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1. INTRODUCTION 

The work deals with the derivation of first order (with res

pect to a corresponding parameter) equations satisfied by the 

introduced in [1] relative mechanical quantities in spaces (mani

folds) whose tangent bundle is endowed with a transport along 

paths, which in the present paper is supposed to be linear [2]. 

These equations, in fact, were found in [3] in a component form, 

i.e., in a fixed loc·al (and coordinate) basis. Besides, in [3] 

implicitly were used linear transports along paths without self

intersections. The present investigation closely follows the ideas 

of [3], but to make a difference of it, here are used a coordinate 

independent language (where it is possible) and linear transports 

along arbitrary paths. 

As the mentioned equations have a form and physical interpre

tation similar to that of the equation of geodesic deviation (of 

first order for the infinitesimal deviation vector) [4,5], they are 

called deviation equations (for the corresponding quantities). 

Section 2 contains certain approximate results concerning 

linear transports along paths in vector bundles. In sections 3 

through 7 the first order deviation equations are derived for, res

pectively, the deviation vector, relative velocity, relative momen

tum, relative acceleration and the relative energy of two arbitrary 

moving point particles. Also connections between these quanti ties 

are found. 

Below, for reference purposes, some definitions and construc

tions are presented. 

All considerations in the present work, with an exception of a 



part of Sect. 2, are made in a (real) differentiable manifold M 

(6,7] whose tangent bundle (T(M),n,M) is endowed with a 1 inear 

transport ( L-transport) along paths [ 2] and a covariant differen-

tiation (linear connection) V [ 6, 7]. Here T(M):= v T (H), 
xEK x 

T (M) 
• 

being the tangent to M space at xeM and ll: T( M) ------+H is such that 

n(V) :=x for VeT (H). 
• 

By J and ;r: J ------+H we denote, respectively, an arbitrary real 

interval and a path in H. If ;r is of class C1 
,. its tangent vector 

is written as r. 
The linear transport (L-transport) along paths in (T(H), n, H) 

(cf. [2]) is a map L:7~L7 , L7 : (s t) ,_____,L7 
' s~t' 

s, teJ being the 

L-transport along r, where L 7 : T (H) ------+T (H) , s ----+t ;r(s) 1(ll 

equalities 

L1 oL7 =L7 , r,s,teJ, t ----+r s ---+t s ---+r 

L 7 =id , seJ, s --?s T { K) 
T(s) 

satisfy the 

( 1. 1) 

( 1. 2) 

L 7 (AU+J.LV)=AL1 U+JJL7 V, s, tEJ, U, VET (M). s ~t s ---+t s ~t 7(s) ( 1. 3) 

Here idx is the identity map of the set X. 

If X, Y, and Z are vector fields on M (7], then the tensors 

(operators) of torsion T and curvature R of the covariant differen-

tiation V, respectively, are [7] 

T(X,Y):=VxY-V,X-[X,Y], ( 1. 4) 

R(X,Y)Z:=VXVYZ-VYVXZ-VIX,Ylz, ( 1. 5) 

where [X,Y] is the commutator of X andY. 

The covariant differentiation (derivative) along the C
1 path 

7:J~M, i.e. 1 V., 
7 

will be denoted by D/ds r I 

7 

D/ds if there is no risk of misunderstanding. 

2 

seJ, or simply by· 

Let there be given paths x~:J~H. a=1,2 and a one-parameter 

family of paths {;r,.:J' ------+M, seJ} such that 7 (r'):=x (s) 
• I 

and 

;r (r") :=x (s) for some r' ,r"eJ'. The tangent vectors to the paths . ' 
or,.=r~;r,.(r) and ;r (r):s~;r,.(r), seJ, reJ' are denoted, respec-

tively by r and 1 1 (r). . . 
The differentiation D/dslx will for, brevity, be written as 

I 

D/ds. 

The deviation vector of x2 with respect to x
1 

at x
1 
(s) (cf. 

