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1IaBneii:wBHJIH M.Il. E2-94-22 
CttMMeTpHSI, cpyHKlJ.HH Bumepa H peaKU,HH 1-i:aCTHU. 

B pa6oTe paccMaTpHBaeTCSI Ba)l<HeHWHH npHHll,Hil q>H3HKH - CHMMeTpHSI 

- H HeKOTOphle H)].eH, CBSI3aHHhle C HHM, Bhl)].BHHYThle Bhl)].aIOW:HMCSI q>H3HKOM 
l0)1.)KHHOM BumepoM. Mhl o6cy~aeM IlOHSITHSI CHMMeTpHH H CilHHa, u3yqaeM 
3a)].aqy pa3)].eJieHHSI KHHeMaTHKH H )].HHaMHKH B 6HHapHhIX npou,eccax. 11cnOJih-
3YSI BHrHepOBCKHe cpyHKll,HH (OTpa)KaIOw;He CBOHCTBa CHMMeTpHH) npH pa3JIO
)KeHHH cnupaJihHhIX aMilJIHTYJJ. H KpOCCHHr-CHMMeTpHIO Me)KJJ.Y cnupaJihHhIMH 
aMilJIHTYJ:laMH (coi:1ep)Kaw:y10 Te )Ke BHrHepoBCKHe cpyHKll,HH)' nonyqaeM YJJ.06-
HhIH o6w:uu cpopMaJIH3M )].JISI OilHCaHHSI peaKU,HH C yqacTHeM qacTHll, C npOH3-
BOJlhHhIMH MaccaMH H CilHHaMH. PaccMaTpHaaIOTCSI TaK)Ke HeKOTOphle npHJio-
)KeHHSI npe,':IJIO)KeHHOro cpopMaJIH3Ma. ,, 

Pa6orn BhrnOJIHeHa B Jla6opaTopHH TeopeTHqecKoii: cpH3HKH HM. H.H.Boro
mo6oBa 0115111. 
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Chavleishvili M.P . E2-94-22 
. Symmetry, Wigner Functions and Particle Reactions 

In this paper we consider the great principle of physics - symmetry- and 
some ideas, connected with it, suggested by a great physicist Eugene Wigner. 
We will discuss the concept of symmetry and spin, study the problem of 
separation of kinematics and dynamics in particle reactions. Using Wigner 
rotation functions (reflecting symmetry properties) in helicity amplitude 
decomposition and crossing-symmetry between helicity amplitudes (which 
contains the same Wigner functions) we get convenient general formalism for 
description of reactions between particles with any masses and spins. We also 
consider some applications of the formalism. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 
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I. SYMMETRY 

In this report we consider a great principle of physics and · some 
ideas, connected with it, suggested by a great physicist. The great 
principle is symmetry. The great physicist is Eugene Wigner. 

We will discuss the concept of symmetry aIJ.d spin, study the prob
lem of separation of kinematics and dynamics in particle reactions. 
Using Wigner rotation functions (reflecting symmetry properties) in 
helicity amplitude decomposition and crossing-symmetry between 
helici_ty amplitudes (which contains the same Wigner functions), we 
get convenient and general formalism for description of reactions be
tween particles with any masses and spins. We also consider some 
applications of the formalism. 

In [1) Wigner says that there are three levels of Knowledge: 
L Observation (Galilei); · 

2. Equation (Newton, Maxwell, Schroedinger, ... ); . 

3. Symmetry (Einstein, Poincare, ... ). The author of this paper 
would add: Wigner, ... all modern particle physicists). 

There is some hierarchy of knowledge, and on the highest level of 
this hier3:tchy is symmetry. 

Symmetry means harmony, beauty, order. Symmetry. explicitly 
shows itself in architecture, for example, in Oxford, Salamanca, Goslar 
- . the cities where some of the last conferences on symmetry were 
held. 

