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1. INTRODUCTION 

The introduced in [1] transports along paths, which in parti-

cular can be linear [2], are applied in the present paper to defi-

ning certain mechanical quantities in spaces (manifolds), the tan-

gent bundle of which is endowed with such a transport. Ana 1 ogous 

problem has been considered in [3] but, in fact, in this work only 

linear transports along paths without self-intersections are used 

which is not generally necessary everywhere. We closely follow [3] 

without presupposing such restrictions. 

All considerations in the present work are made in a (real) 

differentiable manifold M [4,5] whose tangent bundle (T(M),rr,M) is 

endowed with a transport along paths [1]. Here T(M):= u Tx(M), 
.eH 

Tx(M) being the tangent to the M space at xeM and n:T(M) ----tM is 

such that if VeT (M), then rr(V):=x . 
• 

By J and 1:J~M are denoted, respectively, an arbitrary real 

interval and a path in M. If r is of class C
1

, its tangent vector 

is written as Q. 

The transport along paths in (T(M),n,M) (cf. [1]) is a map 

l:o~I7 , r 1 :(s,t)~I1 , s,teJ being the transport along r, 
'-H 

where 1 1 :T (M) ~T (M), satisfy the equalities 
s --H 1(s) 'Q(t} 

• • • It ~r ols ~t=l 9 --k r, s, teJ, 

17 =id , SEJ. 
s ---7s T (H) 

r<sl 

Here idx is the identity map of the set X. 

( 1. 1) 

( 1. 2) 

A linear transport (L-transport) along paths Lin (T(M},rr,M) 

satisfies besides (1.1) and (1.2) also the equality (cf. [2]) 
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L1 ( i\U+iJ.V) ==AL 1 
U+IJ.L '1 V, s, teJ, U, VET ( M). s ---'fl s ----')l s ---~H '1 ( s ) ( 1. 3) 

In Sect. 2, the concepts of relative velocity, deviation vela-
city and the corresponding to them accelerations between two point 
particles are introduced. Sect. 3 is devoted to the relative momen-
tum of these particles. The central role in this investigation 
belongs by Sect. 4. In spaces, the tangent bundle of which is 
endowed with a metric and a transport along paths, the relative 
energy of two point particles is introduced and investigated. 
Certain connections between the mentioned concepts are studied and 
the notion of a proper (rest) energy is naturally obtained. A note 
on the zero-mass particles case is made. Sect. 5 illustrates the 
considered general concepts in the case of special theory of rela-
tivity. The paper ends with some concluding remarks in Sect.6. 

2. RELATIVE VELOCITY AND RELATIVE ACCELERATION 

Let there be given paths xa:J ----.M' a==1,2 and X: J ----"M. Let . 
there be fixed one-to-one maps T ; J ----')j ' . . a==1,2. (The maps •, and 
< always exist because all real intervals are equipollent.) Let ' 
also be given the one parameter families of paths {-.r : '1 : J' ---?M, 
seJ} and {lJ,: lJ :J"~M. 

' ' 
seJ} 

' ' ' 
having the properties r,<r:):== 

:=K (< (s))=:" (t' ), 
1 1 " s 

-.r (r"):==x (-r (s)) and lJ (t"):==x(s) for some s s 2 2 " s r' ,r"eJ' and t' ,t"eJ", seJ. sss sss 

Physically the paths x
1

, x
2 

and x are interpreted as trajecto
ries (world lines) of, respectively, observed point particles 1 and 
2 and a point observer observing them. The parameters sEJ, s

1
==-r

1
{s) 

and s
2

==-r
2
(s) are interpreted as proper times of the corresponding 

particles (cf. [8], sect. 2). 