[8], eq. (2.5)) is 

h2t=h2117 <r'l=h(s;xt) 
• 

" ' 7 

I (L • ,;. (u))du. 
u ----+.- s ( 1. 6) 

Let the paths x
1 

and x2 be world lines of the point particles, 

respectively, 1 and 2. Their velocities (4], the relative velocity 

(of 2 with respect to 1; cf. [ 1]}, and the corresponding to them 

accelerations, respectively, 

V =x , 
I I 

w 
" 

V 2 =x2' 

7, 
L II ,v - v. 

r ---+r 2 1 

D 
A =dj V, a=1,2, a S x

1 
a 

7 
M, L:, ,A - A . 

r ----4r 2 1 

are: 

The momenta of the considered particles are (4,1] 

P,.=JJ.,v.,, a=1,2, 

( 1. 7a) 

( 1. 7b) 

( 1. Sa) 

( 1. Sb) 

where Jl :J------i!R\{0}, a=1,2 are (nonvanishing) scalar functions • 
(ictentif_ied with the corresponding proper masses if the latter are 

nonzero; cf. [ 4]). 

The relative momentum of the second particle with respect to 

the first one is (cf. [1], sect. 3) 
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l!.p21 
•. 

Lr 11 ~r,p2 - pl. ( 1. 9) 

2. SOME APPROXIMATE RESULTS FOR 

LINEAR TRANSPORTS ALONG PATHS 

In this section, approximate results concerning linear trans-

ports (L-transports) along paths in vector bundles will be obtai-

ned. They will be used later on in the present work. For details of 

the theory of L-transports the reader is referred to [2], only a 

few facts of which will be cited below. 

Let L7 be an L...:.transport along the path r: J ~8 in the vector 

bundle (E, n, B) (see [ 2] ; cf. Sect. 1) and {e
1
(s): i= 

=1, ... ,dim(R- 1 (x}), xeB} be a bases in n- 1 (7(s)), seJ. Let in the 

basis {e
1
(r)}, r=s, t the trans port L7 along . __,, r from s to t, 

s,teJ be described by the matrices H(t,s;r):=~H 1 
(t,s:r>ll· So (cf. . J 

[2], sect. 2, eq. (2.10)) if u =u1 e (s)en- 1 (r(s)), seJ, where here 
• • I 

and hereafter the Latin indices run from 1 to dim(rr- 1(x)), xeB and 

summation from 1 to dim(rr"" 1 (x)), xeB over repeated on different le-

vels indices is assumed. Then 

L7 u =H 1 (t,s;r)uJe (t). s--·hs .J sl (2.1) 

If r and H are cH•t functions, N being an integer, then due to 

H(s,s;r)=B, with I the unit matrix, (see [2], eq. (2.12)), the 

expansions: 

1 
I I 1 1 

H(t,s;r)=D+ L m! H
1 

•• 1 (s;7)(r 1(t)-r 
1
(s))···(r 

111
(t)-7 

111
(s))+ •= 1 1 Ill 

• 

+O((t-s)N+t), (2.2a) 

4 

• 
H(t,s;r)=D+ ~ ~ ~H(s;r)(t-s) 111+0((t-s)". 1 ) 1.. m. 

m=l 

are valid, where 

H (s;r):= a"H(t,s;r) I 
I 1 • • 1111 I I ' ar "'(t) .. . a7 t(t) t=s 

"H(s:r): _a"H(t, s:r) -

1 

. 
at Ill l=s 

(2.2b) 

(2.3a) 

(2.3b) 

The matrices (2.3b) can easily be expressed through the 

matrices (2.3a), e.g. we have: 

' ·I H(s;r)=H
1 
(s;r)r (s), (2.4a) 

. ' 2 H(s; r)=H
1 

/ s; r) 71·(s) 7J (s)+H
1 
(s; 7)dr d~ s). (2.4b) 

If in (2.1) we substitute H(t,s;7) with its N-th approximation 

with respect tot-s, which due to (2.2) is 

• I I I I 
(NJH(t,s;r)=ll+ L !1 H

1 
.. I (s;r)(r '(t)-r '(s)) · · ·(r "(t)-r "(s))= 

Ill= 1 1 Dl 

• 
=D+ \ .!.,- "H(s;r)(t-s)", (2.5) 1.. m. 

...... t 

where the second equality is with a precision of O((t-s)N+t), we 

get a map DnLr :n- 1(r(s)) ---+rr- 1(7{t)) defined in {e} by •--->< I 

(HILl u :=(HJHI (t,S;J)Uje (s). 
s---H• .J s\ 

(2.6) 

Evidently, (NJLr is the N-th approximation to L7 (in {e }), 
I 

i.e., they coincide up to terms of (N+1)-th order with respect to 

the difference t-s . 

