


1. INTRODUCTION -

It is known that at least an essential part of two-particle inclusive ra-
pidity correlations are pseudocorrelations due to wrong normalization of the
probability density functions and the multiplicity dependence of kinematic
spectra [1]. Having approximations of semi-inclusive (for fixed multiplicity)
oue-particle rapidity spectra of investigated particles and their multiplicity
distributions assuming the absence of any kind of correlations, one can obtain
-two- and many-particle rapidity spectra and look what part of the published
experimentally investigated inclusive correlations the pseudocorrelations make
up. One can also compare experimental multiplicity distributions in rapidity
intervals and intervals separated by empty gaps as well as forward-backward,
right-left correlations etc. with the calculatéd ones assuming the absence of”
semi-inclusive correlations. '

Of course, this method coincides (for good approximations) with the
commonly used procedure of studying the interference of identical particles
(e.g., [2]) when real events are compared with false ones consisting of random
combinations of the investigated particles taken from different events (but with
ezactly the sume multiplicity of these particles). By the way, no “extra” cor-
relations are usually observed in these precision measurements.

In comparison with all charged particles the investigation of negative
ones in pp interactions is essentially more pure relative to “dynamic” rapidity
correlations. The contribution of trivial correlations and background from:
-decays of resonances and long-lived particles; Dalitz pairs and y-conversions;
conservation laws of momentum (it can be compensated by neutral and posi-
tive particles as well) and charge (there is not only an even number of particles
in the event); primary particles (leading particles always have an opposite ra-
pidity sign in the c.m.s.) and their wrong mass identification (the ratio of 7+
mesons to protons is appr. 3:1 even at Fy = 400 GeV) is much smalier here.

The spectra of negative particles at their fixed number are presented
in some parts of papers [3-10] used here. The spectra of 7~ mesons {the
admixture of K~ mesons was statistically subtracted) for a fixed number of
negative particles are given in the other papers and the spectra of 7~ at a fixed
number of 7~ in the third ones. However, after normalization of the spectra
these data do not differ within the errors: the admixture of K~ is small, and
their spectra are similar to those of 7~ since they are also “truly produced”
particles. Therefore we are not going to dxstmgulsh between ncgatwe particles
and #~ here.



2. APPROXIMATION OF SEMI-_INCI;USIVE SPECTRA

Figure 1 presents the nomalized to unit.one-particle semi-inclusive rapid-

‘ity distributions of negative particles (7~ mesons) in pp interactions of various

energies il events with a fixed multiplicity of negative particles n [4,6,9]

BTN 1 do, f)n(bl') | f | : .
gy = — R = o papdy =1, o
ﬂn(y)_ P o | pn(y)ty =1 (Y

 The quantity p|(y)dy is the probability that one 77, randomly chosen
from an event, with n 7~ mcsons (e.g., by means of a random number choosing
the 7~ number), has rapidity y £ dy/2. _ _ _
" The distributions are surely widened with increasing primary energy
V5 (the mean encrgy of particles increases) and narrowed with increasing
multiplicity {the energy per one particle decreases). The distributions with
different /s and n but cqual width could be different in shape, but it is
found to be the same -— scaling of semi-inclusive spectra [11]. Therefore the
two-parametric sct of distributions for various /5 and n can be in principle

“described by the one-parametric function which parameter already depends

on energy and multiplicity. ‘ L
The spectra in Fig.1 are approximated by the function:
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which is two identical Gaussians with dispersions o? = Y shifted by £Y from
the caws. The values of the parameter ¥ and x? obtained by fitting these
12 spectra arc presented in the figure. For all 48 spectra at 10 energies [3-
10] £x%/Tn.d.f. = 654/547. ‘To caleulate x%, only the statistical errors of
experimental points were used. This ratio equals 486/463 without 12 GeV/e
points having very small statistical errors (175000 events, Fig.1).

