

со0бщения объєдиненного инетитута адөрных иселедованй

E2-94-323
E.A.Tagirov

GENERAL-COVARIANT QUANTUM MECHANICS OF DIRAC PARTICLE IN CURVED SPACE-TIMES

1 Introduction

In the present paper a self consistent and general -covariant analog of the standard Non-Relativistic Quantum Mechanics (NRQM) with relativistic corrections for a particle of $\operatorname{spin} 1 / 2$, mass m and electric charge r is constructed. In other words, it is a semiclassical NRQM description (with relativistic corrections) of the interaction of the particle with a general external gravitational field treated as a general riemannian spacr-time V_{4} with metric tensor $g_{a s}(x), \quad r \in V_{4}, \alpha, \beta, \gamma, \ldots=$ 0.1.2.3. . An analogous construction for zero-spin particle has been prosented in papers [1] and [2]. It might be called also the Foldy

Wouthysen representation of the Dirac theory in the general V_{4} but here the lack of space-time symmetries and Cartesian systems of coordinates requires some reasonable principles for determination of operators of observables. the question that does not usually arise in the theory based on the minkowskian background M_{4}.

The construction can be done in a self consistent and general covariant form starting with a set of general-relativistic "First Relations" and considering asymptotics' of the latter in $\mathrm{r}^{-2}, \mathrm{c}$ being the velocity of light. The Dirac equation in V_{4} and corresponding conserved quadratic form for its solutions (a "scalar product") are, of course, the first among these relations. The others are known real quadratic functionals of the Dirac field Ψ of "mean" momentum. spatial curvilincar coordinates and spin of the particle, which as it will be shown originate ascinptotically the NRQM matrix elements of the corresponding operators of observables. Just in this point our approach essentially differs also from that of papers [3], [4] where the observables are introduced. in fact, on the non-relativistic level.

As a preliminary, we introduce some notations used throughout the paper:
$h_{(3)}^{\alpha}(x)$ are orthonormal tetrad vector fields denoted by indices in parcutheses; these indices may be raised and lowered by contraction with the Minkowsky metric tensor $\eta_{(\alpha B)}=\operatorname{diag}(1,-1,-1,-1$,) (Remind that $\left.h_{(j)}^{\alpha} h_{\gamma}^{(\beta)}=\delta_{\gamma}^{\alpha}, \quad h_{\beta}^{(\alpha)} h_{(\gamma)}^{\beta}=\delta_{(\gamma)}^{(\alpha)}.\right) ;$
space-like tetrad vectors are denoted by latin indices $i, j, k, \ldots=$ 1.2.3 (of course, in parentheses); in general, two or more adjacent
indices in parentheses are ruclosed in a common pair of parentheses.

$\overbrace{}^{(n)}$ and $\sigma^{(n)}$ arr respectivery the ordinary Dirac and Panlimatrices:
∇_{a} is the covariant dorivative and $\dot{\Gamma}_{n} \stackrel{d-f}{=} \nabla_{n}-\left(\right.$ ic $\left./ h_{6}\right) A_{n}(x)$. i.e. Whe interaction with an external electromagnetic field is also considered fur gencratity: another short notation is $\partial_{(o)} \stackrel{d / f}{=} h_{(\infty)}^{*} \partial_{i}$ and so for other sorts of derivations:
$L^{\prime \prime}(A . B) \stackrel{\text { def }}{=} A^{4} A_{A} B^{\prime \prime}-B^{4} \nabla_{A} f^{\prime \prime}$ is the Lie derivation of the bertor firld $B^{\prime \prime}(x)$ along $A^{\prime \prime}(x)$.

In paralled with the parameter of asypmotorer ' we shall also use the half-length of the Compton wate $\lambda=h / 2 m$ when it will be comvonemt.

Now we start with the following known structure:

- The greneral-relativistic Dirac equation for a bispinor field Ψ with the rest mass m of its quant mum

$$
\begin{equation*}
i \gamma^{n}(x) \dot{\Gamma}_{a} \Psi+\frac{m}{\hbar} \Psi=0 . \tag{1}
\end{equation*}
$$

- The conserved. i.e. independent of the choice of a spacr-like 3surface Σ. sescuilinear functional ($\bar{\Psi}$ is the ordinary Dirac conjugation of Ψ):

$$
\begin{equation*}
\left\{\Psi_{1} \cdot \Psi_{2}\right\}=\int_{\Sigma} d \sigma^{\alpha}(x) \bar{\Psi}_{1} \hat{i}_{n}(r) \Psi_{2} \tag{2}
\end{equation*}
$$

Where $d \sigma^{\prime \prime}(x)$ is the normal element of Σ.

- The real functional $P_{P} \cdot(\Psi: \Sigma)$ of the field Ψ. of a given vector field $V^{r, 3}(x)$ (which might be, of course. one of the tetrad vectors) in l; and of Σ for the component of "mean momentim of a quantum of the ficld" Ψ along $l^{-3}(x)$:

$$
\begin{equation*}
P_{1} \cdot(\Psi ; \Sigma)=\int_{\Sigma} d \sigma^{a} V^{\cdot 3} T_{a 3} \tag{3}
\end{equation*}
$$

where T_{a} is the (motric) anergy-momentum tensor of the field Ψ.

