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Mbl uccienyeM BO3MOXHOCTb BBeAcHHMS (Opsia-) KOYMHOXEHHMS s
GLq(N)-KOBapHaHTHbIX mnddepeHInaIbHBIX KOMILJIEKCOB HA KBAHTOBHIX TIPO-
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BM(N), XaK ¢ MyJIbTHIUTHKATUBHBIM, TaK M C aJXUTHBHBIM KOYMHOXCHHEM.
[ocnepunit cnyuait npu N = 2 uMeeT OTHOLICHUE K g-AechopMaliusaM pocTpaH-
crea Munkosckoro u anreGpor [Tyankape.
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GL,(N)-Covariant Braided Diffcrential Bialgebras

We study the possibility to define the (braided) comultiplication for the
GLq(N) ~-covariant diffcrential complexes on some quantum spaces. We

discover such differential bialgebras (and Hopf algebras) on the bosonic and
fermionic quantum hyperplanes (with additive coproduct) and on the braided
matrix algebra BM (N) with both multiplicative and additive coproducts. The

latter casc is related (for N = 2) 1o g-Minkowski space and g-Poincare algebra.

The investigation has been performed at the Bogoliubov Laboratory of
Thcorctical Physics, JINR.
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1. Throughout the recent development of differential calculus on quan-
tuin groups and quantum spaces, two principal and closely related concepts
are readily seen. One of them, initiated by Woronowicz [1], is known as
bicovariant differential calculus on quantuin groups. Its characteristic fea-
ture is the covariance under the left and right “group shifts” A, and Ag
acting upon the differential complex in a consistent way. Brzezinsld[Q]
has shown that this corresponds to existence of a differential bialgebra, i.e.
a bialgebra structure with honest coproduct A on the whole algebra of
coordinate functions and their differentials. This allows one to treat a.ll
the subject using the standard Hopf-algebra technique.

Another concept, introduced by Wess and Zumino [3] (see also [4]),
proceeds from the requirement of covariance of the differential complex on
a quantum space with respect to the coaction of some outer.quantum group
considered as a group of symmetry. In other words, the correspondmg
differential algebra must be a covariant commodule as well. ;

In the present letter, we want to unify both concepts by formulatmg
the following set of conditions to be satisfied by g-deformed differential
calculi:

) associative algebra of generators and differential forms is’ respected
by the (co)action of some quantum group;

p) external differentiation d obeys d* = 0 and the usual (graded) Leib-
nitz rule;

- #) differential algebra admits a (brarded) coproduct of the form [2]

Afa) = % ®agy, A(da) da(l) ® ag) + o) @ da(ﬂ) (1)

Following these cnterra we obtain several examples of GL,(N)-covariant
differential bialgebras: the braided matrix algebra BM,(N) (with additive
and multiplicative coproducts) and also bosonic andfermionic quantum
hyperplanes with additive coproduct. The first example seems to be of
special interest because BM,(2) is presently considered as a candrdate to
the role of the ¢-Minkowski space [5] [9]. e : e

2. To formulate and study the quantum-group-covariant differential
calculus, the R-matrix formalism [10] proved to be extremely convenient.
Let us first consider the case of braided matrix algebra BM (V) with-the
generators {1,4;} (the latter form the N x N-matrix u) and relatlons :

R21U2R12U1 = U1R21H2R12, @)y
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where R is the GL,(N) R—matnx [10, 11]. The multiplication rule (2) is
' mvanant under adjoint coaction o{ GLy(N),

u -T S(T’") ® o™, or u— Tul™}, (3)
\gghefe( ﬁ‘obey the relations |
Ry TiT; = TThRiy ’ (@)

and commute with u™. Eq.(2) (“reflection equatlons”) first appeared in
the course of mvestlgatlons of 2-dimensional integrable models on a half-
line (see [12] and references therein). Further it was studied by Ma_]ld [13]
within ‘the general framework of braided algebras. :

* From now on we prefer to use the notation a ® 1 = a,1®a = a for
any element a. The matrix notation will also be shghtly modlﬁed 14] to
sunphfy the relevant calculatlons

