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.Symmetry, Wigner Functions and Partlcle Reactions

In this paper we consider the great principle of physics — symmetry — and
some ideas, connected with it, suggesied by a great physicist Eugene Wigner.
"We will discuss the concept of symmetry and spin, study the problem of
-separation of kinematics and dynamics in particle reactions. Using Wigner
rotation functions (reflecting symmetry properties) in helicity amplitude
decomposition and crossing-symmectry between helicity amplitudes (which
contains the same Wigner functions) we get convenient general formalism for
description of reactions between particles with any masses and spins. We also
consider somc applications of the formalism.
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I. SYMMETRY

In this report we consider a great principle of physics and some
ideas, connected with it, suggested by a great physicist. The great
principle is symmetry. The great physicist is Eugene Wigner.

We will discuss the concept of symmetry and spin, study the prob-
lem of separation of kinematics and dyna.mms in particle reactions.
Ublng Wigner rotation functions (reflecting symmetry propertles) m
helicity amplitude decomposmon and crossing-symmetry between
helicity amplitudes (which contains the same Wigner functions), we
get convenient and general formalism for description of reactions be-
tween particles with any masses and spins. We also con81der some
applications of the formalism.

In {1] Wigner says that there are three levels of Knowledge

1. Observation (Galilei);

2. Equa,tlon (Newton, Maxwell, Schroedmger, w)i

3. Symmetry (Elnsteln, Pomca.re, ...). The author of thls paper
would add: Wigner, ... a.ll modern particle physicists).

There is some hierarchy of knowledge, and on the highest level of
this hierarchy is symmetry. '

Symmetry means harmony, beauty, order Symmetry exp11c1tly
shows itself in architecture, for example, in Oxford, Salamanca, Goslar
—.the cities where some of the last conferences on symmetry were
held. .

In physics, symmetry has three levels: ,

1. Coordinate systems, frames (spherical system, inertial sys-
tems); : _

2. Variables. (For example, for binary processes we have two inde- -
pendent variables, energy and angle, or invariant variables — s and t);
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3. Functions. If we consider reactions with particles with spin

31+32 —-) 33+34, w f(l)‘

we have N-= (231 +1)(2s5+1)(283+1)(284+1) functions to describe
the process and we must choose the optlma.l set of these functlons

In partlcle physrcs E. W]gner consrdered three types of symmetry
1. Space—tlme symmetries; .
2. Intrinsic symmetries; -
" 3. ”Intermediate” symmetry: crossing.

The language of symmetry is mathematical theory of groups and
~ their representations. We have rotation, Lorentz and Poincare in-

variance and the corresponding groups with their representatlons
Poincare invariance has two Kasimir operators, two invariants. These

invariants are connected with two fundamental properties of elemen-

~tary particles: mass and-spin: Their existence is connected with
.. symmetry. Mass is both a classical and a quantum qua.ntlty, whereas
spin is a pure quantum ob ject. ' : o
Symmetry is connected with fundamental conservation rules —
conservation of energy, momentum and angular momentum (the lat-
ter-is the sum of spin and orbital momentum)."
'S0, in elementary particle physics we have the particle with mass
m, spin s, energy E, momentum p. It is often convenient to consider
. also helicity, the projection of spin in the direction of motion. -
- We have two types of symmetry: global and local (gauge). If we

_suggest symmetry (Lorentz) and the spin of the particle, we can write.

-a free particle Lagrangian — Ly. If we suggest the gauge symmetry for

a free particle Lagrangian, we get with necessity the particle ‘which
takes interactions (photon, gauge W and Z bosons, gluon) and even

- the interaction Lagrangian — Ljy;..
Generalization of the spin in the ”intrinsic” direction is isospin [2].
The isospin is connected with the group SU (2) Wigner [3] suggests

first generalization of SU(2), SU(4). The revolution in physics was
made by suggesting SU(3) and quarks [4], color [5], unified theory :
of electroweak interactions and quantum chromodynamics.

Due to the symmetry in particle physics (quantum field theory),
we have a Lagrangian of a definite form which depends on a small
number of masses and interaction constants. This is in sharp con--
trast with qua.ntum mechanics where interactions are considered as
arbitrary functions(potentials) for every pair of particles. The sym—
metry does not admit arbitrary functions. S

Today we have the following succession:

Symmetry — group — particle interaction.’

