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1 Introduction 

In the present paper a self consistent and general-covariant analog of 
the standard Xon-Relativistic Quantum Mechanics (NRQM) with rel-
ativistic corrections for a particle of spin 1/2, mass m and electric-
charge с is constructed. In other words, it is a semiclassical NRQM de
scription (with relativistic corrections) of the interaction of the particle 
with a general external gravitational field treated as a general rieman-
nian space-time 14 with metric tensor даз(т), x £ V4, Q, /3 ,7 , . . . = 
0 .1 .2 .3 . . An analogous construction for zero-spin particle has been 
presented in papers [1] and [2] . It might be called also the Foldy 

Wouthuysc» representation of the Dirac theory in the general I4 
but here the lack of space-time symmetries and Cartesian systems of 
coordinates requires some reasonable principles for determination of 
operators of observables. the question that does not usually arise in 
the theory based on the minkowskian background A/4. 

The construction can be done in a self consistent and general covari-
ant form starting with a set of general-relativistic "First Relations'" 

and considering asymptotics1 of the latter in г~2, с being the veloc
ity of light. The Dirac equation in V4 and corresponding conserved 
quadratic form for its solutions (a "scalar product") are, of course, the 
first among these relations. The others are known real quadratic func-
tionals of the Dirac field Ф of "mean"' momentum, spatial curvilinear 
coordinates and spin of the particle, which as it will be shown originate 
asymptotically the NRQM matrix elements of the corresponding oper
ators of observables. Just in this point our approach essentially differs 
also from that of papers [3], [4] where the observables are introduced, 
in fact, on the non-relativistic level . 

As a preliminary, we introduce some notations used throughout the 
paper: 

h'l'jdf) are orthonormal tetrad vector fields denoted by indices in 
parentheses; these indices may be raised and lowered by contraction 
with the Minkowsky metric tensor щаа) = diag(l, - 1 , — 1, — 1,) (Re
mind that ha

{J)h\3) = Й", h(g}ha
b) = eft*.); 

space-like tetrad vectors are denoted by latin indices i,j,k,... = 
1.2.3 (of course, in parentheses); in general, two or more adjacent 
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indices in parentheses are enclosed in a common pair of parentheses. 
e.g. :"(i;i-1 is a completely antisymmetric symbol. ;, ш) = 1: 

-1"' and гт''1 are respectively the ordinary Dirac and Pauli matrices: 

V„ is the < ovariant derivative and V„ = V„ — (ii /he)A„(.i). i.e. 
the interaction with an external electromagnetic Held is also considered 
fur generality: another short notation is ()(„, = h'.^O.i and so for oilier 
sorts of derivatives; 

L"{A.B) '= A-X.iD" - D-X.iA" is the Lie derivative of the vector 
field D"{s) along A"(r) . 

In parallel with the parameter of asypmtotic с ' we shall also nse 
the half-lengtll of the Conipton wave A = h/2iuv when it will he 
convenient. 

Now we start with the following known structure: 

• The general-relativistic Dirac equation for a hispinor Held Ф with 
the rest mass in of its quantum 

h"( j - )V„* + ^ * = 0. (1) 
Ti 

• Tin* conserved, i.e. independent of the choice of a space-like 3-
surface E. sesqtiilinear functional ( Ф is the ordinary Dirac con
jugation of Ф ): 

{*>,.*!(} = fdaa(jr) ФТ -ln(r)9-2. (2) 

where f/<r"(.i) is the normal element of S. 

• The real functional Р((Ф: Е) of the held Ф. of a given vector Held 
l"'\j") (which might he. of course, one of the tetrad vectors) in \'t 
and of E for the component of "moan momentum of a quantum of 
tlw field" Ф along YJ(s): 

A - ( * : S ) = /da"V'T„, (3) 

where T„,t is the (metric) energy-momentum tensor of the field Ф. 
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• The three real functionals Q 1(Ф:И) of "mean curvilinear coordi
nate* of a (ptantuni of the field Ф" on the hypersurface E 

Q-'(*:E)= / A T ' V V )*">..* (4) 

where ( / ' ( i ) are three scalar functions denoted by indices .4. B.... = 
1.2.3 (not the tetrad indices ! ) and having the following prop
erties 

(1ст"д„(1Л = 0 . rank ||0„</-4|| = 3. (3) 

• The three real functionals 5(,)(Ф; D) of "шаш projections of spin" 
on space-like tetrad vectors /ij'(). i.j.k.... = 1.2.3. 