In physics, symmetry has three levels: 
1. Coordinate systems, frames (spherical system, inertial sys

tems); 

2. Variables. (For example, for binary processes we have two inde
pendent variables, energy and angle, or invariant variables-sand t); 



3. Functions. If we consider reactions with particles with spin 
., 

S1 + S2 ~ S3 + 84, (1) 

we haveN-= (2s1 +1)(2s2 +1)(2s3 +1)(2s4+ 1) functions tCl describe 
the process~ and we must choose the optimal set of these functions. 

In particle physicsKWigner considered three types of symmetry: 
1. Space-time symmetries; 

· 2. Intrinsic symmetries; 

3. "Intermediate" symmetry: crossing. 

The language of symmetry is mathemati~al theory of groups and 
their representations. We have rotation, Lorentz and Poincare in
variance and the corresponding groups with their representations. 
Poincare invariance has two Kasimir operators, two invariants. These 
invariants are connected with two fundamental properties of elemen
tary particles: mass and spin: Their existence is connected with 

. symmetry. Mass is both a classical and a quantum quantity, whereas 
spin is a pure quantum object. 

Symmetry is connected with fundamental conservation rules -
conservation of energy, momentum and angular momentum ( the lat
ter is the sum of spin and orbital momentum). 

· So, in elementary particle physics we have the particle with mass 
m, spins, energy E, momentum p. It is often convenient to consider 

, also helicity, the projection of spin in the direction of motion. 
We have two types of symmetry: global and local (gauge). If we 

. suggest symmetry (Lorentz) and the spin of the particl~, we can write_ 
a free particle Lagrangian - L0• If we suggest the gauge symmetry for 
a free particle Lagrangian, we get with necessity the particle which 
takes interactions (photon, gauge Wand Z bosons, gluon) and even 
the interaction Lagrangian - L1nt:. 

Generalization of the spin in the "intrinsic" direction is isospin [2) . 
The isospin is connected with the group SU(2). Wigner [3] suggests 

. · .... _,•,_ . -

.2 f·f .rt·.,, 

.~it::-:< •,::J 

first generalization of SU(2), SU(4). The revolution in physics was 
made by suggesting SU(3) and quarks [4], color [5], unified theory· 
of electroweak interactions and quantum chromodynamics. 

Due to the srmmetry in particle physics (quantum field theory), 
we have a Lagrangian of a definite form which depends on a small 
number of masses' and interaction. constants. This is in sharp con
trast with quantum mechanics where interactions are considered as 
arbitrary functions(potentials) for every pair of particles. The sym-
metry does not admit arbitrary functions. · 

Today we have the following succession: 

Symmetry --+ group ..:..+ particle interaction.· 

So SUc(3) symmetry and corresponding group give us quantum chro
modynamics; Symmetry and Group U(l)X SU(2) - electroweak in'
teractions; We have the standard 1X2X3 model and other unification 
schemes. These u11ifications are realized at very high energies, which 
were realized at the earliest stages of our Universe in Big Bang the-
ory, so symmetry gives us the key to the Universe: . 

Symmetry between fermions and bosons creates supersymrrietry, 
a theory which predicts new particles - supersymmetric partners of 
old ones. These particles are:gravitino (with spin.3/2), photino and 
so on . 

So, symmetry gives us the characteristics of particles (mass, spin 
momentum and so on), the particles which carry interactions (gauge 
particles) and the interaction Lagrangian. This in' principle must be 
the full theory. · 

But, in reality, there are some difficulties. 
For example, QCD is a go~d theory, describes a lot of effects, 

but in QCD there exists a problem of confinement; QC:Q works on 
the quark level, with the subprocesses, not _in a full region of vari~ 
ables;· there is "spin crisis"; perturbative QCD has difficulties in 
explanation of polarization effects at high-energy large fixed angl~ 
proton-proton scattering. 

Another excited theory, SUSY, has mathematical problems with 
dimensions, compactification and so on. · 
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So today we have no full and final theory. Thus there exists a 
problem which has its own history: problem.of direct' investigation 
of processes with elementary particles, based on the general symme
try principles and independent of the explicit form of Lagrangian -
spin kinematics (or amplitude kinematics); Another piece of theory 
that is also general and represents an alternative approach to: pa/
tide theory is the S-matrix approach with its analytical properties, 
singularities, dispersion relations, sum rules and so on. We will con
sider these things, and the role of symmetry in particle physics, and 
in particular, the role of Wigner's d-functions in the description of 
spin-particle reactions. 

