEWS“IF"'N”] / [D’a.] C:‘Wf"‘[b'-bn]-hs‘ ,
Pol0)=P

/[D%.] =/D”a,[dot(V’(b’+a))]'/26(V,-(b’ + a)Boa;) (3.42)
with
A / drfaf = / P (2 INol1)) .
The generating functional (3.42) is {ree from zeroes of FP determinant and corresponds
to gauge invariant (ireen’s functions of quasiparticles
Gofl,...,n) =< vac P|T [a*(1) - --a*(n)] Jvac @ > . (3.43)

In Eq.(3.43) the vacuum vector |vac Q > means Lhe state without quasiparticles and with

definite topological momentum Q.

The perturbation theory with respect to the quasiparticles in the background b is

constructed by the decomposition of action

Whd = W, + Wolb} + i) ./d':t[(z'iua)2 - a(A)a] + Winia, 8], (3.44)
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where A is the differential operalor :
(AN = 0, (2B + 20 by,
After introducing the complete set of eigenfunctions

(A);’f (Fw) = w? f (Flu)ed?,

we can write the following expansion for the ficld of :
ol (7 1) = z (r*’(w)ff(f]u')c rewt g 1"(w)ff(f|w)l Sty
"
In the canonical uperator quantization the coefficient ¢* (w)(c™ (1)) is the creation (anni-

hilation) uperator of quasiparticles with the asymptotic  Hamiltonian

A 4
[I_LW"IP = E “'('u‘(':--
w

The function f;l(.Flll') is the amplitude of probability to tind the yuasiparticle with the

energy w at the point F. For observable quasiparticle ¢® this amplitude has the form

1
< vac Pla¥(Z,0)[vac @ >= / dNeN PG FING0) = N) [E(Flw).
0

The factor § reflects the degeneration of the quasiparticle energy under the topological
variable and leads to the sum of Kronecker symbols 8p g r(,). This result can be treated
as confinement of color states {8], [11]. For colorless states topological degeneration factors
disappear and we get the conveutional expressions for corresponding matrix elements.
This scheme of topological confinement will be discussed in more detail in the forthcoming
publication . It is worth to note that there are the valucs of the coupling constant €2 =
2(] 2xk + 8 })~! for which the background part Wy[b] of the action (3.44) is compensated

by the collective motion one W;.
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4 Summary

We have discussed the method of quantization ol the Yang - Mills theory in which the
nondynamical variables are climinated by the explicit resolving of the classical Gauss
constraint:

VA Ay = V, (A, = 0,
and then quantum theory is built up for the action on the constraint shell. We take into
account the zero moades of all operators in the constraint:

the condensate b)) as a zevo mode of the operator dy
dolia) == 0,

the phase angle ®(r) as a zero mode of the opecator T4(A)
AN = 0.

This zero mode is associated with the collective coordinate which restores the gauge
invariance of the theory. broken in any particular solution of this constraint. Mt this
point the situation is quite similar to the case of semiclassical soliton quantization. based
on the introduction of collective coordinates [21] for taking into account the breaking of
rigid global syinmetries (c.g., translation. rotation, ctc.). The collective variable allows
us Lo separate zero modes of the Faddeev - Popov determinant and to solve the problem

of gaugeless version of Gribov's copies.

There is a significant difference between the Yang - Mills theory with the collective
variables and the conventional one. In particular. it has been shown that in the furmer
there is a static stable solution that corresponds to the well - known Prasad - Sommerfield
solution in the conventional Yang -Mills theory interacting with Higgs' field. In the

gaugeless reduced theory  the zero mode @) plays the role of the Higgs field .

The collective variable associated with the phase angle ¢ describes the dynamical
realization of the homotopy group my(SU'(2)) = Z in the Minkowskian space. In con-
trast to the instanton version with integer winding number functional, in the dynamical

realization the collective variable as winding number is continuous. Just the averaging



over the continuons winding number leads to confinement of gauge invariant color fields

configuration due to the phenomenon of the complete destrmetive interference.
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