So SU ¢(3) symmetry and correspondlng group give us quantum chro-
modynamics; Symmetry and Group U(1) X SU(2) — electroweak in-
teractions; We have the standard 1X2X3 model and other unification
schemes. These unifications are realized at very high energies, which
were realized at the earliest stages of our Universe in Big Bang the—v
ory, s0.symmetry gives us the key to the Umverse o
“Symmetry between fermions and bosons creates supersymmetry, j
a theory which predicts new pa.rtlcles - supersymmetnc partners of

_old ones. These partlcles are: gravrtlno (with ; spln 3/ 2), photino and ;

so on.

‘So, symmetry glves us the charactenstlcs of partlcles (mass spln.t,
momentum and so on), the particles which carry interactions (gauge .
particles) and the interaction Lagranglan This in pr1nc1ple must be k
the full theory."

“But, in reality, there are some difﬁcu]ties, o

For example, QCD ‘is a good theory, describes'a lot of effects, -
but in QCD there exists a problem of conﬁnement QCD works on
the quark level, with the subprocesses ot in a full region of va.rl-'m
ables; ‘there is ”spin crisis”; perturbative QCD has difficulties in
explanation of polarization effects at hlgh-energy large fixed a.ngle )
proton-proton scattering. - '

Another excited theory, SUSY, has mathematlca,l problems wrth
dimensions, compactification and so on.



So today we have no full and final theory Thus there exists a
problem which has its own history: ‘problem of direct investigation
of processes with elementary particles, based on the general symme-
try principles and independent of the explicit form of Lagranglan -
spin kinematics (or amplitude kinematics): Another piece of theory

' that is also general and represents an alternative approach to'par-

ticle theory is the S-matrix approach with its ana.lytlca.l propertles,j

- singularities, dlspersmn relations, sum rules and so on. We will con-
sider these things, and the role of symmetry in particle physics, and

in particular, the role of ngner s d-functions in the deSCl']thOIl of

spin-particle reactions.

II SPIN, PARTICLE REACTIONS AND WIGNER
' FUNCTIONS :

. Most of the pa.rtxcles have a nonzero spm We : are gomg to conSIder

bma.ry reactions with particles of arbitrary spins. The spln-pa.rtlcle '

reactions are ‘convenient to describe in the helicity amphtude for-
malism [6]. Helicity amplitudes fA,,A,.Al,A,(s t) have clear physical

meamng, observables are expressed by them in a s1mple way. He-.

licity - amphtudes contain all the information about the cons1dered
process. But helicity amplitudes have kinematic smgularltles
_Scattering of spinless particles is described by one amplitude.

Cons1der1ng this amplitude as a functlon of invariant variables, we
have the’ functlon A(s,t). This amphtude has some singularities. .
They are called the dynamic smgularltles The analytlc _properties. -

of the amplitude are connected with causality and unitarity and this
'amphtude obeys dlspersmn relations. .

For spm—partlcles, the. process is descrlbed by several functlons,

| several he11c1ty amphtudes And they have additional, so-called kine-
matlc, smgulant]es Sa hehcrty amplitudes do not fulfill simple dis-
persmn relatlons It is necessary to find and separate kinematic
singularities. So, helicity amplitudes are expressed via a set of other
amplitudes without kinematic singularities. For a lowest spin it is
_convenient to introduce invariant amplitudes. :

4

Let us consider the simplest non-trivial reaction: - scattering,

elastic scattering of a spin-zero particle with the mass ¢ on the spin-.

1/2 particle of mass'm. Using the Dirac equation one can find the

following connection between the helicity and invariant- amphtudes/

(in standard desrgnatlon)

Fireo, AQ(S )= a(ps ){A(S t)+QB(S t)}'U»X"(zoz) @

Here A(s,t) and B(s t)a.re invariant amplitudes. Properly defined
invariant amplitudes have no kinematic smgular]tles

For the general case of scattermg of pa.rtlcles with splns s; we have

f’\3’\4”\1,/\2(s t) = Za)\a)\4,)\1,)\2(3 t)An(S t) ( )

n=1

Kinematic smgularltles of f,\a,\“ghh(s t) are contained in the coefﬁ-
cient functions a®(s,t)...