PuRm =Riu= R R'= '}7 V= u, 'u{é‘ﬁ” T
Thus, the Hecke condition for R reads |
CR-R=¢-¢'=, ()
whe‘rea,s (2) becomes mmply o '
o | Rufig - uIJ{uR‘ ®
Dlﬂ'erentlal complex on BM, (N ) is defined by (6) and

RuRdu=duRuE, = - RN GE

| RduRdu-—duRduR @)
(here:and below we ormt the wedge product symbol A in the multlphcatlon @

of differential forms). Of course, one could:perfectly well -use

RuRdu— duRuR

mstea.d .of (7) these possxblhtles are absolutely pa.ra.]lel We should: a]so -’
note that an, agreement of (7) with (6) (via the Leibnitz rule), and some:

other formulas below, rely heavx]y on the Hecke condition (5) that is speaﬁc
to'the GLy(N) case.

Comunutational relations (7),(8) have been found in the component
form for N’ = 2 [6] in the context of the g-Poincare algebra, and then
recast into the R-matrix form in [8]. Besides that, eq.(6) is known [13] to
admit the multiplicative coproduct .

A(u;) =u® uf ;- or A) =u @u=un, (9)

provided the ﬁontrivial braiding relations
RuRu=uRv'R - {(10)

are used for commuting primed u-matrices with unprimed ones. Recall
[15] that the braiding transformation ¥ : A ® B — B ® A, where A and
B are covariant comodules of a quantum group, is a map which commutes
with the group coaction and therefore, produces a covanant recipe for
multiplying tensor products of generators:

(1®a)(b®l)—a b_‘I’(a@)b)

For mstance eq. (10) is m(luced by the correspondmg universal R-matrix
through the (somewhat symbolic) relation '

‘I’(u @ u) =< Tul ' & T T' 'R > .
Now let us examine whether a map of the form (1) (see also [16, 17]),
A(du) = du@u+u®du = duv' +udd, | (11)

together with (9) yieidé a proper coproduct for the whole algebra (6)-(8).
Our statement is that it really does. Moreover, two different sets of the
braiding relations can be used here equally well: one based on (10),

RYRu=uRuR,

Edu’Ru: u—R:_(_iu’R, (12)
RvW Rdu=duRY R, ' ‘
Rdv Rdu=~duRdv' R,

and the other,
‘ \Eu’Ru:uRu’R, ,
‘Edu’RuzuRdu'R, (13)
R Rdu=duRV R,
Rdi' Rdu= —duRdw R.



The proof that (11) is an algebra homomorphism is straightforward.

For illustration, we explicitly venfy one of the required conditions using,

say, the braiding (13): :

RA(u) RA(du) = Ruy/ Rduv' + Ruy' Rudu'

'=RuRduRv Rv + RuRuRW Rdvw' =duRuRRRv Ru'R
+uRuRdyRW'R=duRRWRuvR+uRRdvW Ruv'R
= (duv' + udu) Ruv'R = A(du) RA(w) R

(underlining indicates the parts to which the next operation is to be ap-
plied). Similar calculations for eq.(8) are in fact optional, because their
result can be foreseen by dlfferentlatmg the equality just obta.med Fmally,
we stress that the coassociativity of (9) and (11) is evident.

Note that the first equation in (13) has already been used as a braiding
in [18] to make the algebra (6) a bialgebra with additive coproduct (see
below).

For both versions of the braiding relations, (12) and (13), the differen-

tial complex (6)-(8) admits the coproduct (9),(11); so B 3M,(N) becomes a
dlﬁ'erentlal bialgebra. A counit is deﬁned in an obvious way,

e(1)=1, e(u) = 1 e(du) =40.

Moreover, the braided antipode can also be introduced in complete analogy
with the differential GLy(N) case [17], thus making BM (N ) a differential
Hopf algebra.