II. SPIN, PARTICLE REACTIONS AND WIGNER 
. FUNCTIONS 

Most of the parti~les have a nonzero ·spin. We are ~oing to c~nsider 
binary_ reactions with particle~ of arbitrary spins: The spin-particle 
reactions are convenient to describe in the. helicity amplitude, for
malism [6]. HeHcity amplitude~ h.3 ,>.t;>.

11
>.2 ( s, t) have clear physical 

meaning, observables are expressed by them in a simple way. He
licity amplitudes contain all the information about the considered 
process. But helicity amplitudes have kinematic singularities. 

Scattering of spinless particles is described by one amplitude. 
C~risidering this· amplitude as· a function of invariant variables,. we 
have the function A( s, t). This amplitude has some singularities.:. 
They are called 'the dynamic singularities. The analytjc properties •· 
of the amplitude are connected with causality and unitarity and this 
amplitude. obeys. dispers~on relations . 

For. spin-particles, th~ process is described by several functions, . · 
se~e~al helicity amplitudes. 'And they have additional, so-called kine
ni~tic, ,singul~ties. So belicity amplitudes do, not fulfill simple dis
persion. relatiops. It is necE!ssary to find and separate kinematic 
singularities. So, helicity amplitudes are expressed via a set of other 
amplitudes without kinematic singularities. For a lowest spin it is 
convenient to introduce invariant amplitudes. 
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Let us consider the si~plest non-,trivial reaction: 1r-N scattering, 

elastic scattering of a spin-zero particle with the mass µ on the spin- . 

1/2 particle of mass m. Using the Dirac equation one can find the 

following connection between the helicity and invariant amplitudes 

(in standard designation): 

s ->.4· . " . A2 
fo,A4;o,A2(s, t) = u (p4){A(s, t) + QB(s, t)}u (p2). , (2) 

' ' 

Here A(s,t) and B(s,t)are invariant amplitudes. Properly defined 
invariant amplitudes have no kinematic singularities. · 

For the general case of scattering of particles with spins Si we have 

N 

/A3A4,A1)/s, t) = L a~3A4,A1,A/s, t)An(s, tt (3) 
n=l 

Kinematic singularities of1>.a>.,,>.11>.2 (s,t) are contained in the coeffi-: , 
dent functions an(s, t). 

This procedure is nice for low. spins. It is difficult to construct 
such an expansion for high spins; For all Si = 3/2, N = 256 and 
for Si = 11 /2, N ~ 20000. Besides, the main difficulty is in finding 
such a decomposition in a way that coefficients of invariant ampli
tudes do not contain "secret singularities" rather than in dimensions. 
So, in describing the Compton: effect for several ,years people· used 
a decomposition suggested in [7), but then. it appeared that thos~ 
invariant amplitudes had additional singularities, and later a more 
complicated decomposition [8) was suggested. ·· 

Besides technical difficulties for spins more than 1, a nontrivial. 
question of uniqueness of such decomposition a.rises and since for 
higher spins the invariant amplitude decomposition is not unique, 
the "secret" singularities, additional and noncontrollable kinematic 
constraints appear. . 

There exists another way which uses symmetry principles and is 
connected with the use of representations of a rotation group -
Wigner's d-functions. If we use d-functions in the s-channel; then 
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use d-:functions in the t-channel and finally connect channels also by 
d-fvnctions, we can get a result much more convenient than (3). 

· The helicity amplitudes in the center-of -mass system of s-channel 

obey,the rotation symmetry (this symmetry is connected .with the 

conservation of angular momentum). Because of this symmetry it is 

convenient to expand helicity amplitudes over the representation of 
' ' . ,,• 

a rotation group, over'Wigner's f~nctions: 

/{3>.4,>.1,>.)s, t) · L(2J + l)f{>.4,>..i,~/s)d{µ.(cos0). (4) 
J 

Here, we have infinite summation. Wigner's functions have the form 

d{µ(cos 0)'= g(sin ;)l>.-µI (cos;) l>.+µlpJ~.:...;l,l>.+µl(cosB), (5) 

where P{:1n( cos 8) are Jacobi polynomials (see, for example, [9]). 