- The three ral functionals $Q^{A}(\Psi: \Sigma)$ of "mean rurvilincar coordinates of a quantum of the field Ψ^{*} on the hypersurface Σ

$$
\begin{equation*}
Q^{\prime}(\Psi: \Sigma)=\int_{\Sigma} d \sigma^{\prime \prime} q^{4}(x) \bar{\Psi}_{; n} \Psi \tag{4}
\end{equation*}
$$

where $q^{4}(x)$ are threr scalar functions denoted by indices . A. B. .. $=$ 1.2 .3 (not the tetrad indices !) and having the following propartics

$$
\begin{equation*}
d \sigma^{a} \partial_{n} \varphi^{4}=0 . \quad \text { rank }\left\|\partial_{n} q^{3}\right\|=3 \tag{5}
\end{equation*}
$$

- The three real functionals $S_{(,)}(\Psi: \Sigma)$ of "moan projections of sipin" on spaco-like tetrad wectors $h_{(i)}^{\prime}$. i.j.k... $=1.2 .3$.

Where $\Sigma^{\text {in }}=(1 / 2)\left(7^{3} 7^{A}-7^{A} 9^{3}\right)$
So. our first aim is to deduce from Eq_{q}.(1) generally covariant analog of the Pauli equation for a two-component wate function e (. x) for which the sesquilinear form (2) would lead to the "ordinary" Hilbert space scalar product for $\langle\cdot(x)$ as wase functions, all the relations being asymptotic in c^{-2}.

$$
\begin{equation*}
\left\{\Psi_{1} \cdot \Psi_{2}\right\}=\left(\iota_{1} \cdot \iota_{2}\right)+O\left(r^{-(2 n+2)}\right) \cdot \quad\left(\iota_{1}^{\prime} \cdot \iota_{2}^{\prime}\right) \stackrel{d c f}{=} \int_{E} d \sigma \iota_{1}^{\dagger} \iota_{2} \tag{7}
\end{equation*}
$$

© ${ }^{+}$being the hermitean conjugate of $2 \cdot$. Due to the latter definition it is matural to assume that just the wave functions e have the Bom probability intcrpretation.

An essential noint is however that it is necessary in the XRQM to define also hermitean (with respect to the scalar product (\cdot.)) operators of observables that formalise physical neasurements and thos a preparation of initial states (the projective postulate of the NR(XII).

The invariants $P_{V}(\Psi: \Sigma), Q^{A}(\Psi: \Sigma) . S_{(z)}(\Psi: \Sigma)$ mav be considered as exact gencral-relativistic expressions for diagonal matrix clements of the corresponding NRQM operators of observables for the case when the field $\Psi(x)$ is the general-relativistic image of an NRQM wawe function $\langle(r)$ (in the Schrodinger picture). This is evident enough in the case of P_{l} and $S_{(i)}$.

As concerns Q^{1} ．it shomld be noted at first that owing to Eq．（大） the mandical values of the three functions $q^{-1}(x)$ define a point on $\breve{\breve{y}}$ and so they form a thanformation to the definite corvilinear cometi－
 $x^{\prime 2}$ ．So values of $q^{-1}(x)$ may be comsidered as mumerical reants of that are of comse scalars，i．e．do not depend on the chaice of courdinates $\left\{x^{2}\right\}$ in $\left.\right|_{i}$ ）of eletection of a particle spatial position ly a matar－ ment of the cumbinear comedinater q^{t} ．Formula（t）piver the simplest peneral－relativistie expresion for the mant ratur of q^{\prime} and as is shown in［2］this expression gives rise to at natural gemeralisation of the known Xewton Wigner oprotur of particle spatial（attosian comblintom of

Having introluced the gemeral－relativatio innage of liaponal matrix
 ann miqutely definc invariant intages of non－diagomal matrix elements． as sexpuiturar hermitran functionals $Z\left(\Psi_{1} . \Psi_{2}:\right.$ ご）themgh the known procedure of polarisation：

$$
\begin{align*}
+Z\left(\Psi_{1} \cdot \Psi_{2}: \Xi\right) & =Z\left(\Psi_{1}+\Psi_{2}: \Xi\right)-Z\left(\Psi_{1}-\Psi_{2}: \Xi ;\right. \\
& -i Z\left(\Psi_{1}+i \Psi_{2}: \Sigma\right)+i Z\left(\Psi_{1}-i \Psi_{2}: \Xi\right) \tag{8}
\end{align*}
$$

The hermiticity of $Z\left(\Psi_{i}, \Psi_{2}: \Sigma\right)$ matans that

$$
\begin{equation*}
Z\left(\Psi_{1}, \Psi_{2}: \Xi\right)=\overline{Z\left(\Psi_{2}, \Psi_{1}: \Xi\right)} \tag{9}
\end{equation*}
$$

Further the XR（X． 1 diferential operator $Z(x)$（in the Schrodinger picture）that inchados only derivative along the 3－sufface $\because 冫$ can be defined bug the relation．（f．Eq．（T）．

$$
\begin{equation*}
Z\left(\Psi_{1}, \Psi_{2}: \Sigma\right)=(1 \cdot, \dot{B}(x)(2):+O(r-(2 n+2) \tag{10}
\end{equation*}
$$

at loast for some dasses of 5×5 ．It is obvioms that owing to the hermitic－ itr of $Z\left(\Psi_{1}, \Psi_{2}: \ddot{V}^{\prime}\right)$ the operator $\dot{Z}(x)$ thes defined is（asymptotically） hermiteran in the usual sedise．

The paper is organised as follows．In Sec． 2 the approximation in powers of r^{-2} to Eqs．（1．2）will be considered．Sections 3．5．6． 7 are devoted to derivation of operators of momentmon spatial coordinates
and spin in the corresponding approximation. In Sec. 4 the unitary rquivalence of the hamiltonian in the Pauli equation and the NRQM rnergy operator deduced from Eq.(3) is shown.