This procedure is nice for low. spins. It lS difficult to construct
such an expansion for high spins. For: ,a{ll 8 = 3/2,N = 256 and
for s; = 11/2, N ~ 20000. Besides, the main difficulty is in finding
such a decomposition in a way that coefficients of invariant ampli-
tudes do not contain *secret singularities” rather than in dimensions.
So, in describing the Compton effect for several years people used
a decomposition suggested in [7], but then.it appeared that those
invariant amplitudes had additional singularities, and later a more
complicated decomposition [8] was suggested.

Besides technical difficulties for spins more than 1, a nontrivial
question of uniqueness of such decomposition arises and since for
higher spins the invariant amplitude decomposition is not unique,
the ”secret” smgulantles, additional and noncontrollable kinematic
constraints appear. o -

There exists another way Wthh uses symmetry prmc1ples and is
connected with the use of representations of a rotation group —
Wigner’s d-functions. If we use d-functions in the s-channel; then



use d-functions in the ¢-channel and finally connect channels also by
d-functions, we can get a result much more convenient than (3).

- The helicity amplitudes in the center-of -mass system of s-channel
obey, the rotation symmetry (this symmetry is connected with the

conservation of angular momentum). Because of this symmetry it is

convenient to expand helicity amphtudes over the representatlon of

a rotation group, over ngner s functlons : ,
o f A3A4,A1,A2(s t) = 2(2«7 + 1)f A3A4,A1,A2(s)dAp(COS 8). o)

Here, we have lnﬁmte summatlon ngner s functlons have the form

dy,,(cos 8) = g(sin= Z)l«\-# J (cos g

where P{*(cosf) are Jacobi polynomials (see, for exa.mple,-;[S)]k).
M = mas(| A],| 1)) and N = min| A],| ] and

)|A+#|P|/\—#| |/\+#|(COS 9), (5)

o+ M)(J — M)
T+NIT-N)

b ~ The croSsing~'relati0ns‘ between the s- and ¢-channel hehcity am-
'plltudes look as follows [10]

’ fA3A4,A1,A2(s t) Z ad/\lpl (X])d,\2p,2(x2)

1243144 4
«\3#3 (Xs)d/\4#4 (X4)f Zam,m#z(s? t)' (6)

. The crossing relations also contain the Wigner fuhctions. “Here
“the summation is over helicity values and it is restricted. -

118 KINEMATICS AND DYNAMICS. SUGGESTED
FORMALISM

A lot of people worked in this direction by considering spin-kinematics
-and decomposition of helicity amplitudes in terms of other sets of am-

plitudes [11]. Combining some approaches and modifying others we
suggest a new variant of formalism which has all advantages of dif-
ferent approaches, differs from all of them, is based on the symmetry
and conservation laws, is general and simple. :
Symmetry imposes restrictions on, amplitudes. When one has ad-
ditional symmetries in definite dxrectlons, the number of 1ndependent
amplitudes in such symmetrlcal dlrectlons is reduced. Such situa-

-tions occur for forward and backward scattenng

Consider the reactlon in the s- channel described hy the he11c1ty

-amplitudes. Introduce the quantltles A= A=A and g = Az —.

A¢. Two particles in the center-of-mass system are moving in. the
opposite directions and thus A and p are pro jections of the total
spin in the directions of motlon pl‘]OI‘ to and after colllslon meg to
the conservation of the projection of the total angular momentum,

the. amphtudes in the forward dlrectlon, 0, — 0, should vamsh in
all cases except for A = p. Analogously, for backward scatterlng,
@, — m, the amplitudes should vanlsh for the sa.me reasons in a.ll_
cases except for A = —pu.

For forward scattering we have

florward Prsdndy, When A=p, 1)
Az e T 0, - when \ #yu,

whereas for backward scattering

fbackward _ fA$A4,A1,A2, when A =—[L, o (8)
)‘3)‘4))‘17 07 u)hen A # —u.

Two questions arise:



Can the helicity a.mplltudes be parametrized so as to satlsfy the
conditions (7 ) and (8) automatically?