If the particles 1 and 2 are moving along the paths X
1 

and x
2

, 

2 

I 

respectively, then their velocities are [6,7] 

V :::X , . . a=1, 2. (2.1) 

The vectors V and V 
' ' 

cannot be compared as they are defined 

at different points. To compare them, we put 

(2.2) 
>, 

(V2)1:==1,.,u____,,.,,V2ETx (T (sll(M). 
s !l 1 1 

defined at one and the same point, the (V)
1 

and V1 
are As 

vector 

!::..V :::t::.V (s·x):==IlJ~ ,((V) -V )= 21 21 ' t ----')t 2 1 1 

"· ::I l I 

' 

. ' 
1 

~t ,(I,.,~' ____,,.,' V 2 -V 1 ) ET x( s l (M) 
' ' ' 

(2.3) 

is uniquely defined and represents their difference defined at x(s) 
This vector is called a retotive velocity of with the help of I. 

the second observed particle with respect to the first one (as it 
is "seen" from the observer) at the point x(s). 

a natural generaliza-definition of a relative velocity is This 

relative velocity which can be tion of the Newtonian concept for a 
simply defined as a difference of the 3-vectors 
velocities of the corresponding particles. 

representing the 

Let the paths -.r , seJ be of class C
1 

and such that the maps ' 
d1 :J------+T (M)=n-

1
(r(s)), sEJ, !l ',Y( s) 

(2.4a) 

defined by 

ct7 (t):=Jcr' iCu))ctu, s u __....,., 
(2.4b) s, teJ, 

be homeomorphisms from J into d!(J) for every seJ (cf. 
[8], sect. 

2). 

definition 2.3 ,the deviation vector of x 2 According to [ 8], 
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with respect to x 1 
relatively to x at the point x(s), 

between the investigated particles, is 

h :=h (s;x):=(IlJ~ ,.od;r~)(r")= 
21 21 t ----Jot r s . . ' 

"· 
=It' ----Jot" . ' 

" . 
J (I

1
' ,; (u))du eT (M). 

u----J.rs s x{s) 

seJ, i.e. 

(2.5) 

Let in the manifold M be given a-lso a covariant differentiation 

V and the deviation vector h (of x with respect to x ) have a c1 

21 2 1 

dependence on s. Then there arises the concept for a deviation ue-

Locity V21 between the observed particles: 

v =="-I h • 21 ds x 21 (2.6) 

where D/ds I x: =V. is the covariant differentiation along x and the 

" 
deviation vector is given by (2.5). This velocity has a direct phy

sical meaning because it can be measured. For example, if the 

observer defines somehow (e.g. by radiolocation) the relative posi

tion h 21 of the observed particles, then he can find the deviation 

velocity from (2. 6) in which s is now interpreted as observer's 

"proper time". 

•v 
" 

and V21 do not coincide Generally speaking, the vectors 

even in the Euclidean case (see [8], sect.4) in which we evidently 

have 

•v 1 =V -v 21 En 2 1 1 ( 2. 7) 

d d~2(s) 
V 1 =-(x (< (s))-x (< (s)))=---·V 

21 En ds 2 2 1 1 ds 2 
d~ 1 (s) 

- ---·V 
' 

(2.8) 
ds 

Nevertheless, in the Newtonian mechanics, where we have an Eucli-

dean world with an absolute simultaneity c~1=~2=idJ), these Vela-· 

cities coincide. 

4 

" 

Let the manifold M be endowed with a transport of vectors along 

paths and a covariant differentiation. If x and x are C
2 

paths, 
' ' 

then the accelerations of the observed particles are 

A :=D I a 0s XV,., a=1,2 

' 

( 2. 9) 

and we can define in an analogous way the relative acceLeration and 

the deviation acceLeration between them and the observer, respec-

tively, by the equalities 

"· ll.A21. =It I . ----Jot" ( ( A2) ,-A1) I 

' 

D (D ) ' 
A21:=dslxv2t= dslx h21. 

r 
(A):=I,S, ,A, 

2 1 r ~r 2 
( 2. 10) . . 
( 2. 11) 

The treatment of t:.A and A is similar to the one of ll.V and 
21 21 21 

v21 · 

3. RELATIVE MOMENTUM 

Let a point particle with a (rest) mass m be moving along the 

path ;r:J-l-M. Then by definition (see [6], ch. III, §3) its momen-

tum at the point ;r(s) is 

p:=p(s):=~(s)~(s), SEJ, 

where p.:J~\{0} is a scalar function with a dimension of mass. If 

m;tD, then IJ.(S):==m. If m==O, Whlch is the case, e.g., with the pho-

tons, then the momentum p is considered as a primary defined quan-

tity and p. is obtained from the above equation. 

be noted· that in both the cases J.L( s) :;tO, SEJ, 

describes the vacuum but not a particle.) 