The paramcters Y obtained at fitting the spectra are shown in Fig.2 on
the left versus In{y/s/\/n). As seen, the groups of points corresponding to
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different nultiplicities lie on one line for all energies, e. the shape of rapidity
‘spectrum depends only on the ratio /s/\/n [11]. This experimental result was.

found to be intermediate between two extreme possible ones:
a) the multiplicity of 7~ is proportional to the inelasticity coefficient {or

T (EEr'/ v5), then ¥ wonld depénd only on /s, i.e. the spectrung would be -

independent of multiplicity; 7 : K - o
b} the multiplicity does not depend on the inelasticity coeflicient, then
Y would be dependent only on /s/n.
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The curve in the figure is

Y=1-1"7 1034, where 1=In(V5/VR). (3)

Figures 3 and 4 depict the spectra for other energies (3,4.8.9] in logarithmic
scale. The curves are obtained by forinulae (2) and (3). .

On the right-hand side of Fig.2 one can see that the mean encrgy and
mean transverse momentnm of 77 mesons [3,6.8,1'0,12.13] also clepenci only
on the ratio s/i. This allows us to assume that the total double-differential
one-particle spectrum of 7~ in semi-inclusive pp interactions also depends only
on s/n. Such a behaviour of the spectra already gives some evidence for 1101;-
correlated, statistical character of 7~ production for these cnergies,

3. APPROXIMATIONS OF MULTIPLICITY DISTRIBUTIONS

The mmltiplicity distributions of negative particles in pp interactions (P,)
from threshold enerpy (P, ~1.2 Gc\-"_/ o) and at least up ro ISR clrergies (20(;()
GeV/c) obey KNO scaling [14], more exactly its acenrate realization [15.16].
which, in contradiction to original asymptotic formulae 114], agrees with the
condition 307 P, =1
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() is an energy-independent universal funetion normalized by the conditions

arising from (4):
[ev) [
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As a universal function ¥, we used [15,16]
() = als + 0.1d)ewp {(=b(z + OiH)z) . {6)

where a and & obtained from normalization conditions (5) are equal to 1.25]
aud 1.618, respectively. ' ' ‘ B

. The dependence on the primary cuergy of the paracter <> whicl
15 a scale (linear) cliaracteristic of the quantity of prodoced 77, from the
threshold of 7~ production and at least to 400 GeV/e is well déseribed Dy the
one-paratnctric function [16) ' ' ' .

<m>= 0.81(/s — 28,1 /51 (
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where Af, (proton mass) and /s are expressed in GeV. In the Fermi ther-
modynamw model the multiplicity of 7 mesons in pp interactious at 10+ 1[]()(]
GeV/c should be proportional to this expression [17].

The negative binomial distribution
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with parameters #t and k presented by the anthors was also used to.describe

‘the experimental data including only a “non-single-diffractive” (NSD) sub-

cusemble of events.
4. INDEPENDENT PARTICLES PRODUCTION

The pmbabzlat y density that one 7, 1andomly chosen hom an event with

n 7 mesons, has rapidity y, is equal to-
1 do,
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The probability rlenszty that 2 random #~, successively chosen from an
event with r 7~ ‘esons {n > 2}, have respectively y1 and y; (the second 7~
is chosen from the n — 1 remaining ones) equals [1]:

/ polyn, ye)dydy, = 1. (10)

H.lz2

() =

1 do,

'
W) = ;
pn(yl’ JZ) n(n — 1)0“" d?}'ldy?’:

‘The probobility density that ¢ random 7~ mesons, successively chosen from

an event with » 7~ (n > i}, have respectively 1, y2. ..y {each following 7~
meson is chosen from the lesser number of remaining ones) is written as

(n —i)! dia,

: Ny, gy dindys . dyi=1.
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If the pairs of T~ mesons are uncorvelated, i.e. if the spectrum pr(y2)
of other m— in the sub-ensemble of events, where theve is o m— with y1, s the
satne as in the total ensemble, then the compound probability density is equal
to the product of elementary ones (e.g., [18]):

plyy2) = dy0eu(ye). (12)

The many-particle probability is factorized in the same way: if all 7 are
produced independently, the compound probability is equal to the product of

Pulyisye .y =

y

elementary ones:

) = Py ) - pnwi)- (13)
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The corrclation function is the distinction of the compound probability
from the product of elementary ones. The two-particle correlation function is:

C = Py v2) — Pulyn) o (12); / Crdyidys = 0 (14)
n,yz2 .
or R;: = p;z(yl: yZ)/p:L(yI)p;L(yﬂ) -1 . (15)

(try to use the most couventional designations). If 7~ mesons are independent,
the correlation function equals zero for all ¥y, ys.
It can be avcraged over n (P, is the probability of an cvent with n 7 )

S,B_ancn zp(pn(yl,yz) P () p,;(ﬁ)) (16)

It can be also averaged with a weight, e.g. n{n — 1)/ <n(n — 1) >, ie.
proportionally to statistics (the number of 7~ paits) at a given n. By the way,
in this case the lower limit of summation is automatically set to be 2.