SM(*: S) = J J do-" Ф (-:„•£•» + S'»-. , , )^,/ / /1 / , '^. (6) 

where E-* = ( l / 2 ) ( y V - - ) V ) 

So. our first aim is to deduce from Eq.(l) generally covariant ana
log of the Pauli equation for a two-component wave function i-(.r) for 
which the sesquilinear form (2) would lead to the "ordinary" Hilbcrt 
space scalar product for (.•(.;) as wave functions, all the relations being 
asymptotic in r~v. 

{Ф,.Ф2} = ( i - , . <.->) +О(<-V"+V). (i-, .o2) лй I da v\ i-,. (7) 

r 1 being the herinitean conjugate of «л Due to the latter definition 
it is natural to assume that just the wave functions r have tlw Born 
probability interpretation. 

An essential ooint is however that it is necessary in the NRQM 
to define also hermitean ( with respect to the scalar product (-.-) ) 
operators of observables that formalise physical measurements and thus 
a preparation of initial states (the projective postulate of the NRQM). 

The invariants / Y ( * : S ) , (,)''(*: E). S ( l )(«:i :) may be considered 
as exact gciieral-rclativistic expressions for diagonal matrix elements of 
the corresponding NRQM operators of observables for the case when 
the field Ф(г) is the gcneral-relativistic image of an NRQM wave func
tion i'(j') (in the Schrodinger picture). This is evident enough in the 
case of P\- and S(,). 
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As concerns Q . it should be noted at first that owing to Eq.(">l 
tin1 numerical values of the three functions cjA(.r) define a point on У! 
and so they ionn a t ransformat ion to the definite curvil inear coordi
nates </ ' on Y! from the general a r i t hme t i / a t i on of I'( by coordinates 
.1" . So. values of </A(.r) may be considered as numerical results (that 
are. of course, scalars. i.e. do not depend on the choice of coordinates 
{.("} in \\) of detect ion of a part icle spat ial position by a measur-
liienl of the curvi l inear coordinates 1/ ' . Formula ( I ) gives the simplest 
general-relativist ic expression for the mean value of 4 ' anil as is shown 
in [2] this expression gives rise to a na tura l generalisat ion of the known 
Newton Winner ope ra to r of part icle spatial Car tes ian coordina tes of 
the spiniest part ic le . Equat ion! li coincides also in its form with the 
definition of the (Car tes ian) coordina te opera tor introduced and justi 
fied Ii.v I 'olllbarinov [•">] for the quant ised held Ф( . / | ill M\-

Having i lit па luced the general-relativist ic images ,if cliagonal matr ix 
e lements Z(^.Y.) of an observable Z as a real quadra t i c functional one 
can uniquely define invariant images of non-diagonal ma t r ix elements 
as sesquilnear hermi tcan fuiHtiouals Z( Ф | . Ф_,: yj) t hn iugh the known 
procedure of po/ansaMon: 

•4 / (Ф| .Ф- . . :^) = Z ( * , + Фу.^.) - 7 ( Ф , - Ф , : ^ ) 

-- / Z i * , + ity-r.'L) + /Z(«I'i - /*•..: L"). {Hi 

The herinit ici ty of Z ( * ; . Ф:<: E) means that 

^ ( Ф 1 . Ф а : ^ 1 = £(*-. , . Ф , : ^ ) . (9) 

Fur ther , the N R Q M differential opera to r Z[.i) (in the Schrodingcr 
picture) that includes only derivatives along the .'{-surface 1! can be 
defined by the relat ion, cf. Kq.(7) . 