S~ the momenta of the observed particles are 

5 

It is important to 
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p :=p (s ):=ll (s )V, s =-r (s), a=1;2, seJ, ...... """"" ( 3. 1) 

where ~-t·:J ~\{0}, a=1,2 are scalar functions. . . 
As the vector 

1 

(p2)1:=1,.~~r'p2ETx <-r (s))(M) 
s s 1 I 

(3.2) 

is in Tx <s ) (M), it can be compared with p
1

. In accordance with 

' ' 
this, (the vector of) the reLative momentum of the second particle 

with respect to the first one as it is "seen'' from the observer at 

x(s) is defined by 

ap '=ap ( s ·X)' =I": " (( p ) -p ) = 
21 21 • t ~t 2 1 1 

" " 

" 1 
=I~ ,(I~ ,p-p)ET (M). 

t -----it r -----ir 2 1 ;,: ( s) 
s s s s 

( 3. 3) 

It is clear that in the Euclidean case (see [ B], sect. 4) the 

relative momentum takes its well-known Newtonian form 

ll.p21 /En =p2 -pi' (3.4) 

If the used above transport in (T(M),rr,M) is linear (see Sect. 

1, eq. ( 1. 3) or [ 2] ) , then due to ( 3. 1)- ( 3. 3) and ( 2. 2)- ( 2. 3) the 

following equalities are valid 

(p2)1= 112(s2)(V2),. (3.5) 

" ll.p21 =JJ-2( 5 2)ll.V21 +( JJ-2( S) fill ( Sl )- 1 ] It~ --H"p
1

' (3.6) 

" 

4. RELATIVE ENERGY 

Let in the tangent bundle (T(M),rr,M) be given a transport along 

6 

paths I and a real bundle metric g, i.e., [5] a map g:.xl-:-------+g'x' xeM, 

where the maps gx :Tx(M)®Tx(M) ~ are bilinear, nondegenerate. and 

symmetric. For brevity, the defined by g scalar products of 

X, YeT (M), yeM will be denoted by a dot (•), i.e. X•Y:=g (X,Y). The 
y y 

scalar square of X will be written as (X)
2 for it has to be distin-

guished from the second component X2 of X in some local basis (in 

the case when dim(M)>1). As g is not supposed to be positively de

fined, (X) 2 can take any real values. 

By definition the reLative energy of the second particle with 

respect to the first one is called the (scalar) quantity 

E '=E (s),=e((V (s ))
2 )p •V (s )= 

21 21 1 1 21 1 1 

1 
=e((V (s )) 2 )(I :, ,p (s ))•V (s ), 

11 r----+r22 11 . . ( 4. 1) 

where c( A): =-1 for A<O and d i\): =+1 for i\2:0. The introduction of 

the multiplier ~ is due to the fact that if the particles coincide, 

i.e., if we apply (4.1) to one and the same particle, then the so 

obtained quantity has a meaning of a proper energy of that particle 

(see below) and according to the accepted opinion [6,7] it must be 

positive. 

If there exists s
0
EJ such that x

1 
(-r

1 
(s

0
) )=x2(-c

2
(s

0
)), i.e. if 

at the "moment" s=s
0 

the trajectories of the observed particles 

intersect each other, then from (4.1) and (1.2) we get 

E21(so)=c((Vt(-rt(so)))
2
)p2(-r2(so))•Vl(-r1(so)). ( 4. 2) 