Multiplicity n in these formulae concerns just the particles which corre-
lations are being investigated. If an ensemble of events is selected from the
total one according to some criteria (the presence of a strange particle, lack of
diffraction) or the phase volume for v~ is somehow limited, then all quantities:
. oy ony oL (), Py, ya) concern just this ensemble or volume.

These formulae correspond to the procedure of studying corrclations
when the two-particle spectrum is compared with that of pairs of particles
where cach particle is randomly chosen from different events (but with the
same multiplicity of these particles).

5. TWO-PARTICLE CORRELATIONS

Other correlation functions are often used. _
1. The semi-inclusive correlation function constructed from the one- and
two-particle multiplicity densities in events with multiplicity » reads

fpu(yi)dyl = (17)
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PV Y2 = s =n(n—)p.(y1,52); [ palyi.y2)dy,dys = n(n — 1),
Y142
Cr = paly1,12) — pal)pnlye) ; f Codyidyy = —n. . (18)
Y



Under no conditions the function ), can be equal to 0 at all g and y since
its integral is not 0. The first and second terms in (18) are normalized to a
different number of 7~ pairs. The product of one-particle distributions in this
correlation function is the “model” of two-particle distributién with “cut off”
correlations, but this model does not take into account that in a real event
the second particle is chosen  already from n — 1 particle and not from n as
the first one. Of course, when particles of different types are plotted on the y,

“and y axes, such misunderstanding does not arise (e.g., we do not change the

multiplicity of negative particles taking a positive particle out of tlie event).
The function €, averaged over 7t is '

oo co

Csh EZ Pncn :ZHIDH ((n hans 1)/):-1(1]11 y?) - np:;(yl)p!n(yz))i
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/Cshdmdy‘z =—<n> (19)
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(making summation, from n = 2 the integral is equal to P — <n>).

2. The inclusive correlation function constructed from the multiplicity
densities averaged over all events is:
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If the events with n = 1 are not used, the first integral in (20} equals <n> ~ P
and the integral in (21) <i(n — 1)> —(<n> —1)%

The two-particle distribution and the product of onc-particle ones have
different normalizations here too. However, at uncorrelated particle pro-
duction and the n independence of o, (y} and pl{y1,y9) the function ¢ (in
contrast to ) might be equal to 0 for the multiplicity distribution with
<nln — 1) >=<n>? {eg., Poisson). In this case the excess of 7~ pairs in
the product of one-particle spectra (as compared to two-particle ones with
the same multiplicity) is precisely “compensated” by another incorrectness

6

/ Cdiydys =<n(n — 1)> — <n>? . (21)

different averaging of these spectra over the ensemble of events {see also sect.
8). The two-particle spectrum C contains a greater “percent” of events witl
l'c.lrger mudtiplicity. The weight of events with multiplicity » in it is propor-
tional to n(n ~ 1)/ <n{n = 1)> and n*/ <n>? in the product of one-particle
spectra. For example, the first one does not contain events with »n = 1 at all.

3. The function constructed from the normalized (on the average) mul-

tiplicity densities
.
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ccould be cqual to 0 for all 4 and yy in the case of uncorrelated particle pro-

duction if the probability density tunctions did not. depend on wmaltiphicity
For the spectra depending on » this function despite its normalization {on tl.n:
;,wm‘agg) confains the same combinatorial psendocorrelation as € |
Figure 5 presents these functions (more exactly, their sections at g1 =0}
for 259 GeV/e [19). The € and ¢ data are obtained from o ilift‘l'él.(:f.itlllh.
the points €, and %, from 7t p and Ky, bhut, Judging from the data of [19]
they should be sitnilar to pp. The curves in lje fignres are obtained e1.~,cmuui;1".'
tl‘m absence of correlations (12) by approximations (2). (3) for p () and (4;.
(6), (7} for P,. To obtain these correlation functions, the ('\'t'nts.\\'it.h 1 =~
were also used in [19]. So, when sununing np. beginuing with # = 1 we oo
the following for the curves from (12) and (1G). {19)-(23): )
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Ca = — P11 (0)p) (32)- _ : , (27)