The consideration will be done on the heuristic level assuming that the necessary mathematical conditions are fulfilled.

From a physical point of view the notation $O\left(c^{-(2 N+2)}\right)$ is a simplified expression of the fact that dimensionless ratios of products of characteristic values of the fields involved and of their derivaties to a-2.5-2 are small.

We keep also explicitly the Plank's constant \hbar in mathematical expressions because it provides another typer of approximation, the quasiclassical one, and matehing these approximations could be interesting

2 The Pauli equation

The problem of transition from the Dirac equation to its two-component approximation in powers of c^{-2} in an external electromagnetic field in the Minkowsky space-time M_{4} has been considered in a general form by Stephani [6]. This approach was extended by Gorbatzevich [4] to the case of V_{4}. However. his approach was based ou a postulative formulation of the NRQM structure for V_{4} and only a NRQM hamiltonian was deduced from the Dirac equation and the observables were introduced on an analogy with the case of M_{4}. On the contrary, here the whole consruction is a natural approximation to the formulated general relativistic "First Relations" and so it is more consecutive and self-consistent. The results of the two approaches coincide for the form of the wave equations but not for the observables which include an essential part of information on the interaction of quantum particle with the external fields.

Now. to obtain the NRQM wave equation we rewrite firstly Eq.(1) in a more detailed form

$$
\begin{equation*}
i h_{(\beta)}^{\alpha} \gamma^{(\beta)}\left(\tilde{\partial}_{a}-\Gamma_{\alpha}\right) \Psi+\frac{m c}{\hbar} \Psi=0 \tag{11}
\end{equation*}
$$

where the bispinor connection Γ_{α} is defined through the relation

$$
\nabla_{\alpha} \gamma_{\beta}-\Gamma_{\alpha} \gamma_{\beta}+\gamma_{\beta} \Gamma_{\alpha}=0 .
$$

Using the representation of $\gamma_{(\alpha)}$ through the Pauli matrices $\left.\sigma_{(}{ }^{i}\right)$

$$
\gamma_{(0)}=\left(\begin{array}{cc}
\mathbf{I} & \mathbf{0} \tag{12}\\
\mathbf{0} & -\mathbf{I}
\end{array}\right) \cdot \gamma_{(i)}=\left(\begin{array}{cc}
\mathbf{0} & \sigma_{(i)} \\
-\sigma_{(i)} & \mathbf{0}
\end{array}\right) .
$$

I being the 2×2 identity matrix one obtains

$$
\Gamma_{i j}=-\frac{i}{4} \Omega_{i j}^{(i j)} \varepsilon_{(i j k)}\left(\begin{array}{cc}
\sigma^{(k)} & \mathbf{0} \tag{13}\\
\mathbf{0} & \sigma^{(k)}
\end{array}\right)-\frac{1}{2} \Omega_{i j}^{(0 i)}\left(\begin{array}{cc}
\mathbf{0} & \sigma_{(i)} \\
\sigma_{(i)} & \mathbf{0}
\end{array}\right) .
$$

where

$$
\begin{equation*}
\Omega_{\beta}^{(a s)} \stackrel{d c f}{=} h^{(\alpha) u} \nabla_{i} h_{\mu}^{(\alpha)} \tag{14}
\end{equation*}
$$

are the Ricci rotation corfficients.
Further, we substitute the following ansat/ into Eq.(11):

$$
\begin{equation*}
\Psi=\exp \left(-\frac{2 i}{\lambda} S\left(x^{\prime}\right)\right)\binom{o}{-i \lambda G(x) c} \tag{15}
\end{equation*}
$$

where $G(x)$ is a differential 2×2-operator to be defined below and a (two-component) spinor ϕ and the real phase function $S(r)$ are assumed to satisfy to the conditions:

$$
\begin{equation*}
\tau^{\alpha} \partial_{\alpha} \arg \phi=o(1) \tag{16}
\end{equation*}
$$

which means that the phase of ϕ changes in the direction of $\partial_{a} S$ much more slow than $(\mathrm{mc} / \hbar) S$, and

$$
\begin{equation*}
\partial_{\alpha} S \partial^{\alpha} S=1 \tag{17}
\end{equation*}
$$

which is the Hamilton-Jacobi equation for geodesics and so the vertor field $\partial_{a} S$ defines a normal geodesic, i.e. non rotating frec-falling frame of reference. It should be remarked that this is the simplest but not necessary definition of S, and other time-like fields $\partial_{\alpha} S$ corresponding to non-geodesic frames of reference may be introduced.

Having been chosen $h_{\alpha}^{(0)}=\partial_{\alpha} S$ we obtain the following equation for σ as a result of the substitutions

$$
\begin{equation*}
i \hbar \tilde{\mathcal{T}} \phi=-\frac{\hbar^{2}}{2 m} \tilde{D} G \phi . \tag{18}
\end{equation*}
$$

where the following notation is introduced:

$$
\begin{equation*}
\dot{\tau}^{\operatorname{drf}}\left(\tau^{\alpha} \dot{\partial}_{a}+\frac{1}{2} \nabla_{\alpha} \tau^{\alpha}\right) \cdot \mathbf{I}+\frac{i}{4} \Omega_{a}^{(i j)} \varepsilon_{(1, j k)} \sigma^{(k)} \tau^{\alpha} . \tag{19}
\end{equation*}
$$

$$
\begin{align*}
& \tau_{a r} \stackrel{d \in f}{=} r \partial_{a r} S \stackrel{d r f}{=} h_{n}^{(0)} \quad\left(\tau^{0} \nabla_{a r} \tau_{i ;}=0\right) ; \tag{20}\\
& \dot{D} \stackrel{d r \rho}{=} \sigma^{(i)}\left(h_{(i)}^{a} \tilde{\partial}_{\alpha}+\frac{1}{2} \nabla_{n} h_{(i)}^{a}\right)-\frac{i}{4} \Omega_{i}^{(i j)} \varepsilon_{\langle i j k)} h^{(k) \alpha} \cdot \mathrm{I} \tag{21}
\end{align*}
$$

and the operator G as an operator on solutions of Eq.(18) is determined by the nonlinear equation

$$
\begin{equation*}
G=\tilde{D}-\frac{i \lambda}{r}[\tilde{T} \cdot G]+\lambda^{2} G \cdot \dot{D} \cdot G \tag{22}
\end{equation*}
$$