In the case of the space-time of genera.l relativity, this ex-

pression coincides with the given in [6], ch. Ill, §6, eq. (23) de-

finition for ·a relative energy which has the "bad" property that it 

is valid only for the "moment" s=s
0

. So it does not allow the evo

lution of the relative energy in time to be studied. Evidently, our 

definition (4.1) is free from this deficiency. 
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Analogously to (4.1), the relative energy of the first particle 

with respect to the second one is 

E :=E (s):=c((V (s ))')p •V (s )= 
12 12 2 2 12 2 2 

, ' =c((V (s )) )(I: ,p (s ))•V (s ), 
22 r----ir11 22 . . (4.3) 

If we use arbitrary transports along paths, then, generally, 

the quantities E
12

, E
21

, l!.p
21 

and ll.p
12 

are not connected somehow 

with each other. From the view point of the existence of a certain 

connection between them an essential role is played by the trans-

ports along paths which are consistent (at least along the paths 7
5 

and ll, seJ) with the fibred metric g, i.e. for which (cf. [9,10]) 
' 
I' (U•V)=(I' U)•(I' V) 

" ----it s ----it s ----it 
(4.4) 

for arbitrary -.r: J----iM, s, teJ and U, VET ( M) . (For further consi-
O( s) 

derations it is enough that this equality be valid only for -.re{-.r,.. 

T1 : SEJ}.) 
• 

If I and g are consistent, then the relative momentum (3.3) and 

the relative energy (4.1), as one can easily prove, are connected 

by the relation 

, " E (s)=c((V (s )) )[op •I: , V (s )+p ·Y (s )]. 
21 1 1 21 t ----it 1 1 1 1 1 • 

( 4. 5) 

If the transport along paths I 1s consistent with the operation 

multiplication with real numbers (see [10], example 3.2), i.e. 

I"~ (AU)=AI7 U, AE~, UET (M), 
s ----it s ----it O( s l 

( 4. 6) 

then (3.5) holds and after its substitution into (4.1), one gets 

E =c((V (s ))')" (s )(V) •V (s ). 
21 1 1 2 2 2 I 1 1 

(4.7) 

If the equalities (4.4) and (4.6) are simultaneously valid, 

8 

then with a direct verification we confine ourselves to that the 

relative energies E
21 

and E
12 

are connected by 

, , 
d ( V 

2
(T

2
( s))) )ll

1 
(T

1 
( s)) E

21 
( s) =c( (V

1 
(T

1 
{ s))) )ll

2
(-r

2
( s)) E12 ( s). ( 4. B) 

In particular, this equality is true for every L-transport· 

consistent with the metric. 

Let us apply definition (4.1) only to the first observed par-

ticle, for which it is enough to put in it r'=r", X =x and 't ='t, s s 2 1 2 1 

or equivalently to replace the subscript 2 with 1. Using (1. 2), we 

see that the energy of this particle (with respect to itself) is 

E (s)=c((V (s ))')p (s )•V (s )=" (s) ICY (s ll'l= 
11 1 1 1 I 1 1 1 1 1 1 

=I (pt (s1))2j/llt (st), ( 4. 9) 

where jhl :=c(A)A is the absolute value of AE~. 

The quantity E
11 

may be called a proper (or rest) energy of the 

considered particle. If m
1
>0, then 11

1 
( s 1 )=m1 and consequently 

E ~0. If m (V (s ) ) 2 :;t0, then E >O which corresponds to the most 
11 1 1 1 11 

popular case of massive material particle. 

If rn
1
:;t0, then J.l.

1
(s

1
):=m

1 
and due to (4.9) the proper energy E11 

is proportional to m , so E is a C
00 

function of m for rn E~\{0}. 1 11 1 1 

From here comes the mind on E
11 

to be imposed the additional rest

riction for continuous dependence of m
1 

at the point m
1
=0, i.e. one 

may want 

E
11

=0 for m
1
=0, 

or, equivalently, 

lim E
11

=0, 
m -.o 

' 

( 4' 10) 

(4.11) 

which has far going physical corollaries. In fact, (4.9) shows the 

equivalence of (4.11) with 

9 



(V1(s 1)) 2=0 for m1=0, ( 4. 12) 

or, which is all the same, with 

(p1(s 1)) 2=0 for m
1
=0. ( 4. 13) 

These relations are a direct generalization of the well-known 

fact from the special and general relativity that the massless par

ticles are moving with the velocity of light, i.e. that their world 

lines lie on the light cone described by (4.12). 