^ l * i . * 2 : S ) = U ,i-- :(. '-)i1a)y + f>('- a'"'1]) (10) 

at least for some classes of H's. It is obvious that owing to the henni t ic -
itv of / ( Ф | . Ф;>: - ) the opera to r Z(.v) thus defined is (asymptot ical ly) 
hermi tean in the usual sense. 

The paper is organised as follows. In Sec.2 the approx imat ion in 
powers of с - to E q s . ( l . 2) will be considered. Sect ions 3. j . G. 7 are 
devoted to der ivat ion of opera to rs of m o m e n t u m , spat ia l coordinates 
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and spin in the corresponding approximation. In Sec.4 the unitary 
equivalence of the hainiltonian in the Pauli equation and the NRQM 
energy operator deduced from Eq.(3) is shown. 

The consideration will be done on the heuristic level assuming that 
the necessary mathematical conditions are fulfilled. 

From a physical point of view the notation £)(с~''гл+2 ') is a sim
plified expression of the fact that dimensionless ratios of products of 
characteristic values of the fields involved and of their derivaties to 
r~2.\ -2 н п , ч ш а 1 | 

We keep also explicitly the Plank's constant ft in mathematical ex
pressions because it provides another type of approximation, the quasi-
classical one. and matching these approximations could be interesting 

2 The Pauli equation 

The problem of transition from the Dirac equation to its two-component 
approximation in powers of c~2 in an external electromagnetic field in 
the Minkowsky space-time Мц has been considered in a general form 
by Stephani [6]. This approach was extended by Gorbatzevich [4] to 
the case of I4. However, his approach was based on a postulative for
mulation of the NRQM structure for V4 and only a NRQM hamiltonian 
was deduced from the Dirac equation and the observables were intro
duced on an analogy with the case of Л/4. On the contrary , here 
the whole consruction is a natural approximation to the formulated 
general relativistic "First Relations" and so it is more consecutive and 
self-consistent. The results of the two approaches coincide for the form 
of the wave equations but not for the observables which include an es
sential part of information on the interaction of quantum particle with 
the external fields. 

Now. to obtain the NRQM wave equation we rewrite firstly Eq.(l) 
in a more detailed form 

| Л ^ 7 ( Л ( А - Г „ ) Ф + ^ * = 0, (11) 

where the bispinor connection TQ is defined through the relation 

VQ7/3 - Г„70 + 7^Га = 0. 
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Using the representation of ">(„) through the Pauli matrices <7(j) 

*.-C-,)-*.-U,?)-
I being the 2 x 2 identity matrix one obtains 

г _ 'of'», (aW ° ^ 1om( ° °^\ m\ 
Г*--4«„ eiw[ 0 ^ j j - ^ U(0 0 ) • (13) 

н<Г" "=' /,<">" v„/i{f> ( Ы ) 
ar<' the Ricci rotation coefficients. 

Further, we substitute the following ansat/ into E(j.(ll): 

• = «*p(-x5^)(-,-^)- < 1 5 > 
where G(x.) is a differential 2 x 2-operator to be defined below and a 
(two-component) spinor 0and the real phase function S(.r) are assumed 
to satisfy to the conditions: 

r"d aarg0 = o(l) , (16) 

which means that the phase of ф changes in the direction of d„S much 
more slow than (mc/h)S, and 

daSd°S=l, (17) 

which is the Hamilton-Jacobi equation for geodesies and so the vector 
field dnS defines a normal geodesic, i.e. non rotating free-falling frame 
of reference. It should be remarked that this is the simplest but not 
necessary definition of S , and other time-like fields dnS corresponding 
to non-geodesic frames of reference may be introduced. 