It should be realised that Eqs.(18),(19),(22) and many operator rolations below have a valid mathematical sense only as asymptotical redations that is assumed to be clear in context.

Since $\tau^{\prime \prime}$ is a geodesic vector fied the operator $[\dot{T}, G]$ and so the ripht-hand side of Eq.(18) contain only derivatives along the heypersurface $S(x)=$ const.. (In the case of a non-geodesic Hanilton - Jacobi equation the derivatives along $\partial_{a} S$ may be eliminated by application of the evolution equation (18).)

It is important also to realise that the left-hand term of Eq. (18)is considered to be of the order $O(1)$ in \boldsymbol{r}^{-1} despite the formal presence of r in the definition of τ^{n}. This means that we pass to the non-relativistic and, in a philisophical sense, to the human measure of time.

Further, we have for solutions ϕ_{1} and ϕ_{2} of Eq.(18)

$$
\begin{equation*}
\left\{\Psi_{1}, \Psi_{2}\right\}=\int_{S} d \sigma(x) \phi_{1}^{\dagger}\left(\mathbf{I}+\frac{\lambda^{2}}{2} G^{\dagger} \cdot G\right) \varphi_{2} \tag{23}
\end{equation*}
$$

not. Eq. (7). In Eq. (23) and further G^{\dagger} denotes the hermitean conjugate of G in the conventional sense:

$$
\int_{S} d \sigma(x)\left(G \phi_{1}\right)^{\dagger} \phi_{2}=\int_{S} d \sigma(x) \phi_{1}^{\dagger} G^{\dagger} \phi_{2}
$$

However, we come easily to Eq.(7) transforming ϕ to

$$
\begin{equation*}
\psi=K^{-1} \phi \tag{24}
\end{equation*}
$$

where the operator K satisfies the condition

$$
\begin{equation*}
\boldsymbol{\Lambda}^{\dagger \dagger} \cdot\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right) \cdot \boldsymbol{\Lambda}^{-}=I \tag{25}
\end{equation*}
$$

that determines K up to an arbitrary right unitary transformation. Particularly, K^{-}may be chosen as an hermitean operator.

Rewriting Eq.(18) for o in terms \imath one comes to

$$
\begin{equation*}
i \hbar \dot{T}_{2}=K^{-1} \cdot\left(-\frac{\hbar^{2}}{2 m} \dot{D} \cdot G \cdot K-i \hbar[\dot{\mathcal{T}} \cdot \kappa]\right) \cdot \cdot \stackrel{d f}{=} H \tag{26}
\end{equation*}
$$

which is the Panli equation for V_{1}. It is easy to prove that the operator in the right-hand side is hermitean. We shall call it the hamitonian. but it is not the operator of energy exeept some sperial cases though is connected with the latter by a mitary transformation, see Sec.t.

In the approximation up to $O\left(r^{-2}\right)$ itcration of Eq_{q} (22)

$$
\begin{equation*}
\left.i \hbar \dot{T}_{2} \cdot=-\frac{\hbar^{2}}{2 m}\left(\dot{D}^{2}+\lambda^{2} \dot{D}^{4}+\frac{i \lambda}{2 r}[\mid \dot{T} \cdot \dot{D}] . \dot{D}\right]+O\left(r^{-1}\right)\right)(\cdot \tag{27}
\end{equation*}
$$

and

$$
\begin{align*}
& \dot{D}^{2}= \\
& =\left(\dot{ذ}_{S}+\frac{1}{4} R+\frac{1}{2 r^{2}}\left(\tau^{a} \nabla_{a} \nabla_{B} \tau^{3}-\frac{1}{2}\left(\nabla_{a} \tau^{a}\right)^{2}\right)-\frac{1}{4} \nabla^{3} h^{(2)}{ }^{(2)} \nabla_{r} h_{(1), 3}\right) \cdot \mathbf{I}+ \\
& +i \sigma_{(k)}{ }^{(2 j k)}\left(\frac{i c}{\hbar i} F_{(i j)}-\nabla_{(j)} h_{(j)}^{3} \dot{\partial}_{i j}-\frac{1}{2} \partial_{(i)} \nabla_{j} h_{(j)}^{3}\right) \tag{28}
\end{align*}
$$

where
$\dot{\bar{I}}_{S}$ is the laplacian on the 3 -surface S :
R is the scalar curvature:
$F^{(i)}$ is the projection of the electronagneric tensor $F_{\text {ar }}$ on the spatial tetrad vectors, i.e. local magnetic field.

Here it is worth of attention that the zeroth order of the operator in the left-hand side of Eq. (27), i.e. of the hamiltonian. contains the term $\frac{1}{4} R$, i.e. just the term which arises in the guadrated (secomed order) equation for the bispinor field Ψ. If we had used this equation it were completely similar to the case of scalar field. see [1]. where, if the term ξR is present in the the general-relativistic scalar wave equation, then it passess to the hamiltonian of the Schrodinger equation. However, the matter is that we have started here with the (first order) Dirac equation (1). which does not contain any curvature term.