We want to note that without further assumptions 

does not imply m
1
=0. 

(Vt (st))2=0 

The energies E21 (or E1 2) and E
11 

may be connected with the 

components of l!.p
21

. (or l!.p1), p 21 (or p 12 ) and p
1 

in some local 

bases in the following way. 

Let (V )
2#0. Along x we define a field of basis {;>.,}, i.e. the 

1 1 ' 

vectors \ j
1

(sleT
1

(sl(M) form a basis in T;rtsl(M), such that 

?1 1 :=V
1

·!(V
1

)
2 !-t/2 and i\

1
•;\=0 for i#1 (if dim(M)>1}. Here and 

henceforth the Latin indices run from 1 to dirn(M). (In this case 

the concrete choice of A for i#1 is insignificant.) So 

(A )'=<((V )'), due to which the component A' of any vector field 
1 1 

A=A1
i\ 

' 
along x1 in {i\

1
} is 

A1=A•> /(A ) 2=<((V ) 2)(A•V) j(V ) 2 j-'''. 
1 1 1 1 1 

(4.14) 

Applying this fln :=llp j =(p) -21 21 x=x
1 

2 1 
equality to P., and P,. 

-p
1

, the last vector being the relative momentum of the second 

particle with respect to the first one as it is "seen" from the 

latter, and using (4.9) and (4.1), we find: 

1 p =E j(V )'j""' 
1 11 1 ' p~=O for i#1, (4.15) 

10 
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l 

(p )'=E j(V )'j-"' 2 1 21 1 • 
(4.16) 

.o.n:' =( )1- t=(E -E ) j(V )'j-t/2 
21 p2 1 pl 21 11 1 . (4.17) 

Let (V ) 2:;t:O and g and I be consistent, 
1 

i, e. ( 4. 4) be valid. De-

fining along x a basis {1
1

} such that "· 1 1 :=It' ---+t"A1 and 1 •1· =0 
1 ' • • 

for i~1. we see that the first component of .O.p21 in {1
1

} is 

Op1 =Op •1 /(1 ) 2 =0n ·• /(> )
2

=0n
1 

=(E -E ) j(V ) 2 j"'". 
21 21 1 1 21 t 1 21 2l' 11 1 

(4.18) 

If (V ) 2=0, then (see (4.9)) E =0 arid the invariant (p) •V = 
1 11 2 1 1 

=.O.n:21 •V
1

=E 21 cannot be connected with some component of (p2 ) 1 (or 

.O.n
21

) in a given local basis. In this case, we can say that there

lative energy E21 is spread over all the components of' ( p 2) 1 (or 

.O.n:
21

) and with basis transformations it cannot be connected with a 

single component of that vector. 

If (V2) 2:;t:O and I and g are consistent, i.e. (4.4) holds, then 

defining along x 1 a basis <•,'} such that "t I:: 
7 

:=I:, ,(V ·j(V ) 2 j- 1
") 

r ~r 2 2 
and 1\1 , •1\

1
1 =0 for i~1, we find the first 

' ' 
component of p

1 
in {1\

1
} as 

' 7 
p' =p •> ,/(> ) 2 =p •(I ~ ,(V ·j(V ) 2 j-"2 ))·<((V ) 2 )= 
1111 1r----+r2 2 2 

' ' 

7 
=<((V ) 2 )(I' , )•V ·j(V ) 2 j-"2 =E j(V ) 2 j""'. 