Further in this paper we shall work only with the zero-th (N=O) 

and first (N=1) approximations to L7 , which according to (2.5) are 

described by 
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coJH(t,S;7)=D, (2.7a) 

(l)H(t,S;7)=D+H1(S;7)(71(t)-J 1(s))= 

1 . ' =D+ H(S;7)(t-s)=D+H
1
(s;T)7 (s)(t-s). (2.7b) 

(The second and third equalities in (2.7b) are up to O((t-s) 2 ).) 

Let us note that the zero-th approximation (2.7a) is constant 

and, hence, it depends neither on s, t and r. nor on the used L-

transport. 

From here on in this work we will consider only the case of the 

tangent bundle to a differentiable manifold M, i.e. it is supposed 

that (E,•,a)=(T(M),•,M). 

It is important to be emphasized that in the case 

(E,ll,B)=(T(H),ll,M) the components of the involved in (2.7b) mat-

rices (-H,(s;,)), i.e. ' ' . (-H,,(s;,)]=-[aH,(t,s;,)/a> (t)JI, ••• are 

coefficients of an affine connection along .,., i.e. under a change 

of the basis e
1 
(s) they transform like usual coef·ficients of an 

affine connection [ 10]. This proposition is a simple· corollary of 

(2.3a) for m=1 and the circumstance that H1 (s;7) in this case are 
. J 

components of a two-point tensor from TTftl®T;tsl (see [2]. sect. 

2). We shall note here, without a proof, that the so arising con

nection with the coefficients [-H
1 (s;or)) along T is flat, i.e., 
. J. 

its curvature tensor is zero. 

If in the tangent bundle (T{M),1r,M) an affine connection with 

the coefficients {f
1 

{x)} {see e.g. [7]) is given, then it is easy 
.Jk 

to calculate that for the parallel transport defined by the connec-

tion 

H~,,(s;,; 11>=-r',.(T(S)) ( 2. B). 

is valid, where an additional argument ~ indicates that the calcu-

6 

lations are made for the pointed parallel transport. According to 

the above said, this equality means that connection along any path 

T induced by the parallel transport coincides with the restriction 

of the affine connection on the path r generating this transport. 

Let there be given paths xa:J~M, a=1,2 and a one-parameter 

family of paths {r.:J' ~M. seJ} such that 7 (r'):=x (s) . ' and 

7 (r"):=x (s) for some r',r"eJ'. 
• 2 

Let in M be given an affine connection V with local coeffi-

cients r 1 
[7], B be a C

1 vector field on {r (r): reJ', seJ} and 
, j k II 

' tr.B :=L! ,B -B eT (H). 
21 I" ----tr X (9) X (9) X (9) 

2 1 1 

( 2. 9) 

Applying to the first term of this definition (2.1) and (2.2b) 

for N=1 and taking into account (2.4a), x (s)=> (r') 
1 • 

and 

x
2
(s)=7

5
(r"). we find after some simple calculations 

•a =(TJ"I a) cr"-r') 
21 ldr 1 7 (r'l • • 

+ O((r"-r') 2 )=m_l a) tr"-r') + 
Lar7 7tr'J • • 

+ S{B,t21) J1 tr' I + O((r"-r' )2)' 
• 

(2.10) 

where D/dr I : =V is the covariant derivative along T : J' ---+H ' . . . ' . 
o" /dr 1 : =V I 

T,. 1 r 1 =-H 1 
" • J k . J k 

is the covariant deriva-generated by V, 

tive along 1,. generated by the connection with local coefficients 

-H
1 and S is a tensor field of the type (1,2) whose components in .,. 

any local basis are 

s' 1 , ,:=-H
1 

(r;or )-f 1 (or (r)). reJ", seJ, 
.JkT

5
r .jk 9 .Jk 11 

(2.11) 

. • , I ' , 1.e. (S(B,t >I .,) =S , ,,a .,{ 1 .,. Here, as in (2.10), 
21 OJ'(r .Jk Tr 71 (r 21 'J(r . . 

t I , =(r"-r');i- (r') 
21 7 ( r ) 11 

(2.12) 

• 
is the infinitesimal deviation vector at 'l.(r') (cf. [8], eq. 
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(2.10)) which due to (2.7b) (see also [B), eq. (2.9)) is connected 

with the deviation vector ( 1. 6) of x2 with respect to x
1 

through 

the equality 

h =<: +O((r"-r') 2
}. 21 21 (2.13) 

In this equality, as well as till the end of this work, we will 

work only with a precision of terms up to O((r"-r') 2). 