As concerns the term $[\tilde{T} . \bar{D}]$, after simple transformations one has:

$$
\begin{align*}
{[\dot{T} \cdot \dot{D}] } & =\sigma_{(i)}\left(\left(\Gamma^{(i)} \tau^{a}\right) \dot{\partial}_{a}+\frac{1}{2} \nabla_{n}\left(\nabla^{(i)} \tau^{a}\right)-\frac{i r}{\hbar} F_{(i i)}-\frac{1}{2} \nabla_{(j)}\left(\tau^{a} \Omega_{(a}^{(i)}\right)\right)+ \\
& +\frac{i}{2}(i j k) \nabla_{n}\left(h^{(k) \mid a} \tau^{\mu)} \Omega_{\mu}^{(i)}\right) \cdot \mathbf{I} . \tag{29}
\end{align*}
$$

the indices in square brackets being antisymmetrised.

Returning to Eq.(22) it is also worth to note that $[\tilde{T}, G]=0$ if

$$
\begin{equation*}
[\tilde{\mathcal{T}}, \tilde{D}]=0 \tag{30}
\end{equation*}
$$

because the operator G is a series in powers of D. Then G may formally be written in a closed form:

$$
\begin{equation*}
G=\frac{\lambda^{-2}}{2}\left(\mathbf{I}-\left(\mathbf{I}-4 \lambda^{2} \dot{D}^{2}\right)^{\frac{1}{2}}\right) \tilde{D}^{-1} \tag{31}
\end{equation*}
$$

It can be found from Eq.(29) that Eq.(20) takes place only when the following conditions are satisfied: $\nabla_{\mathrm{n}} \tau_{i}=0$, i.e. the space-time is static, $\tau^{n} F_{\alpha, 3}=0$, i.e. there is no electric field in the frame of reference defined by the vector field τ^{*}, and the tetrad is chosen so that $T^{a} \nabla_{{ }_{\|}} h_{i j}^{(d)}=0$

3 Operators of momentum

To determine the operator of projection of momentum on a given sufficiently smooth vector field $V^{\alpha}(x)$ we substitute the (metric) energymomentum tensor for the field Ψ

$$
\begin{equation*}
T_{\mu \nu}=\frac{i \hbar}{2}\left(\bar{\Psi}_{\gamma_{\nu}} \bar{\nabla}_{\mu} \Psi-\overline{\tilde{\nabla}}_{\mu} \Psi \gamma_{\nu} \Psi\right)+\frac{i \hbar}{4} \nabla^{\alpha}\left(\bar{\Psi}_{\left.\gamma_{[\nu} \gamma_{\mu} \gamma_{\alpha]} \Psi\right)}\right. \tag{32}
\end{equation*}
$$

into Eq.(3). Having assumed that $\underset{\sim}{\Psi}$ satisfies the Dirac equation (1) and subtracting a divergence of an antisymmetric tensor from the integrand one comes to the following expression:

$$
\begin{align*}
P_{V} \cdot(\Psi: \Sigma) & =i \hbar \int_{\Sigma} d \sigma^{\nu}\left(\bar{\Psi} \gamma_{\nu}\left(V^{\mu} \dot{\nabla}_{\mu}+\frac{1}{2} \nabla_{\mu} V^{\mu}\right) \Psi+\right. \\
& \left.+\frac{1}{4} \nabla^{\alpha} V^{r^{\beta}} \bar{\Psi} \gamma_{[\nu} \gamma_{\alpha} \gamma_{\theta]} \Psi-\frac{1}{2} \nabla_{\{\mu} V_{\nu\}} \bar{\Psi} \gamma^{\mu} \Psi\right) \tag{33}
\end{align*}
$$

where the indices in the braces are symmetrised.
Of course, neither P_{V}, nor its polarisation can be represented as matrix elements of some differential operator in a space of solutions of Eq.(1) with respect to the product $\{.,$.$\} , defined by Eq.(2), except$ the vector V^{α} is a Killing vector, i.e. $\nabla_{\{\mu} V_{\nu\}}=0$. However, if we polarise $P_{V^{\prime}}(\Psi: \Sigma)$ and substitute the expressions from Eqs. (15),(24) into
$P_{V}\left(\Psi_{1}, \Psi_{2} ; S\right)$ then after straightforward but rather 'angthy calculations we come to a scalar hermitean operator $\hat{p}\left(x ; V^{\prime}\right)$ of the projection of momentum on the vector field V^{a} through the (asymptotic) relation

$$
\begin{equation*}
P_{V}\left(\Psi_{1}, \Psi_{2} ; S\right)=\left(z_{1}, \hat{p}(x ; V) \xi_{2}^{\prime}\right) \tag{34}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{p}(r ; V) & =\kappa^{\dagger} \cdot\left(p,(x ; V)+\lambda^{2} G^{\dagger} \cdot\left(p_{s}(r ; V)-2 m c^{2} I^{(()}\right) \cdot G-\right. \\
& \left.-i \lambda^{2}\left(p_{T}(r ; V) \cdot G-G^{\dagger} \cdot p_{T}(x ; V)\right)\right) \cdot \kappa \tag{35}
\end{align*}
$$