3. Now we proceed to another, additive, algebra map 5
| AW)=u®l+1®u=utv, . (14
A(du) =

whlch proves to be a second coproduct on BMy(N). It has been found

in [18] that (14) is compatible with (6), provided the braiding is defined
by the first line in (13). Our result is that the whole differential complex
(6)-(8) admits (14),(15) as a coproduct if we use one of the followmg four
sets of the braiding relations:

RvY Ru=uR¢R,

R Rdu-duRuR /\uRdu, (16)
RdvRu=uRdvR,

Rdu' Rdu = —duRdu'R;

4

du®1+1®@du=du+du’ - (15)

. RuRu=uRu R,
Ru' Rdu = duRv' R, - ' (17)
due' RuR= RuRduw + AduRv, ‘
"Rdu' Rdu = —duRdu' R}~
the remaining two sets are obtained from (16) and (17) by changing the
position of the prime u « u’ (it corresponds to the i mverse braiding trans-

formation ¥~1).
In this case, it is ‘also easy to define a coumt € a.nd an antipode S,

" g(u) = e(du) =0, S(u) =-u, S(du) =~

thus completing the construction of the dxfferentlal Hopf a.lgebra. (w1th
additive coproduct) on BM,(N).

4. Asit has been pointed out in (8], the braided ma.trix algebra BM,(2)
can also be interpreted as a quantum hyperplane (g-Minkowski space) for
the quantum Lorentz group SO4(3, 1) The coordinate algebra of a quan-
tum hyperplane is known to admit, in a quite general situation, an addi-
tive bialgebra structure [7]. So, a natural question arises: can one define
(additive) differential bialgebras on the hyperplanes related to arbitrary
Yang-Baxter R-matrices? We can answer this question affirmatively for
R-matrices of the Hecke type (5), in particular, for the GLq(N)- covariant
differential complexes proposed by Wess and Zumino [3:.

Rzl z; =C$1272,

c Rdz, z; = z,dz3, ‘ : ’(18)
cRdz, d:cg

(cis equal to g for the bosonic.and to —q‘1 for the fermionic hyperplanes)
These commutation relations are invariant under the coaction of GL,(N )

—dzl dzg

TR, df s Tedd, o z—Tz, de —Tds . (19)

(see [19] for the generalization to the case dz — Tdz +dT z), and adm.lt
the dxﬁ'erentla.l Hopf{ a.lgebra structure thh the coproduct '

A(z) =z+2 A(da:) =dz + dz’ - (20)



and the counit and antipode given by
e(z) = e(dz) =0, S(z)=-z, S(dz)=—dz,

if one of the {ollowinﬁg four sets of the braiding relations is implied:

[ Rziz,=clz, 2,
) R$'1d$2=cdi1:z:'2, (2])

Rdz} ey = ¢ 2y dehy — Adzy 2,

| Rdz}dzy = —cdz; dzy;

r—ﬁxazizczlzfz, »

- ¢rzydey = Rdzy o + A2y dz), ' (22)
Rdz} 24 = cz,dz), ‘
| Rdz) d:z:g = —cdz; dzy. V

Two other sets can be obtained from these relations by substltutlon z ez
and correspond. to the inverse braiding. !

We have to stress that all the braiding relations .used in this paper’

are no more than the cross-multiplication rules for two copies (primed
and unprimed) of the same differential a.lgebra Usmg the Yang»B&xter
equation i

RER= R'RE (R = Ry).

one can show that these rules really define associative algebras with unique-
ly ordered monomials of generators. In other words, all the presented
examples of the braiding transformation ¥ are proved to be consistent.

5. In this paper, we have investigated several examples of the GL,N)-

* covariant algebras which are known to be the braided Hopf algebras. We

have shown that the GL4(N)-covariant differential complexes on these al-
gebras admit the braided differential Hopf algebra structure and the corre-
sponding coproduct is defined by the formulas (1) proposed by Brzezinsk
{2] for the unbraided case. Moreover, it is not hard to demonstrate that
all differential complexes investigated in this paper are bicovariant with

respect to the left and right braided inner coactions Ay and Ag. All these
observations lead us to the conjecture that the following variant of the

Brzezinski theorem [2] is valid for the case of braided Hopf algebras: (for
the notation see [2]):

Theorem. Let (T, d) be-a braided bicovariant differential calculus
over a braided Hopf algebra B:: Then (I'*, d) is a differential (exterior) -
braided Hopf algebra of B. Converse statement is also correct.

We intend to return-to the detailed consideration of this theorem n
our next publication.
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