The first term in Cy, (16) at n =110 (19] 1s assumed to be equal to
0. The pqeudocorrelatlon (cmrve) for €7, is obtained only due to the second
term at n = 1 which is compensated by nothm[? For positive particles it is
out because their multiplicity in pp, K*pand ntp 1_nte -actions is always 1a1gc1
‘than 1. A significant difference of the curve from the experimental points in
Fig.5 is observed ouly for C7,. Perhaps, this is a true correlation {e.g., 7~
interference) although it is not seewn for positive particles either.

The pseudocorrelation in Cyy, 1s obtained because of different normal-
ization of the one- and two-particle spectra: the first term in {19) is always
smaller than the sccond one. :

The pseudocorrelation in C" is due to different averaging of these spectra
over the ensemble of events: in the first term of €7 (23) the weight of events
with larger multiplicity (x n(n — 1)/ <n{n — 1) >) is bigger than in the
second one (x n?/ <n>*%). The width of the rapidity spectrum decreases with
increasing multiplicity, so the first term in C" is a narrower and higher function
than the second one, and their difference is seen in the figure.

The function C combines both previous psewdocorrelations.

The corrclation function R at 3 =0 (the function- ‘C normalized to one-
particle densities) for chffuent primary energies is presented in Fig.6 [3,20 27]

dla/dyldy‘l : Zn 1 n(n - 1) Hp (Jh UQ)
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Of course, the pseudocorrelations in 1T are the same as in C. The curves arc
also obtained assuming the independence of produced =~ (12): '

E?:% ’Il(‘ﬁ, 7 I)Rlp;x(())pil(yi) ~1. . (29)
D PP {0) 2o nPupl, (y2)
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6. MULTIPLICITY DISTRIBUTIONS IN RAPIDITY
INTERVALS

The probability that one 7~ randomly chosen from an event with N 7~
falls within a given interval y is equal to (sec (9)):
Ymaz
p= / P(y)dy
Ymin

(p depends on N). If ali 7~ are independent {13), the probability for cach
next 7~ chosen from the same event to fall within this interval is the same.

(30)
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Tl-len the probability that exactly n 7~ from the event with N 7~ fall within
this interval is [18]: |
N ; N!
RH': N T on N
= () ra-pt = R
(binomial distribution). The probability that exactly n 7~ from a random
event fall within this interval (a.veraging over N). is

b= ZPNPHIN - ZPNn.(N pr(1=p)¥ (32)

where Py is the pwbablhty that the total multlphmty of 77 in an event is V.
o Figure 7 presents the comparison of the multiplicity distributions of 7~
inside different rapidity intervals from papers [28,29] with the points calculated
by this formula (the points are connected by straight lines). The experimental
data arc taken from w*p interactions, but, according to the author’s sta.teﬁ
ments, they coincide with pp in these rapidity intervals.. Only “non-single-
diffractive” {(NSD) events selected from the total ensemble according to some
criteria decreasing the number of events with small multiplicity were used m
these papers. The results of fitting the total multiplicity distribution of 7 by
negative binomial distribution (8) are only presentéd there, This distribution
was used to obtain Py in (32) with the parameters i = 3.47 and 1/k =0.013
presented in [29]. It was also assumed that the spectrum of 7~ in the ev;:nts

~with multiplicity 1 and 2 (after excluding a part of them according to the NSD

criteria) continued to be deseribed by approxiniation (2), (3).