M =max(!>. I, I µ I), and N =min(!,\ I, Iµ I) and 

g.= 
(J + M)!(J - M)! 
(J + N)!(J - N)! . 

. The crossing, relations between. the s- and t-channel helicity am

plitudes look as follows [10]: 

/>.3>. 4,>.1,>.is, t) = L ad~~µ1 (x1)d~~µ 2(x2) 
µ1µ2µ3µ4 

. d~~µ3(Xa)d~:µ 4 (x4)f!3µ4 ,µ1µ/s, t). (6) 

The crossing relations also contain the Wigner functions. ,Here 
the summation is over helicity values and it is restricted. 
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III. KINEMATICS AND DYNAMICS. SUGGESTED 
FORMALISM 

A lot of people worked in this direction by considering spin-kinematics 
and decomposition of helicity amplitudes in terms of other sets of am
plitudes [11]. Combining some approaches and modifying others we 
suggest a new variant of formalism which has all advantages of dif
ferent approaches, differs from all of them, is based on the symmetry 
and conservation laws, is general.and simple. . . . . 

Symmetry imposes restrictions on amplitudes. When one has ad
ditional symmetries in definite directi~~s, the number of independent 

. . ' ' . 

amplitudes in such "symmetrical directions" is reduced. Such situa-
. tions occur for forward ahdbackward scattering. 

Consider the reaction in the s-channel described by. the. helicity . . . ' 

amplitudes. Introduce the quantities ,\ = >.1 - ,\2 and µ = ,\3 -

,\4 • Two particles in the center.,-of-mass system are moving in the 
opposite directions and thus ,\ and µ are J?rojections of the total 
spin in the directions .of motion prior to and after colli~ion. O"Ying to 
the conservation of the projection of the total angular momentum, 
the amplitudes in the forward directi~n, 08 --:+ O, should. vanish in 
ali cases except for_,\ = µ. Analogously, for backward scattering, 
811 -..:+ 1r, the amplitudes should vanish for the same reasons inall 

. . ' " 

cases ex~ept for ,\ = -µ. 

For forward scattering we have 

! forward _ {. f>.3>.4,>.1,>.2, 
>.3>.4,>.1 .>.2 - 0 

' 
whereas for backward scattering 

! backward { 
>.3>.4,,~ 1,>.2 = 

Two questions arise: 

/>.3>.4,>.1,>.2, 
0, 
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when .,\ - µ, 
when .,\ -f:., µ, 

when A=.-µ; 
when A I--µ. 

(7) 

(8) 



Can the helicity ~plitudes be parametrized so as to satisfy the 
conditions (7) and (8) automatically? 

Can kinematic singularities of helicity amplitudes be found and 
separated in a simple way? 

The answer is "Yes". 

Using ( 4), for the spinless case we get the decomposition via the 
Legendre polynomials, depending on cos 0. By definition in the spin
less case we have no kinematic singularities. 

In the nonzero spin case, helicity amplitudes are splitted into two 
parts; one part is defined by the symmetry properties and enters 
into the functions diµ( C?S 0) that make the conservation laws of the 
angular momentum valid, and the other part has a· dynamic nature 
and enters into the partial helicity amplitudes ff>. >. >. (s). 

:, , , . , 3 t, t, l 

In ( 4) all the t-dependence is contained in d-functions via cos 0,. 
At· the _points cos 0, = ±1 the d-function has kinematic singularities 
on the t-variable, which 'can be separated explicitly. . 