Having been chosen ha = daS we obtain the following equation for 
© as a result of the substitutions 

fi2 -
ihT<l>=—-—DG<i>. (18) 

2m 
where the following notation is introduced: 

f = ' (т°да + ±Var°) • I + inW)e(lJ-t)<T<*»r-. (19) 
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r„ t / rO„S t ' /,j,°> ( r "V„r , = ()): (20) 

£> t ' (т<" ( / / ' , 4 + ^ n A £ , ) - ^ - m ) h ^ •! (21) 

and the operator G as an operator on solutions of Eq.{ 18) is determined 
by the nonlinear equation 

G = D-—[t.G} + A2 G D C (22) 

It should 1»' realised that Eqs.( 18),(19),(22) and many operator re
lations below have a valid mathematical sense only as asymptotical 
relations that is assumed to be clear in context. 

Since T" is a geodesic vector field the operator [T . G] and so the 
right-hand side of Eq.(18) contain only derivatives along the hypcrsur-
face S(.r) = const.. (In the case of a non-geodesic Hamilton - Jacobi 
e(Iiiation the derivatives along 0,,S may be eliminated by application 
of the evolution equation (18).) 

It is important also to realise that the left-hand term of Eq.(18 )is 
considered to be of the order 0(1) in r~' despite the formal presence of 
с in the definition of r n . This means that we pass to the non-relativistic 
and, in a philisophical sense, to the human measure of time. 

Further, we have for solutions ф\ and Ф? of Eq.(18) 

{Ф!.Ф2}- J da(x)0\ (I + j G' - G) <?,, (23) 

not Eq.(7). In Eq.(23) and further G* denotes the hermitean conjugate 
of G in the conventional sense: 

I d<j(x) (G0i)f ф2 = l M*) <i>\ G W 

However, we come easily to Eq.(7) transforming О to 

V' = A'" l0 (24) 

where the operator К satisfies the condition 

A'* • (I + A2G* • G) • К = / , (25) 

that determines A" up to an arbitrary right unitary transformation. 
Particularly, A" may be chosen as an hermitean operator. 
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Rewriting Eq.(18) for о in terms (.• one comes to 

ihfv = Л'"1 • {-— D-G-K - ih[t . K] )f '= H (2G) 

which is the Pnuli equation for I'4. It is easy to prove that the operator 
in the right-hand side is hermitean. We shall call it the hmuiltouiiw. 
hut it is not the operator of energy except some special cases though 
is connected with the latter by a unitary transformation, see Sec.-J. 

In the approximation up to ()(с~'г) iteration of Eq.(22) 

ihti-=~(D* + \*D* + £ \ l t .D]. D] +(Ц< •>)),.• (27) 

and 

b2 = 
= (л,- + !/? + ±(r-vnvrf7-' - |(var"f) - IvV>" v„/»(f)J) • i + 

+ ^(*)=M,(^)-^(.»^A-^'>^'Ao)) (28) 

wliere 
As is the laplacian on the 3-surface 5: 
/? is the scalar curvature: 
F ( l j ) is the projection of the electromagnetic tensor F„.j on the spa

tial tetrad vectors, i.e. local magnetic field. 
Here it is worth of attention that the zeroth order of the operator in 

the left-hand side of Eq.(27), i.e. of the hamiltonian. contains the term 
| /? , i.e. just the term which arises in the quadrated (second order) 
equation for the hisphmr field Ф. If we had used this equation it were 
completely similar to the case of scalar field . see [1]. where, if the term 
£R is present in the the gcneral-relativistic scalar wave equation, then 
it passes to the hamiltouian of the Schrodingcr equation. However, 
the matter is that we have started here with the (first order) Dirac 
equation (1). which does not contain any curvature term. 

As concerns the term [T . Ь]. after simple transformations one has: 

[7 .D] = a(l)((V"'r")a. + ^V„(V"V) - jFm - iv(j)(T'42<^)) + 

+ ^VJh^'r^)-!. (29) 

the indices in square brackets being antisymwetrised. 
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Returning to Eq.(22) it is also worth to note that [T ,G] = 0 if 

[t , D] = 0 (30) 

because the operator G is a series in powers of D. Then G may 
formally be written in a closed form: 

G = ^ - ( l - ( I - 4 A 2 D2)^ b~l. (31) 