The hermitean (scalar!) diferential operators $; s\left(r: V^{\prime}\right)$ and $p_{l}\left(r ; V^{\prime}\right)$ are defined by the following formulae:

$$
\begin{gather*}
p_{T}(\mathbf{r} ; V) \stackrel{\operatorname{def}}{=}-i \hbar\left(V^{(0)} \tilde{D}+\frac{1}{2} \sigma^{(i)} \nabla_{(2)} V^{(0)}\right) \tag{36}\\
p_{S}(x ; V) \stackrel{d c f}{=} i \hbar\left(\left(V_{S}^{u} \partial_{n}+\frac{1}{2} \nabla_{\alpha} V_{S}^{\alpha}\right) \cdot \mathbf{I}-\frac{i}{4} L^{(j)}\left(V_{S} h^{(i)}\right) \bar{\varepsilon}_{(i, k)} \sigma^{(k)}\right) \tag{37}
\end{gather*}
$$

where

$$
\begin{equation*}
V_{S}^{a} \stackrel{\operatorname{def}}{=} h_{(i)}^{a} h_{\beta}^{(i)} V^{(\beta} \tag{38}
\end{equation*}
$$

i.e. it is the projection of V^{α} to the hypersurface S. Equation (35) together with Eqs.(36) - (38) looks rather cumbersome and is displayed here for generality.

It is simpler and more apparent to consider two particuiar choices of the vector field V. The first one is V lying in the hypersurface S, i.e. $V^{\alpha}=V_{S}^{\alpha}$ and consequently $V^{(0)}=0$. The second one is when $V^{\alpha}=c^{-1} \tau^{\alpha}$, i.e. $V_{S}^{\alpha}=0$. Now we pass to the first case, the latter will be considered in the next section.

Assuming that $V^{(0)}=0, V_{S}^{\alpha}=V^{\alpha}$ and taking into account Eqs.(22), (25) one has

$$
\begin{align*}
\left.\hat{p}(x ; V)\right|_{V=V_{S}} & =\kappa^{\dagger} \cdot\left(p_{S}(x ; V)-\lambda^{2} G^{\dagger} \cdot p_{S}(x ; V) \cdot G\right) \cdot \AA^{-} \tag{39}\\
& =p_{S}(x ; V) \tag{40}
\end{align*}+\left(\lambda^{2}\left[\tilde{D},\left[\bar{D}, p_{S}(x ; V)\right]\right]+O\left(c^{-1}\right) .\right.
$$

Now consider the commutator $\left[\hat{p}_{S}(x ; V), \hat{p}_{S}(x ; W)\right]$ when both vector fields V and W lie in S, i.e. $V=V_{S}$ and $W=W_{S}$:

$$
\begin{align*}
{\left[\hat{p}_{S}(x ; V), \hat{p}_{S}(x ; W)\right] } & =K^{\dagger} \cdot\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right)^{-1} \cdot\left(\left[p_{S}(x ; V), p_{S}(x ; W)\right]+\right. \\
+\lambda^{2}\left[G^{\dagger} \cdot G\right. & \left.\left., p_{S}(x ; V-W)\right] \cdot \lambda^{2} G^{1} \cdot G\right) \cdot K \tag{41}\\
& =\left[p_{S}(x ; V), p_{S}(x ; W)\right]+O\left(c^{-2}\right) \tag{42}
\end{align*}
$$

We do not write out a rather long expression for $\left[p_{S}\left(r: V^{\prime}\right) \cdot p_{S}(x: W)\right]$ but mention that this commutator is equal to zero when

$$
\begin{equation*}
L(V: W)=0 . \quad L\left(V \cdot h^{(i)}\right)=0, \quad L\left(W \cdot h^{(i)}\right)=0 . \quad V^{\times a} W^{3} F_{a, 3}=0 . \tag{4}
\end{equation*}
$$

These conditions mean that \mathcal{V}° and W should form a coordinate basis on a two-dimensional submanifold of S. the tetrad vectors may be chosen to be constant on the submanifold (that is obviously a restriction on the geometry of V_{4}) and electromagneic forces vanish on it. Then one sers casily that also $\left[\hat{p}_{S}\left(x ; \bigvee^{`}\right), \hat{p}_{S}(x: W)\right]=0$.

So. one comes casily to the conclusion that three independent and mutually conmmeting operators of momentum projections exist only in spatially flat Robertson - Walker space-times when the tetrad vectors form a normal coordinate basis. In more general space-times there is no three indrpendent commuting components of momentum even in the limit ${r^{-1}}^{-1}=0$ while projections of moment um of scalar particle on any coordinate basis on S mutually commute in this limit in the general I_{i} [2].

4 The operator of energy and its connection with the hamiltonian

Let now $V^{a}=r^{-1} \tau^{a}$, i.e. $V^{(0)}=1, V_{S}=0$. Then, after olvious transformation, one has

$$
\begin{equation*}
\hat{p}_{\tau / c}=-\frac{\hbar^{2}}{2 m r} K^{\dagger} \cdot\left(\tilde{D} \cdot G-G^{\dagger} \cdot \tilde{D}+G^{\dagger} \cdot G\right) \cdot K \tag{4}
\end{equation*}
$$

Having sulsstituted the expression Eq.(22) for G into the third term in the right-hand side of Eq.(44) and applying the relation (25) one obtains casily that

$$
\begin{align*}
r^{\prime} \hat{p}_{\tau / r} & =H+K^{-1} \cdot([i \hbar \tilde{\mathcal{T}}, K]+ \\
& \left.+\lambda^{2}\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right)^{-1} \cdot G^{\dagger} \cdot[i \hbar \tilde{T} \cdot G] \cdot K\right) \tag{45}\\
& =H+O\left(r^{-2}\right) .
\end{align*}
$$

where H is the hamiltonian from the Pauli equation (26).