These singul~rities do not depend on: J and· we can separate the 
commollsingular factors. The rest sum will contain decomposition 
by polynomials on the t-variable:· so we can define dispersion ampli
tudes for any binary processes: 

f 's . ( t) - Al-'-µIBl-'+µlf- 9 ( t) 
,\3-\4,-\1,-\2 s, - . >.3>.4,-\1,-'2 s, ' (9) 

here 

VL2 - a2 ✓L2 + a2 
A= (m1:+m2)(ma + m4)' B = (m1 + m2)(ma + m4)' 

L2 = {[s - (m1 + m2)][s - (m1 + m2)] 
[s - (ma+ m4)][s - (ma+ m4)]}1l2, 
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I~ 

'.! 
! ' 

I i)'l 
\ ;-. 
f, 
I : 

· 2 2 t 2 " 2 ( 2 2)( 2 2) a = s + s - s ~ mk + m 1 - m2 ma - m4 . 

'; 

The mass factors in the denominators make A and B dimension
less without introducing additional singularities in the variable s • 

Under this parametrization, the conditions (7) and (8) are fulfilled 
automatically. All kinematic singularities in variable t are separated 
explicitly and no false ·singularities in- s are introduced. The am
plitudes R >. >. >. (s~ t) suit well for studying the analytic properties 

A3 ¾t 1, ~ 

of the amplitudes at-fixed s because they obey dispersion relations. 
Therefore, we call them the dispersion amplitudes [12]. They still 
may have the kinematic singularities in the variable s. 

Dispersion amplitudes·remind reduced amplitudes [11], but, they 
have no additional s-variable false singularities. 

For t-channel processes the corresponding dispersion amplitudes 
are free from kineinat~c singularities in the variable s . Expressing 
the dispersion amplitudes of the s-channel in terms of the dispersion 
amplitudes on . the annihilation channel, we obtain the corinectiori 
betw~en the an:{pUtudes hctving kinematic singularities in. s with·the 
amplitudes which are free from them. So kinematic sin,gularities 
of the s-channel helicity amplitudes are in crossing coefficients in 
q:ossing relations between s- and t-channel amplitudes. The number 
of coefficients is restricted and we do know the singularities of these 

" , " .' ~ ' . I : 

coefficients; indeed these coefficients are Wigner's functions/and we 
do know their s_ingularities! ·: . . . 

So, using crossing symmetry ·we can find kinematic singularities of 
the s-channel dispersion amplitudes also in .the variable s, separat-

. . . 
ing these singularities we determine a new set of functions describ-
ing binary pr~cesses - ·dynamic amplitudes. Dynamic a:mplittides 
for elastic processes have the following relations with. the helicity 
amplitudes (13]: · · · · · 
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• 
f>-.a>-.4,:,..

1
,:,..a(s, t) = ( A )-l>-.-µI (VL2 + st)-1:,..+µI 

m+µ (m+µ)2 

( 
L )' - 2(s1 +s2) : 

(m + µ)2 ·. D,\3,\4 1,\1,,\is, t). (10) 

Dynamic amplitudes are in fact modified regularized helicity am
plitudes,- they differ from the reduced amplitudes by dimensions: all 
dynamic amplitudes have the same dimensions, whereas the dimen
sions ofregularized amplitudes depend on spins and helicities .. 

IV. APPLICATIONS 

. The dynamic amplitude formalism is interesting for studying gen-. . ' 

eral characteristics of particle reaction theory and it also suits for 
exploring coo'crete processes. This approach provides an analysis 
where kinematics is fully taken into account and is clearly separated 
from dynamic~'. The .observable q~antities are simply ~xpressed. via 
the helicity amplitudes. . 

As we· have already mentioned, the helicity amplitudes have a 
clear physical meaning, and· physical observabies (polarization cross 
sections,. a_,symmetries, etc.) are simply expressed via them. As.for 
elastic. processes, the connection between the helicity and dynamic 
amplitudes is one-to-one, every helicity amplitude for elastic scat:.. 
tering is expressed in terms. of one dynamic amplitude. Hence, it 
_follows th~t all attractive features of the helicity amplitudes - a 
clE}ar physical meaning, simple relations with observables·, and equal 
dimensions ---;- are also inherent in the dynamic amplitudes. The for
m~isiri of dynamic amplitudes is simple for low spins and remains 
such also for higher spins: the formalism is simple for any spins.·· 

The differential cross section for elastic scattering, when one mea
sures the helicity of each particle, is expressed via helicity, invariant 
and dynamic amplitudes in the following form: 
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da . 
: dt (A3A4, A1A2) rvj f:,..3>-.4,>.1>./s, t) 12=. 