It can be found from Eq.(29) that Eq.(30) takes place only when the 
following conditions are satisfied: Чптц = О, i.e. the space-time is 
static, r"F,t$ = 0, i.e. there is no electric field in the frame of refer
ence defined by the vector field r", and the tetrad is chosen so that 

3 Operators of momentum 

To determine the operator of projection of momentum on a given suf
ficiently smooth vector field V°(x) we substitute the (metric) energy-
momentum tensor for the held Ф 

T„v = у ( Ф % ? „ Ф - ^ Ф 7 , Ф ) + j ? ° ( * V W o ] * ) (32) 

into Eq.(3). Having assumed that Ф satisfies the Dirac equation (1) and 
subtracting a divergence of an antisymmetric tensor from the integrand 
one comes to the following expression: 

Д-(*:Е) = ih [ d<rv (Ф i»(V%+ Jv^V) Ф+ 

+ W t - , V M ^ - | v » l * 7 ^ ) (33) 
where the indices in the braces are symmetrised. 

Of course, neither Py, nor its polarisation can be represented as 
matrix elements of some differential operator in a space of solutions 
of Eq.(l) with respect to the product {.,.}, defined by Eq.(2), except 
the vector V is a Killing vector, i.e. V^Vj,} = 0. However, if we po
larise Рг(Ф: S) and substitute the expressions from Eqs.(15),(24) into 
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Д/(Ф1, Ф2; S) then after straightforward but rather '?ngthy calcula
tions we come to a scalar hermitean operator p{x\ V) of the projection 
of momentum on the vector field V" through the (asymptotic) relation 

^ * i , *a ;S )H» , ' - | , p ( * :V ) t ' - 2 ) (3-1) 
where 

p{x; V) = A* • (/>.,(*; V) + A2G* • {pN(x; V) - 2» i r 'V>) • G -

- iA2(pr(.r; V) • G - G* • M x ; V'))) • A. (35) 

The hermitean (scalar!) differential operators ps{x:V) and pi(x;V) 
arc defined by the following formulae: 

M * ; V) d=f -ih(v™D + ^ ' 4 v ( I ) V ' i u ' ) . ( 3 0 

Ps(x: V) = ' ih((Vfdn + i v a K ? ) • I - ii«»(V:v. A"'') e„>t)«x<*J)- (37) 

where 
^ t ' A » ) A < | V , (38) 

i.e. it is the piojection of V" to the hypersurface S. Equation (35) 
together with Eqs.(36) - (38) looks rather cumbersome and is disrlaved 
here for generality. 

It is simpler and more apparent to consider two particular choices 
of the vector field V. The first one is V lying in the hypersurface 5, 
i.e. V = Vsa and consequently K(0' = 0. The second one is when 
V" = с 1т", i.e. Vs° = 0. Now we pass to the first case, the latter will 
be considered in the next section. 

Assuming that V(0) = 0, Vs" = V" and taking into account 
Eqs.(22),(25) one has 

p(x;V)\v=Vs = A'* • (ps(x- V) - A2G* • ps(x; V) • G) • К (39) 

= ps(x- V) + {X2[D , [D , ps(x; V)]] + 0(c'4). (40) 
Now consider the commutator \ps(x; V) , ps{x; W)] when both vector 
fields V and W lie in S, i.e. V = Vs and W = Ws: 

\ps(x; V) , ps(x; W)] = A'f • (I + A2G* • G ) " ' • (jps(x; V) , Ps(x; W)} + 

+ A 2 [ G f G , Ps(x; V - W)] • A2G' • G ) • К (41) 

= \р3(х;У),р5(х;]¥)]+0(с-*). (42) 

10 



We do not write out a rather Ion,-; expression for [^.s(.r: \r) . ps{-i"- И )] 
but mention that this commutator is equal to zero when 

L(V. W) = 0. L{V. /i(0) = 0. L(W. h{,)) = 0. VaW3Fa:j = 0. (43) 

These conditions mean that V and W should form a coordinate basis on 
a two-dimensional submanifold of S . the tetrad vectors may be chosen 
to he constant on the submanifold (that is obviously a restriction on 
the geometry of 1'4) and electromagnetic forces vanish on it. Then, one 
sees easily that also \ps(j", V) , ps(f- W)] = 0. 