Can kinematic singularities of helicity amplitudes be found and
separa.ted in a sunple wa.y?

The answer is ¥ Yes”.

Using (4), for the spinless case we get the decomposition via the

Legendre polynomlals depending on cos §. By definition in the spln-
less case we have no kinematic singularities.
In the nonzero spin case, helicity amplitudes are splitted into two

parts; one part is defined by the symmetry properties and enters -

into the functions d (cos @) that make the conservation laws of the

a.ngula.r momentum’ va.lld and the other part has a’ dyna.nuc nature

and enters into the partial helicity amplitudes S irna(8): ‘
In (4) all the t- dependence is contained in d-functions via cos ;.

- At the points cos 8, = :i:l the d-function has kinematic s1ngula.r1t1es

‘on the t-variable, whlch can be separated explicitly.

- These smgularltles do not depend on’J and we can separate the
common’ smgula.r factors. The rest sum Wlll contain decomposition
by polynomials on the t-variable. So we can define dispersion ampll-
tudes for any blna.ry processes:

| f:\93’\4:;\17’\2(87 t) = Al,\—#lBlA+p‘ f:\g3/\4,/\1,/\2(s7 t)? (9)

here

" )

L2 —q?

(ml‘f‘mz)(mé + m4)’

A=

L = {ls = (m1 + ma))[s — (my + mz)]
[8 - (m3 + m4)][s - (ms + m4)]}]/2

-5 ’“‘T‘"‘ S g

e

a?=2st+5*—s Z m? + (m? — m3)(m2 — mi).

The mass factors in the denominators make A and B dimension-
less without introducing additional singularities in the variable s . .
Under this parametrization, the conditions (7) and (8) are fulfilled
automatically. All kinematic smgularltles in variable ¢ are separa.ted
explicitly and o false’ singularities in s are introduced. The am-
plitudes f/\3 SR (s;t) suit well for studying the analytic properties
of the amplitudes at fixed s because they obey dispersion relations.
Therefore, we call them the dispersion amplitudes [12]. “They still
may have the kinematic singularities in the variable s. ,

Dispersion amplitudes remind reduced amplitudes [11}, but, _they
have no additional s- vana.ble false singularities.

For t-channel processes the correspondmg dJspersmn a.mphtudes
are free from klnematlc singularities in the variable s . 'Expressing
the dlspersmn amphtudes of the s-channel in terms of the dispersion
a.mplltudes on the:annihilation channel, we obtam the connectlon
between the a.mphtudes hav1ng kinematic smgulant]es in's w1th the
a.mphtudes which are free from them. So kinematic s1ngulant1es
of the s-channel helicity amplitudes are in crossing coefﬁaents in
crossing relatlons between s- and i-channel amplitudes. The number
of coefﬁc1ents is restricted and we do know the smgula.rltles of these
coefﬁc1ents indeed these coefﬁcxents a,re W]gner s functlons, and we
do know their singularities! )

- So, us1ng crossing symmetry we can find kinematic smgula,rltles of
the s-channel dispersion amplitudes also in the variable s, sepa.rat-
ing these smgula.ntles we determine a new set of functlons describ-
ing ‘binary processes — dynamic amphtudes Dyna.mlc a.mphtudes
for elastic processes have the following relatlons Wlth the hehc1ty
amplltudes [13]: :



IR vc;r%wIVﬂﬁgded
Darrg(s:t) = ( ) (‘—)

m+ g (m + p)?
AR G
(m) o Dwwan(st). (10

- Dynamic amplitudes are in fact modified regularized helicity am-
plitudes, they differ from the reduced amplitudes by dimensions: all
dynamic amplitudes have the same dimensions, whereas the dimen-
sions of regularized amplitudes depend on spins and helicities. . .