3, EQUATION FOR THE DEVIATION VECTOR 

In fact, the equation, mentioned in the title of this section, 

has been derived in [B), example 3.2 and it is expressed by equa

tion (3.27} of [8) which, in our case equivalently, can be written 

as 

• D C DT ~R(V ,C )V + T(V ,DC /ds) + -d (V ,C ) + T(F ,C ) + ds2 1 21 1 1 21 s 1 21 a 21 

DF (r) 

1 

2 + --·-- ,(r"-r') + O((r"-r') ), dr r=.- ( 3. 1) 

where V is the velocity of the first particle, the force field F I • 

is defined by 

Fll(r):=V7,7'1r <rl=<~sl7 (rlr')., (.-J . . . 
and all quantities are taken at the point rs(r'). 

(3.2) 

We want to emphasize two features of equation (3.1}. Firstly, 

it is independent of the concrete choice of the used transport 

along paths L, and also (up to terms O((T"-r')
2
))} of the family 

h·,.}. And secondly, the derivation of this equation in [3] shows 

that in it the correction O((r"-r') 2) is strictly equal to zero. 

Eq. (3.1) is a generalization, in the case of arbitrary paths 

8 

I 
I 

h 
I 

,) 

in spaces with torsion, of the classical equation of geodesic 

deviation [4,5]. 

4. EQUATION FOR THE RELATIVE VELOCITY 

If along x1 and x2 particles 1 and 2 are moving, respectively, 

then their velocities are given by (1.7a). Fist of all we want to 

find the connection between their relative velocity (1.7b) and the 

first order deviation velocity 0("21 /ds which due to (2.13) is con

nected with the deviation velocity Dh21 /ds through the equality 

Dh21 /ds=DC2/ds+O( ( r"-r') 2). (4.1) 

Taking into account x (s)=7 (r') and x (s)=7 (r"), we find 1 a 2 1 

1 1 
8 2

7
1·(r) 

and V (s)-V (s)= 
8

'
8 I ,x(r"-r')+ 2 1 r s .-=r 

I 
{~ 1 ( s )=x~( s) -x~ ( s)+b( ( r"-r') 

2
) 

+D((r"-r') 2). Differentiating covariantly the former of these equa-

tions with respect to s along x
1 

and using the latter one, we get 

DC 
~ffi_~ •')I ,(r"-r')+T(V C ll +O((r"-r'l"). ds lds 7 11 r=r 1' 21 x 1 • J 

• I 

(4. 2) 

On the other hand. from (2.10) for B
7 

lrl=7:(r), (2.9), and 
• 

(1.7) we see that 

li.V2t=fflrl7 -r:) l.-=.-'(r~~-r')+S(Vt,{21) lx (sl+O((r"-r')2), 
• I 

(4.3) 

comparing this eq~~lity with (4.2), we find the following relation 

between the relative velocity li.V21 and the first order deviation 

velocity 0{21 /ds: 

DC 
d:1-li.V 21 +(T{ v1 •. ,.21) -S(Vl, {21)) I x1 I •l +0( ( r"-r'} 2). (4. 4) 

From here we can make the conclusion that up to second order 

terms the deviation velocity describes the "general relative velo-

9 



city" of particle 2 with respect to particle 1. It is caused .by the 

(nongravitational) interaction between the particles and all pro

perties of the manifold M (curvature, torsion, transport along 

paths). The relative velocity (1.7b) is caused by the (nongravita

tional) interaction of the particles and the transport along paths 

used. 

Substituting (4.4} into the left-hand side of (3.1) and perfor

ming some evident transformations, we get the deviation equation 

for the relative velocLty .O.V21 in the form 

DOV OF (r) 

d 
21_R(V .~ )V +Dd [S(V .~ )]+-d"r I ~<r~~-r')+O((ru-rl)2), S 1 21 1 S 1 21 r=r 

(<.5) 

where all quantities are evaluated at x1(s). 

This equation describes up to second order terms the change of 

the relative velocity of the second particle with respect to the 

first one along the world line of the latter. 