. Figure 8 depicts the means and dispersions of the multiplicity distribu-
tions of 7™ in pp interactions at 200 and 250 GeV /c [29,30] inside the given ra-
pidity intervals, nonsymmetrical and symmetrical, relative to the c.ms. Only
NSD events were also used here, and the results arc only given as the fit palu-
rameters of the distributions by the negative binomial one. The péints in Fig.8
arc obtained from these parameters by the formulae which are valid if fhe dat.a
are precisely described by this distribution [29,30]:

<n>= an" =n; D=+v<n?> - <n>?= /i +n2/k {33)

. The curves in Fig.8 can be obtained directly from (32), but the calcu-
lations can be somewhat reduced. The mean and the mean square of the 7~
multiplicity distribution within a given rapidity iuterval for the events with N
77, l.e. the mean and the mean square of the binomial distribution (31), are
equal to [18]: ,

<n>y= ZnPﬂw = Np; <n2>NE Zn2Pn|N =Np(l-p+ NP)- ' (34)
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These quantitics can be averaged over N in view of their linearity relative to

Pn”v:

<n>= Z npP, = Z "Z PNP,,|N = ZPN Z nPy v = Z Py <n>p:
<n >~.Zn2P ZZH PNR,W—ZPN <n?Sy . ‘ 7 (35)

(D is obtained from these equalities according to (33)).

7. MULTIPLICITY DISTRIBUTION IN THE INTERVAL
SEPARATED BY EMPTY GAPS

Figure 9 presents the characteristics of the multiplicity distributions for
7tp — N7~ 250 GeV/c in the rapidity interval |y| < y¢ in the sub-ensemble of
events where none of 7~ falls within the adjacent rapidity intervals yo < |y| <
ye [31]. Here the points are also calculated from the fit parameters according
to (33). They are also rather well described by the curves, i.c. independent
7~ emission; true, the calculation was made usmg the same approximations
for pp — N7~.

The probability that one 7~ randomly chosen from an event with N 7~
falls within the interval |y| < ¥ (or yo < |y| < ym) is:

¥ ) _ e ' ) '
pe =2 / py(wdy;  pp=2 / pn(y)dy. (36)
D . Yoo - . .

If all 7~ are independent, the probability of an event with N -#~ none of which
falls within the forbidden intervals is équal to PN(l - pF}N Wh(,u Py is the
total probability of the event with NV 7.

Let us consider only that the sub-ensemble of events where none of 7~
falls within the interval yo < |y| < ¥&. Thc total multiplicity distribution of
7~ mesous, IV, in this sub-ensemble is:

Pu(l —pp)¥ : '
P" = =1 Pr’ = 1‘ : 37
YN Pe( - pe)V ZN: G

The probability to fall within the gentral interval for each of #7 from an event:

with N 7~ entering into our sub-ensemble equals -
p=vc/(l—pp) - (38)

(p depends on N). The mean and the mean square of the number of 77 in
the central interval for events with N w7 entering into our sub-ensemble are

10

calculated in the same way as in (34) (hinomial distribution). Averaging them
over NV as in {35), we get

<n>= Z PyNp;,  <ni>= Z PuNp(l —-p+ Np). {39)
N N

8. FORWARD-BACKWARD AND RIGHT-LEFT
CORRELATIONS

Except “true” corrclations and the multiplicity dependence of the spec-
tra, the dependence of the mean nmltiplicity of 7~ mesons, <1(r) >, in a
rapidity interval I (left) on multiplicity » in a non-overlapping with it interval

R (right} is determined by two other trivial reasons. Selecting events witl large

r, we select events with large total nmltiplicity &, and so we increase <l (rim.
On the other hand, selecting large » at fixed N, we decrease </{(+)>. So at
a very narrow multiplicity distribution this “correlation” is negative and at a
very wide oune it is positive, [n the case of the multiplicity distribution with
DY =< N> (e.g., Poisson), these contrary tendencies are preciselv compen-
sated as well as for the correlation function C' which is just the characteristic
of multiplicity correlations and not probability correlations.
Figure 10 gives the parameters ¢ and b of a lincar approximation

<{r)z=oa+br {40)

versus interval limits for pp NSD interactions at 250 GeV/e [32]. The left-
hand side of the figure is for cqnal and svimmetrical {relative to the can.s
intervals {forward-backward correlation, ny = {; np = ) limited from ahbove:

0 <yl < Your and from helow: ., < |ly| < oo as a function of y,,,. The

right-hand side is for the case when the left nterval is 15y - 1 < 4 < gy and the

right one is 4y < y < yo + 1 versus yy (vight-left corrclation, 2, =1: n w =
If these correlations are precisely deseribed by a linear fit (40). then the
parameters are équal to [32]:
<> — <I><r>

b= - =<l b <r )
! <r?> — < @ =<> ~b <r> (11

since (I3 is the probability that exactly » o falls into )
<I>= Zp <I(ry>

<lr>= z r P <d(r)>= Z rP{a by = a <o b <ris (43)

. B

- Z Platbr)=a+b<r> | (42}



The numerator of the correlation parameter & in {41) is the integral {from the
corrclation function C over ¥ and y in rectangle L x R. :

The probability that one 7~ randomly chosen from the event with NV 7~
falls within the interval R (L) is '

P = /pf-v(y)d:u; pL =]ﬂ’,v{y)rly _ (44)
[ _ .