So. one comes easily to the conclusion that three independent and 
mutually commuting operators of momentum projections exist only in 
spatially flat. Robertson - Walker space-times when the tetrad vectors 
form a normal coordinate basis. In more general space-times there is no 
three independent commuting components of momentum even in the 
limit c_ 1 = 0 while projections of momentum of scalar particle on any 
coordinate basis on S mutually commute in this limit in the general \\ 
[2). 

4 The operator of energy and its connection with 
the hamiltonian 

Let now V" = r - ' r " , i.e. Vw = 1, Vs = 0 . Then, after obvious 
transformation, one has 

ft2 

}>r/r = - — K] • {D • G - Gf • D + G* • G) • К (44) 

Having substituted the expression Eq.(22) for G into the third term 
in the right-hand side of Eq.(44) and applying the relation (25) one 
obtains easily that 

i-pr,r = Я + А - ' - ( [iht , K] + 

+ A2(I + A2Gf • G)" 1 • G* • [itif .G] • A') (45) 
= H + G(<-'2). 

where H is the hamiltonian from the Pauli equation (26). 

11 



Moreover, since the operator A" is defined by Eq.(25) up to a unitary 
transformation, the latter can be chosen so that the equality 

<Pr/r = H (46) 

is fulfilled exactly. 
This assertion is evidently equivalent to that the linear differential 

equation for A" 

[itit . K] = A'2(I + A2G* • G)'' • G* • [iht . G] • A" (47) 

has solutions satisfying Eq.(25). In turn, this is the case if 

[т"д„ . A'f • (I + A2Gf • G) • A" ] = 0 (48) 

by virtue of Eqs.(25) and (46). i.e. the condition is conserved. Under 
condition (25) Eq.(46) is equivalent to 

ih[t , A'» • (I + A2Gf • G) A'J = (). (49) 

The straightforward commutation with the use of Eq.(4G) and its her-
mitean conjugate proves our assertion. 

The unitary equivalence of the hamiltonian determined by dynami
cal equation (26) to the energy operator originating from the invariant 
functional (3) shows an intrinsic consistency of the approach. It estab
lishes also a link between the NRQM Hamltonian H and the "hamil
tonian" PT/r in the quantum theory of the field Ф diagonalizatiou of 
which gives rise to a quasiparticle interpretation of the latter theory, 
see. e.g. [7]. 

5 Operators of spatial coordinates 

After polarization of # И (Ф:Е) from Eq.(4) and using Eqs.(15),(24) 
one easily comes to the relation 

g / , ( * i . » 2 : E ) = ( ^ b « V ) « ' 2 ) - (50) 

where 

qA{X) = A"» • (qA(x) I + y G f • qA(x) • G) • К (51) 

= ч
л(х) I + A-"' • [</(.')• К] + A2A'f • G' • [qA(x). G] • A'. (52) 
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It is evident that the last two terms are at least of the order ()(c~2) 
and so the operator qA is the multiplication by the function qA{jc) at 
least ii]) to this order. Having taken 

A" = A"' = ( I + A ^ G p 

as a solution of Eq.(25) we obtain 

r / V ) = qA{s)\ + ~[t>- [D. qA\] + OU--*) 

= , / ' ( , ) I - ^{д^диЧ
Л + aik^HdU)OulqA +0и]Ч

Л[){1))) + 

+ (){,--*). (53) 

As one sees from Eq.(53). the question on mutual couiniutativity 
of operators q]. q'. </'' and consequently on simultaneous mcasurahil 
ity of s])atial coordinates ql. q1. </'' has an affirmative answer only in 
tin- /eroth order in с 2 and this fact cannot be changed by a unitary 
transformation of operator A'. The condition d^d^q* = 0 might 
be fulfilled in the sense that it is the condition of choosing harmonic 
coordinates qA on the hypersurface S (i.e. &xqA(x) = 0 ). if a Lorent/. 
gauge condition ^~,i''j',) = 0 is imposed on the spatial part of the tetrad. 