Moreover. since the operator K^{-}is defined by Eq.(25) up) to a unitary transformation. the latter can be chosen so that the equality

$$
\begin{equation*}
r \hat{p}_{\tau / c}=H \tag{46}
\end{equation*}
$$

is fulfilled exactly.
This assertion is evidently equivalent to that the lincar differential equation for K^{\prime}

$$
\begin{equation*}
\left[i \hbar \dot{\mathcal{T}} \cdot \boldsymbol{K}^{-}\right]=\lambda^{2}\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right)^{-\mathbf{1}} \cdot G^{\dagger} \cdot[i \hbar \overline{\mathcal{T}} \cdot G] \cdot \boldsymbol{\Lambda}^{-} \tag{47}
\end{equation*}
$$

has solutions satisfying Eq.(25). In turn. this is the case if

$$
\begin{equation*}
\left[\tau^{\alpha} \partial_{a} \cdot K^{-\dagger} \cdot\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right) \cdot \boldsymbol{K}^{-}\right]=0 \tag{48}
\end{equation*}
$$

by virtue of Eqs. (25) and (46). i.e. the condition is conserved. Cuder condition (25) Eq. (46) is equivalent to

$$
\begin{equation*}
i \hbar\left[\tilde{\mathcal{T}}, \boldsymbol{K}^{\dagger \dagger} \cdot\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right) K\right]=0 \tag{49}
\end{equation*}
$$

The st raight forward commutation with the use of Eq. (46) and its hermitean conjugate proves our assertion.

The unitary equivalence of the hamiltonian determined by dymamical equation (26) to the energy operator originating from the invariant functional (3) shows an intrinsic consistency of the approach. It establishes also a link between the NRQM Hamltonian H and the "hamiltonian" $P_{\tau / r}$ in the quantum theory of the field Ψ diagonalization of which gives rise to a quasiparticle interpretation of the latter theory. sece.e.g. [7].

5 Operators of spatial coordinates

Aftre polarization of $Q^{4}(\Psi ; \Sigma)$ from Eq.(4) and using Eqs.(15).(24) one easily comes to the relation

$$
\begin{equation*}
Q^{A}\left(\Psi_{1}, \Psi_{2}: \Sigma\right)=\left(\hat{U}_{1}, \hat{q}^{A}(x) \Psi_{2}\right) \tag{50}
\end{equation*}
$$

where

$$
\begin{align*}
\hat{q}^{A}(x) & =K^{-\dagger} \cdot\left(q^{A}(x) \mathbf{I}+\frac{\lambda^{2}}{2} G^{\dagger} \cdot q^{A}(x) \cdot G\right) \cdot K^{-} \tag{51}\\
=q^{-A}(x) \mathbf{I} & +K^{-1} \cdot\left[q^{A}(x) \cdot K\right]+\lambda^{2} K^{\dagger} \cdot G^{\dagger} \cdot\left[q^{A}(x), G\right] \cdot K \tag{52}
\end{align*}
$$

It is erident that the last two terms are at least of the order $O\left(r^{-2}\right)$ and so the operator q^{A} is the multiplication by the function $q^{A}(x)$ at least up to this order. Having taken

$$
K=K^{\dagger}=\left(\mathbf{I}+\lambda^{2} G^{\dagger} \cdot G\right)^{-\frac{1}{2}}
$$

as a solution of $\mathrm{E}_{(1)}(25)$ we obtain

$$
\begin{align*}
& \dot{q}^{\prime}(x)=q^{i}(x) \mathbf{I}+\frac{\lambda^{2}}{2}\left[\dot{D} \cdot\left[\dot{D} \cdot q^{i}\right]\right]+O\left(r^{-4}\right) \\
& =q^{i}\left(x^{\prime}\right) \mathbf{I}-\frac{\lambda^{2}}{2}\left(\partial^{(i)} \partial_{(j)} q^{A}+\sigma_{(k)}^{-(i j k)}\left(\partial_{(i)} \partial_{\left(j, \jmath^{\prime}\right.}+\partial_{(j)} q^{A} \dot{D}_{(i)}\right)\right)+ \\
& +O\left(a^{-4}\right) \text {. } \tag{5.3}
\end{align*}
$$

As one sers from Eq. (53), the question on mutual commutativity of operators $\hat{q}^{\prime} \cdot \hat{q}^{2} \cdot \dot{q}^{3}$ and consequently on simultaneous measurability of sjatial coordinates $q^{2} \cdot q^{2} \cdot q^{3}$ has an affimative answer only in the zeroth order in c^{-2} and this fact cannot be danged by a unitary transformation of operator K. The condition $\partial^{(4)} \partial_{(i)} q^{4}=0$ might be fultilled in the sense that it is the condition of choosing harmonic coordinates q^{3} on the hypersurface S (i.e. $\Delta s q^{4}(x)=0$). if a Lorent\% hange condition $\nabla_{0} h_{(i)}^{\prime}=0$ is imposed on the spatial part of the tetrad.

In the case of npin 0 . see [2]. the corresponding operators $\dot{q}^{1} \cdot \dot{q}^{2} \cdot \dot{q}^{3}$ commute up to ()$\left(c^{-4}\right)$. So the latter form a complete set of observables for scalar particle in a general l_{4}° in this approximation and it is sutficent for "practical" purposes of taking into arcount of einsteinian gravitation in the NRQX with the first nonvanishing relativistic correction, i.e of the order of c^{-2}. As we have seell the situation is different for the Dirac particle aud in V_{4} oue has to use the density matrix methods for such a purpose.