IV. APPLICATIONS
The dynamic amplitude formalism is interesting for studying gen-
eral characteristics of partlcle reaction theory and it also suits for
explorlng concrete processes. This approach prov:des an analys:s
where klnematlcs is fully taken into account and is clearly separated
from dyna.m1cs The observable quantltles are slmply expressed v1a

; the he11c1ty a.mplltudes
 As we have a.lready mentioned, the hellclty amphtudes have a

clear phySJcal meamng, and physmal observables (polarlzatlon cross '

sectlons asymmetrles, etc ) are 81mply expressed via them As for

elastic processes, the connection between the hellclty and dynamlc'

amplitudes is one-to-one, every helicity a.mplltude for elastic scat-
tering is expressed in terms of one dynamic amplitude. Hence, it
follows that all attractlve features of the helicity amplitudes — a
clear phys1cal meanlng, s1mple relatlons with observables ‘and equal
~ dimensions — are also inherent i in the dynamic amphtndes The for—
mahsm of dynaImc amplitudes is simple for low spins- and remams
such also for hlgher spins: the formalism is simple for any spins.-

The differential cross section for elastic scattering, when one mea-.

sures the helicity of each particle, is expressed via helicity, invariant
and dynamic amplitudes in the following form:

10

| dt (A3’\47 A1A2) ~ f,\a,\4,,\1A2(8 t) |2

'—I Z“A3A4,A1Az(5 t)An(S t) |’=
:W—I (ﬁ) A—ul (\/m) —p\+pl

m+p \(m + p)?
L\ ~2erts2) B T
(m) T L N

The first relation in outward appearance is simplest, but helicity

- amplitudes contain kinematic singularities and the conservation laws

are not fulfilled automatically, so kinematics and dynamics are not
separated. Here we have one term. In the second equation there
is a sum of all invariant amplitudes. Here we have N terms. For
the spins equal to 3/2 there are 256, and for the spins equal to 11 /2

-more than 20 000 terms ~In each term we have kinematic-dynamic

separatlon but there are so many such terms. In the parametrlzatlon
via dynam1c a.mphtudes we have no summatlon' ‘The dlfferentlal
Cross section’i is expressed only via one dynarmc amplitude w1th the
k]nematlc factors which contam all kmematlc smgular]tles We have
only one term. : ‘

Other quantltles such as P Ann, Al A,, in terms of the;hel‘itcit.y"
amplltudes have the form [14] '

Ecmnfmfn
Sl al

Here m and n represent sets of hehclty mdxces Conp = il The sum
is taken for all values of helicities. Obviously, the expressions will: be
most: convement in terms of dynamic amphtudes : :

To compare the usefulness of different sets of amplitudes we sug-:

- gest the following table:

11



Amplitudes Helicity Invariant | Dynamic
c)bsé}vsbleg 4 R F
Phys. meénir}g e N
Sa.me dimens. | + _ -4

’ ‘Kinem. si:ngvul. — | + +

In'the hne ”Observables the 31gn » 4" means s1mphc1ty; n> denotes

comp]ex1ty In the next line nyn stands for existence of clear phys- )

ical meaning, whereas "—" means its’ absence Amphtudes with’ the
same dimensions are slgned by " +”. When we have no kinematic sm—
gularltles the table shows ”+", and that sign in the ]ast line means
automatlc fulﬁ]lment of consequences from a.ngu]ar momentum con-
servatlon

In the framework of the general spin formalism based on the sym-
metry propertles (”dynamlc amplitude” approach) obligatory kine-
matic factors arise in the expressmns ‘of observables. These spin
structures for high energies give a small parameter that orders the
contributions of he11c1ty amplitudes to observables. Such a "kine-
matic hlerarchy ‘predicts for pp elastic scatterlng at high energres

and a large fixed angle (90°) a 31mple connection between asymmetry,

parameters and: even numerical values for them [15]. ,
The spin kinematics allows one to obtain the low-energy theorems
for photon-hadron processes [16] and gravitino scattering on spin-0

12

target. For the latter process at low energies the helicity, a.mphtudes =

up to O(Es) are determined by thelr t-channel Born terms with the

photon exchange [17]. . : aF

The dynamrc amplitudes, or more s1mply the t-channel dlspersmn
amplltudes can be used to prove model-independent dispersion i in-
equalities for the Compton effect on the pion and nucleon target A
1nc]ud1ng the case of the polarized photon scattering [18].

" Here, we have mentioned other possible applications of dyna.m1c
arnphtudes These are the dlspersmn relations for individual helicity -
a.mphtudes for any elastic scattering and sum rules (espec1a.l]y dua.l
sum ru]es) also for any. elastlc scattering.
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