5, EQUATION FOR THE RELATIVE MOMENTUM 

In our case (see Sect. 1) due to [1]1 eq. (3.6), the relative 

momentum of the particles .O.p21 defined by (1.9), is 

.o.p2t =l-l2( s) tN 21 +[ J.12( s) /1-lt ( s) - 1 ]pt' ( 5. 1) 

which may be obtained also as an approximate result from (2. 9) 1 

(4.3) and (2.10) forB =JJ(s,rh'(r) with J.l being ad function r ( r) s , 
such that l-l(S,r 1 )=JJ.

1
(s) and ~(s,r")=~2 (s). Differentiating this 

equality covariantly along X
11 

we get 

D::2t_~2(s)D::21 + D~~:s) 6V21 + ~s[(l-l2(s)/JJ.t(s)- 1)pt(s)] 

and substituting here (4.5) 1 we obtain 

10 

D.O.p2t 
ds 

J.l.2 ( s) 
--R( 

(l\(s)) 2 p1'~21}p1 + JJ/S)~s[~<pl.~2t>] + 
0~2 (s) 

ds v21 + 

0 [r"'(s) 
+ds L~- t)p1(s} J 

OF (r) 
+j.l (s)--"--1 ~<r~~-r~)+O((r~~-r~)2). 2 dr r=r (5.2) 

Here, if it is necessary, .O.V21 may be substituted with the obtained 

for it expressions from (5.1) or (4.3). 

This is the first order deviation equation for the relative mo-

mentum of the second particle with respect to t.he first one. It 

describes the evolution of l!.p21 along the trajectory of the first 

particle. The physical interpretation of (5.2) will be considered 

below in section 7. 

6, EQUATION FOR THE RELATIVE ACCELERATION 

From the definitions (1.Ba) and (3.2) we find the following re-

presentation for the accelerations of the particles studied: 

A =F ( r' ) , A =F ( r"). 
1 s 2 s ( 6. 1) 

This is very natural as from (3.2) and the physical interpretation 

of the deviation equation (3.1) (see [B]) it is clear· that F (r) 
• 

has a sense of a (nongravitational) force per unit mass acting on a 

particle situated at the point 7
3
(r); 

tion of that par~icle. 

i.e. 1 F ( r) is the accelera-• 

If in (2.9) and (2.10) we let B =F (r), we find the rela-7 ( r) s , 
tive acceleration (1.8b) of the particles in the form 

M =OF ~0d I F(r)l ,(r"-r')+S(A,( >i +O((r"-r')
2
). 21 21 r '¥ '" r:r 1 21 x Cs) . ' 

( 6. 2) 

The first order deviation acceleration between the considered 

particles is D2
1,;2Jds 2 and according to (2.13) is connected with 

11 



the deviation acceleration D2h
21

/ds 2 by 

D
2
h;,n/ds

2
=D

2
{

2
Jds 2

+0( (r"-r' ) 2
). (6.3) 

Expressing DF
11
(r)/dsl,."',.dr"-r') from (6.2) and substituting 

the so-obtained result into (3.1), we get the following relation 

between the first order deviation acceleration D2
(

21
/ds 2 and the 

relative acceleration aA21 

n'c 
--'2~''=M +R(V ,C )V +T(A ,C )-S(A ,C )+T(V ,DC /ds)+ ds2 21 1 21 1 1 21 1 21 1 21 

+ ~!<vt,{:<:t)+O((r"-r' )2). ( 6. 4) 

Here, for some purposes, it is convenient to replace the first 

order deviation velocity 0(21 /ds with the right-hand side of (4.4). 

The last equation shows that up to second order terms the de-

viation acceleration is caused by the (nongravitational) interac-

tion between the particles and the properties of the space M. The 

cause for the relative acceleration is only the (nongravitational) 

interaction between the particles and the L-transport along paths 

used. 

If we express DF
11
(r)/dsjr=r'(r"-r') from {4.5) and substitute 

the result into (6.2), we shall find the following relation between 

the relative velocity ~V21 and the relative acceleration aA21 

nov nc 
aA2t= ds2t - R(V1,(21)Vt+S(V1, d~l)+~~(V1,C2t)+O((rq-r' )2}. ( 6. 5) 

In accordance with the physical interpretation of the involved 

in this equation quantities it can be called a first order devia

tion equation for the relative acceleration. 
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7, EQUATION FOR THE RELATIVE ENERGY 

Before the derivation of the equation mentioned in the title, 

we will write the deviation equation for the relative momentum 

(5.2) in a form which is a direct analog of the second Newton's 

law, i.e., as an equation of motion for the considered case. 