More detailed cosideration of the coordinate operator in V_{4} and particularly its comparison with group-theoretical approaches to definition of the operator (when the latter are possible) will be presented elsewhere.

6 Operators of spin projections on the tetrad vectors

In a complete similarity with the coordinate operators one obtains for operators $\hat{S}(x)$ of projections of spin on tetrad space like vectors $h_{(i)}^{n}$

$$
\begin{equation*}
\hat{S}_{(i)}(x)=\frac{\hbar}{2}\left(\sigma_{(i)} \cdot \mathbf{I}+\lambda^{2} G^{\dagger} \cdot \sigma_{(i)} \cdot G\right) \tag{54}
\end{equation*}
$$

and again in the representation where $\boldsymbol{K}^{-}=\boldsymbol{K}^{\dagger \dagger}$ we obtain after simple calculations

$$
\begin{align*}
\hat{S}^{(i)} & =\frac{\hbar}{2} \boldsymbol{K}^{-\dagger} \cdot\left(\sigma^{(i)} \mathbf{I}+\frac{\lambda}{2} G^{\dagger} \cdot \sigma^{(i)} \cdot G\right) \cdot \boldsymbol{K} \tag{55}\\
& =\frac{\hbar}{2}\left(\sigma^{(i)} \mathbf{I}+\frac{\lambda^{2}}{2}\left[\tilde{D},\left[\tilde{D} \cdot \sigma^{(i)}\right]\right]\right)+O\left(r^{-4}\right) \\
& =\frac{\hbar}{2}\left(\sigma^{(i)} \mathbf{I}+\lambda^{2}\left(2 \sigma^{(i)} \dot{D}^{(j)} \cdot \tilde{D}_{(j)}-\sigma^{(j)}\left(\dot{D}^{(i)} \cdot \tilde{D}_{(j)}+\dot{D}^{(j)} \cdot \tilde{D}_{(i)}\right)\right.\right. \\
& \left.+\varepsilon^{(i j k)}\left(2 i \tilde{D}_{(j)} \cdot \tilde{D}_{(i)}+\frac{1}{4} \sigma_{(k)} \partial_{(j)} \Omega_{r}^{(p r)} \varepsilon_{(p r s)} h^{(j)(i)}\right)\right)+O\left(r^{-4}\right)(56)
\end{align*}
$$

The latter formula reflects the dependence of formal determination of spin on external field and on mode of motion and orientation of any measuring device if one takes into attention the relativistic origin of the NRQM. It seems worth to investigate in more detail aud in conuection with concrete although speculative measuring procedures.

7 Conclusion

So, it is shown that there is a consecutive way to deduce in a general V_{4} the quantum-mechanical Schrodinger-Pauli evolution equation and operators of observables in a representation, in which the wave functions may be supposed to have Born's probabilistic interpretation and the operators are hermitean in the ordinary sense.

The results presented are ready for immediate use for taking into account of einsteinian gravitation in the semiclassical approximation of the NRQM in a (curvilinear) coordinate representation and in a free falling frame of reference. The latter is the simplest example of non-inertial frame of reference defined by its own non-trivial dynamics.

So we can say that the Quantum Mechanies with its formal physical measurement concept is extracted from the more general and abstract theory be fixing a classical hamiltonian dyamies that may apparently be considered as a dynamies of a moasuring device and we might conclude that there are so many different Quantum Mechanics as many Plassioral hamiltonian denamies exist.

The gencralisation of the geometrical basis of Quantum Theory to a Riemannian space-time backgromed leads to anew infomation on the st rueture of observables which needs furt her determination. For example. the formmar of Ser. 6 seen to show the existence of something like the Zitforbewegung for spin projections.

Another interesting aspect of the approach considered here is an applation of solations (15) of the Dirac equation as an approximate basis for quantization of the ficld Ψ provided by a particle interpredation through the Born's interpretation of the $\operatorname{XRQ} Q \times$ wave functions ι^{\prime}. Again. this will lead to a correspondence betwern a seromel quantised fied theory and a haniltomian dyamies imposed on the "fast" phase function $S(r)$.

At last. if we introduce three momentmm operators \dot{p}_{1} taking coorelinate basis defined by $q^{-4}(x)$ as the vertor ficlds $I^{\text {an }}(x)$. then the operators \hat{p}_{A}, \dot{q}^{A} do not form a Heisenberg algebra together with I aud not commute with $\hat{s}^{(i)}$ except the case $\boldsymbol{r}^{-1}=0$. The algebraic properties of these operators need a furhter investigation and comparison with results. for example, of geometric quantization.

Acknowledgment

The author is grateful to Dr.M.I.Schirokov and late Dr.A.B.Govorkow for amicable discussions on the topics of the paper.

References

[1] Tagirov E.A.. Theor.Math.Plỵs. 1990, 84. N 3. 419.
[2] Tagirov E.A., Theor.Math.Phys. 1992, 90, N 3.412.
[3] Schmutzer E., Plebanski J.. Fortsch.cl.Physik 1977. Bd.25 p.79:
[4] Gorbatzevich A. Quantmm Mechanies in General Relativity: Minsk. 1985. (in Russian).
[5] Polubarinov I.V. JINR Communications P2-8371. 1974. Dubna (in Russian).
[6] Stephani H. Amn der.Physik. 1965. Bd.15. s.12. (in German).
[7] Grib A.A.. Mamaf' S.G.. Mostepanenko V'.M1. Vacuum Quantum Effects in Strong Fields. Moscow. Encrgoatomizdat. 1988 (in Russian).