In the cast' of spin 0. see [2]. the corresponding operators ql.q2.q* 
commute up to (){i~A). So the latter form a complete set of observ-
ables for scalar particle in a general V4 in this approximation and it is 
sufficent for "practical" purposes of taking into account of einsteinian 
gravitation in the NRQM with the first nonvanishing relativistic cor
rection, i.e. of the order of с~г. As we have seen the situation is 
different for the Dirac particle and in I', one hits to use the density-
matrix methods for such a purpose. 

More detailed cosideration of the coordinate operator in \\ and 
particularly its comparison with group-theoretical approaches to defi
nition of the operator (when the latter are possible) will be presented 
elsewhere . 
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6 Operators of spin projections on the tetrad vec
tors 

In a complete similarity with the coordinate operators one obtains for 
operators S(x) of projections of spin on tetrad space like vectors h',' 

S(l-,(x) = j ( a ( 0 - I + A i , G , - < r ( i r G ) (54) 

and again in the representation where A" = A"' we obtain after simple 
calculations 

S<'> = | A'*- (a^ I + j С • °(i) • G) • К (55) 

= £ ( " ( , , I + y [ 0 , [ 0 V ' ] ] ) +(>(<-<) 

= ! ( a " > I + А2(2<7('>D(J> • DU) - <т^(Ь" • DU) + # » • Du)) 

+ e(W(2г•Л (Л•D ( l. ) + ^ ) a 0 • ) n< > ' '%г S , / ' < * , ' ' ) ) ) + 0(,-<UW) 

The latter formula reflects the dependence of formal determination of 
spin on external field and on mode of motion and orientation of any 
measuring device if one takes into attention the relativistic origin of the 
NRQM. It seems worth to investigate in more detail and in connection 
with concrete although speculative measuring procedures. 

7 Conclusion 

So, it is shown that there is a consecutive way to deduce in a general 
Vi the quantum -mechanical Schrodinger-Pauli evolution equation and 
operators of observables in a representation, in which the wave func
tions may be supposed to have Born's probabilistic1 interpretation and 
the operators are hermitean in the ordinary sense. 

The results presented are ready for immediate use for taking into 
account of einsteinian gravitation in the semiclassical approximation 
of the NRQM in a (curvilinear) coordinate representation and in a 
free falling frame of reference. The latter is the simplest example of 
non-inertial frame of reference defined by its own non-trivial dynamics. 
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So we can say that the Quantum Mechanics with its formal physical 
measurement concept is extracted from the more general and abstract 
theory by fixing a classical hainiltonian dynamics that may apparently 
be considered as a dynamics of a measuring device and we might con
clude that there are so many different Quantum Mechanics" as many 
classical hamiltonian dynamics' exist. 

The generalisation of the geometrical basis of Quantum Theory to a 
Riemannian space-time background leads to a new information on the 
structure of ohservahles which needs further determination. For exam
ple, the formulae of Sec. G seem to show the existence of something 
like the Zit t (•rhcwvgnnp, for spin projections. 

Another interesting aspect of the approach considered here is an 
applcation of solutions (]•">) of the.Dime equation as an approximate 
basis for quantization of the field Ф provided by a particle interpreta
tion through the Born's interpretation of the NRQM wave functions t \ 
Again, this will lead to a correspondence between a second quantised 
field theory and a hamiltonian dynamics imposed on the "last" phase 
function S(.r) . 

At last, if we introduce three momentum operators рл taking co
ordinate basis defined by f/'l(.r) as the vector fields !'"(.;) . then the 
operators рл,ЧЛ <1<> uot form a Heisenberg algebra together with I and 
not commute with i ( , ) except the case c~] = 0. The algebraic prop
erties of these operators need a furhter investigation and comparison 
with results, for example, of geometric quantization. 
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