Let J.t:JxJ~ be a C
1 

function, J.t(S,r')=Jl
1
(s), ~t(s,r"}=Jl2 (s} 

and K(s,r):=Jl.(s,r}F
11
(r) (see (3.2)}. The quantity K(s,r) has a mea

ning of a (nongravitational} force acting on a particle with momen-

tum Jl.(S,r}r'(r) situated at r (r). Putting B =K(s,r) into 
s s 1 (r) -

• 
(2.10) and taking into account (6.1) and 

11- (s)-11- (s)=J.t(s,r")-JJ(s,r')-8~-'~s,r)J ,(r"-r')+O((r"-r') 2}, 
2 1 r r=r 

we get 

DF (r) 
•K =(~ (s)-~ (s))A +~ (s)-d'--1 ,(r"-r')+~ (s)S(A ,C )+ 21 2 1 1 1 r r=r l 1 21 

+O((r"-r') 2
) 

DF (r) 
(~ (s)-~ (s))A +~ (s)~~ ,(r"-r')+ 

2 1 1 2 ar r•r 

+1-1
2
(s)S(A

1 
,{

21
)+0( (r"-r' }2

). (7 .1) 

Physically AX is the (covariant) difference between the for-
. '' 

ces acting on the particles studed. 

Expressing the term p2(s)DF
8
(r)/drjr:r' (r"-r') 

substituting the result into (5.2), we obtain 

from (7.1) and 

Dp2t 
ds 

Jl.2(s) Jl2(s) [ DS ] 
_.::.._-o2:R(pt,(21)pt + ~ S(pt,D~2t/ds}+ds(pt,~2t} + 
(~, (s)) 1 

diJ2(s) 1 
+ ds /:N21 + ~ 

d(~ (s)-" (s)) 2 1 p+AK +O((r"-r') 2} s 1 21 (7. 2) 

This is the first order deviation equation for the relative 

momentum in the form of an equation of motion. 
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Let in the tangent bundle (T(M), rr, M) be given also a real 

bundle metric g (besides the transport along paths I and the cava-

riant differentiation V), i.e., [6] a map g:x~x' xeM, where the 

maps gx :Tx(M)®Tx(M) ------*R are bilinear, nondegenerate and symme

tric. For brevity, the scalar products of X,YETY(M), yeM defined by 

g will be denoted by a dot (•), i.e. X•Y:=gY(X,Y). The scalar 

square of X will be written as (X) 2 for it has to be distinguished 

from the second component X2 of X in some local basis (in a case 

when dim(M)>1). As g is not supposed to be positively defined, (X) 2 

can take any real values. 

Then, according to [ 1], eq. ( 4. 1), in the considered case the 

relative energy of the second particle with respect to the first 

one is 

2 ' E21=c((Vl(s)) )(Ir~~r,p2(s))•Vl(s)= 

=c((V (s)) 2 )(•p •V +p •V ), 1 21 1 1 1 ( 7. 3) 

where we have used (1.9). 

Differentiating (7.3) with respect to s along x 1 and substitu

ting the obtained result into (7.2), we find: 

dE21 2 { "'2(s) f.L2(s) [ oc:21 ---as-=c((Vl)) 3[R(p1,(21)pt]•pt + 2P1• S(pt•--ag-) + 
c~,(s)) c~,(s)) 

] 

d~t2 (s) + OS + ---V •tJ.V + 1 ds(p1,C21) ds 1 21 2 
c~,(s)) 

d(JJ.
2
(s)-JL

1 
(s)) 

~~ p1•pt+V1•AK2t+ 

+ dDg(.O.p , V ) + .O.p •A + -d'--V •V +IJ. (s) (2V •A + Q.9_d (V , V ) ) + 
d~ (s) · } 

S 21 1 21 1 S 1 1 1 1 1 S 1 I 

+ O((r"-r') 2), (7.4) 

where all quantities are taken at the point x 1(s). 

This is the first order deuiati.on equation for the relative· 

energy. It has a meaning of an equation for the energy balance and 
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can be considered as a generalization of the energy conservation 

equation in the situation studied. 
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