:N 

=1 ·L a~3>.4,>. 1,\/s, t)An(s, t) 12= 
1 

=I ( ~ )-1>.-µI (. ·..j £2 + st)-1>.+µI 
m+µ . (m+µ)2 

( 
· L )-2(s1+s2) 

(m + µ)2 · , D;,..3>.4,>.1>.i8 , t) 1
2 

• (11) 

The first' relation in outward appearance is simplest, but helicity 
amplitudes contain kinematic singularities and the conservation laws 
are not fulfilled automatically, so kinematics and dynamics are not 
separated. Here we have one term. In the second equation there 
is a sum of all invariant amplitudes. Here we have N terms. For 
the spins equal to 3/2 ther.e are 256, and for the spins equal to 11/2 
more than.20 000 terms. In each.term we have kinematic-dynamic 
separation, but there ares~ many such terms. fa the parametrizati~n 
viadynamic · am~litudes ~e have no summation! _The 'differential 
cross section is ~x:'pressed ~nly via o~e dynamic amplitude with the 
kinematic factors which contain all kinematic singularitie's. We have 
onlr :one term. . . ' . 

Other quantities such as P, Ann, Au, Au in terms of the helicity 

amplitudes have the form [14] 

I:Crnnfmf~ ,-..;.=;;;;; ___ _;.,;,, 

I: I fml 2 • 

Here m and n represent sets of helicity indices,• Cmn = ±1. The sum . ' 

is taken for all values of helicities. Obviously, the expressions will· be 
most,convenient in terms of dynamic amplitudes .. 

To compare the usefulness cif different sets of amplitudes we sug
gest the following table: 
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'1 

. 

Amplitudes Helicity Invariant Dynamic 

Observables + - + 

Phys. meaning + - + 

Same dimens. + - ·+ 

Kinem. singul. - + + 

,, 
-- , . 

Conserv; laws - - + 

In the line "0 bservables" the sign "+" means simplicity, "~" denotes 
complexity. In the n~xt line "+"stands for existence of clear phy~~ 
ical meaning, whereas,,_,, means its ab~ence. A~plituges with the 
same dimensions are signed by "+". When we have i{,o kinematic si_n~ 
gularities the table shows "+", and that sign in· the lruit,line means 
automatic fulfillment of consequences from angular momentum con-
servation. . ' 

In the framework of the general spin formalism based on the sym
metry properties ("dynamic amplitude" approach) obligatory kine
matic factors arise in the expressions of observables. .. These spin 
structures for high energies give a small parameter that orders the 
contributions of helicity amplitudes to observables. Such a "kine
matic hierarchy ,, predicts for pp elastic scattering at high energies 
and a large fixed angle (90°) a simple connection between asymmetry_ 
parameters and even numerical values' for them [15]. 

The spin kinematics allows one to obtain the low-energy theorems 
for photon-hadron processes [16] and gravitino scattering on spin-0 
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target. For the latter process at low energies the helicity amplitudes. 
up to O(E3

) are determined by_ their t-channel Born te~s with the 
photon exchange [17]. _ . _ 

The dynamic amplitudes, or more simply the t-channel dispersion 
a~plitudes, can be used to prove mo'del-indepe:a,dent dispersion in
equalities for the Compton effect, on the, pion and. nucleon target, 
including the case of the polarized photon scattering [18]. _ 

· Here, we have mentioned other possible applications of dynamic 
amplitudes .. These are the dispersion relations for individual helicity 
amplitudes for any ela.sticscattering and sum rules.(especially dual 
su~,rul~s) also for _any_ elastic scattering. · 

REFERENCES 

1. E.f. Wigner. Symmetries and Reflections, Indiana University 
Press, Bloomington-London, 1970. 
2. W.Heisenberg, Z. Physik. 77 (1932) 1. 
3. E.P.Wigner, Phys. Rev., 51 (1964) 105. 
4. M.Gell-Mann; Phys. Rev., 125 (1962) 1067; 