(these probabilities depend on N). If 77 mesons are not correlated, the prob-
ability that exactly r 7~ and exactly [ 7~ from an event with N 7~ fall in R
and L respectively is cqual to (trinomial distribution {18]):

N! , . .
Boaw = — wpﬂapl.r,(l —rr— pu)¥ (45)

N —
The mean values of the first and second moments of this distribution are
<r>y= Npg; <ri>y= Npp(l —pp + Npr); <rl>y= prpLN(N = 1).

They can be averaged over N as in (35) due to their linearity relative to Py
3 g Al

<r>= Z Py Nppy; <I>= Z Py Npyp;
N N

<r’>= 3" PyNpx(l — pr+ Npg); <ri>= N PuprpN(N = 1), (46)

N ) N
The curves corresponding to independent 7~ emission in Fig.10 are ob-
tained by formulae (41), (46}, i.c. assuming a precisc lincar dependence (40).

It is also assumed that Py is described by negative binomial distribution (8)

with the parameters obtained from a and b for unlimited symmetric intervals

0 < |yl < oo [32]:

i = 2af{1—b) =3.63  1/k=bja=0.011 (47)

The second equality is valid only in the case of lack of correlations.

For forward—hackward correlations for tnlimited intervals the formulae
are essentially simplified, the probabilities pg = py = 0.5 do not depend on
muitiplicity (need for spectra approximations disappears), and from (41}, (46)
it. follows [33]: _

@ =<N>E /(DM <N>); b= (D'~ <N>)/(D*+ <N>),  (48)
where < N> and D are the mean and the dispérsion of the total multiplicity
distribution. It has been shown [33] that these correlations for a variety of
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reactions agree with the assumption of independent particle production (see
also [34]).

It is clear that for independent m emission i pp interactions their
forward backward corrvelations for total intervals are the same as up-down
correlations (perpendicular to the reaction axis) or in any other direction in
the e.m.s. For all charged particles it is of course not so: both leading protons
can have a transverse momentim up, but they are both practically unable to
emit forward in the-c.in.s.

9. CONCLUSIONS

The main features of multiple 7~ production in pp interactions at Fig, at
least to 400 GeV are rather well described within the framework of indepen-
dent #~ emission without any additional assumptions of correlations, clusters,
clans, jets and so on. To describe the rapidity two- and many-particle cor-
relations considered here, it is enough to know the roultiplicity distributions
of negative particles (practically 7 mesons) and their one-particle spectra
for cach multiplicity. Numerous models, which describe badly correlations
{pscudocorrelations) in the cited papers, evidently describe merely badly even
multiplicity distributions and one-particle spectra.

Simplicity of the description obtained here is surely connected with pu-
rity of the used material: 7~ production in pp interactions. Of course, it is
impossible to describe the mixture of all charged particles so simply even if
due to a great number of trivial correlations enumerated in the introduction.

The researchers of correlations for some reason do not often use the
simple and reliable method allowing one to check whether a given correlation

“exists, i.e. whether two- or many-particle probability differs from the product

of one-particle ones. In other words, whether these correlations differ in a real
event and in a false one constructed from the investigated particles randomly
chosen from different events but with the same multiplicity of these particles.

Of course, corrclations which are due to processes with very small cross
sections, e.g. 7~ interference, are not seen within the errors against the back-
ground of the general picture considered here. But it is possible that an excess
of the positions of the points over the curve for most experiments in Fig.6 at
y2 = 0 and for €, in Fig.5 arises from this phenomenon. The origin of 7~
correlations versus the rapidity difference y; — y from papers [1] and [35] is
possibly due to it as well.
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