Y.Neeman, Nuclear Phys.,-26 (1961) 222. 
5.N .N .Bogoliubov, B.V .Struminsky, A.N .Tavkhelidze, JINR Preprint 
D-1968, Dubna, 1965; · · 

M.Y.Han, Y.Nambu, Phys. Rev. 139 (1965) 1006; 
H.Fritzsch, M.Gell-Mann, In: Proceedings of the XVI Interna

tional Conference on High Energy Physics, vol.2,' p.135. Chicago, 
1972. 
6. M.Jacob, G.C.Wick, Ann. 'of Physics, 7 (1959)' 404. 
7. A.C.Hern·, E.~ader, Phys .. Rev., 126 (1962) 789 .. 
8. W.A.Bardeeri, Wu-Ki Tung; Phys. R~v., 173 (1968) 1423. 

.. 9. b.A.Waishalovi~h et al., Quantum Theory of Angular Momen
tum, Nauka Publisher, Leningrad, 1975. 
10.Ya.A.Smorodinsky, JINR Preprint E-1221, Dubna, 1963; 

T.L.Truman, G.C.Wick, Ann .. of Phy~ics, 26 (1964) 322; . ' 

Y.Hara, Phys. Rev., 136B (1964) 507. 
11.H.Joos, Fortsh. Physik, 10 (1962) 65; 

13 



D.N.Williams, Preprint. UCRL-11113, Berkeley, California, 1963; 
M.Gell-Mannet al. Phys. Rev., 133B (1964) 145; 

L.L.Wang, Phys. Rev., 142 (1966) 1187; 
G.Cohen-Tanrioudji, A.Morel, H.Nvelet, Ann. of Physics, 46 (1968) 

239; 
J.P.Ader, M.Capdeville, H.Navelet, Nuovo Cimento, 56A (1968) 

315; 
T.L.Trum.an, Phys. Rev. 173 (1968) 1684 and so on. 

12.M.P.Chavleishvili, Polarizat'ion Dynamics in Nuclear and Particle 
Physics, Proceedings of the International Symposium, ':f.rieste, 1992; 

M.P.Chavleishvili, Ludwig-Maximilian University Preprint LMU-
02-93, Miinchen, 1993. 
13.M.P.Chavleishvili, Ludwig-Maximilian University Preprint LMU-
03-93, Miinchen, 1993; 

M.P.Chavleishvili, Soviet Journal of Nuclear Physics, 40 (1984) 
243; 

M.P.Chavleishvili 1 Soviet Journal of Nuclear Physics, 41 (1985) 
1055. 
14.C.Bourrely, E.Leader, J.Soffer, Phys. Reports, 59 (1980) 96. 
15.M.P.Chavleishvili, High Energy Spin Physics , Proceedings of the 
8th International Symposium, Minneapolis, 1988. Ed.K.J .Heller. 

. . . 

New York, 1989, vol 1, p.123; 
M.P.Chavleishvili, Ludwig-Maximilian University Preprint LMU-

05-93, Miinchen, 19_93. 
16.R.M.Muradyan, M.P.Chavleishvili, Soviet Journal of Theor. and 
Math. Physics, 8 (1971) 16; 

M.P.Chavleishvili,.JINR Preprin.t P2-88-179, Dubna, 1988. . . . 
17.M.P.Chavleishvili, JINR Preprint E2~87-69, Dubna, 1987; 

M.P.Chavleishvili, High Energy Spin Physics., Proceedings of the 
9th Internati~nal Sympo_sitim, Bonn, 1990. Eds. K.-H.Althoff, W.Meyer. 
Springer-Verlag, Berlin, 1991, vol 1, p.489. 
18.M.P.Chavleishvili, Soviet Journal of Nuclear Physics, 37 (1982) . . 

680· ' . 
M.P.Chavleishvili, Soviet Journal of Nuclear _Physics, 43 (1986) 

385. 
Received by Publishing Department 

on January 26, 1994. · 

14 