2 r 1 ---7r 1 p1 2 2 21 2 (4.19) 

' ' 

At the end of this section we want to stress the fact that all 

relative energies E
11

, E21 , E12 and E22 , connected with the consi

dered observed particles, are not arbitrary, ·as they are connected 

with the invariant ( 611 21 ) 2 by 

(.O.n2t)2=c((Vt)2)~1Ett+c((V2)2)~2E22-2c((Vt)2)~tE2t' (4.20) 

This follows from 
2 2 2 

(.O.n21) =((p2)1) - 2 (P2),•pt+(pt) and the defini-

II 



tions of the corresponding energies. If the transport and the met-

ric are consistent, then this equality can be written in a more 

symmetric form as 

(ll.p ) 2 =(.0.n: ) 2 =e((V ) 2 )J.L E +c((V ) 2
)J.L E -21 21 1 1 11 2 2 22 

, , 
-e((V1) )J.LtE21-c((V) )J.l2E12' (4.21) 

where we have used (4.8). 

5, EXAMPLE: SPECIAL RELATIVITY 

The purpose of this section is to find explicit forms of the 

introduced relative quantities in the concrete case of special re-

lativity. (As a standard reference to the problems of this theory 

see, e.g., [6,7].) 

Let there be given a standard (4-dimensional, flat, with signa

ture(+---)) Minkowski's space-time M4
, in which as a concrete rea-

lization of the general transport along paths the parallel trans-

port along them will be used. Let two point particles 1 and 2 with 

masses m :;tO and m :;tO be moving in M4 with constant 3-velocities v ' , ' 
and v

2
, respectively, with respect to a given frame of reference. 

Then, their world lines are x (s )=(ct,tv )+y, a=1,2, where c is 
a a a a 

the velocity of light in vacuum, t is the time in the used frame, 

s :='t (t):=t(1-v2/c 2) 112 , a=1,2 are the corresponding proper times . . . 
and y 1,y2EM4 are fixed. 

According to (4.1), the 4-velocities [6] of the particles are 

V =(c,v )(1-v2/c 2)- 112 , a=1,2 ( 5. 1) . . . 
and hence 

12 

2 2 2 2 2 -1/2 2 2 • 2 (V
0

) =(c -v.)((1-v.fc) ) =c, c((V
0

) )=+1, a=1,2. 

Due to this by using (3.1)-(3. 3), (4.1) and (4. 9), we get: 

p =m (c,v )(1-v2 /c2
)-

112 , a=1,2 (JJ =m, J.l =m ), 
aa a a 1122 

(p1)2=p1, (p2)1=p2, ll.p21=.0.n:21=p2-pl. 

E =m c 2(1-v •v /c 2 )[(1-v2 jc 2 )(1-v2/c 2)]- 112 , 21 2 1 2 1 2 

E =m c 2(1-v •V /c2 )[(1-v2/c 2)(1-v2jc2
)]-

112 , 12 1 1 2 1 2 

E =m c
2 

" ' 
E =m c 2 , , 

( 5. 2) 

(5.3a) 

( 5. 3b) 

(5.4a) 

( 5. 4b) 

(5. 4c) 

Evidently, E
11 

and E22 are the proper (rest) energies of the 

particles. If, e.g. v
1
=0, then E =m c 2(1-v2jc2)- 112 =E 21 2 2 2 

is the 

energy of the second particle with respect to the used frame [6]. 

If m
1

:;t0 and m
2
=0, then in the above considerations one has to 

replace x
2 

and s
2

, respectively, by x 2(s
2
)=(ct,ctn2 )+y2 and s 2=t, 

where n is a unit 3-vector (n
2 =1) showing the direction of move-' , 

ment of the second particle, i.e. v =en ' , ' 
V =c(1,n ), (V ) 2=0, c((V ) 2 )=+1. 

2 2 2 2 

and, consequently 

(5.5) 

If E
2 

is the energy of the second particle with respect to the 

given frame, then its 4-momentum is [6] 

p
2
=(E2/c,p2)=(E2/c, (E2/c)n2 )=(E2/c)(1,n2)=(E2/c2 )V 2 ( 5. 6) 

and due to (3.1), we have 

IJ.2=1J.2(s)=E2/c2. (5.7) 

In this case, (5.3b) is also true and (5.4) take the form: 

E =E (1-v •n jc)(1-v2/c2)- 112 , 
21 2 1 2 I 

(5.Ba) 
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E =m c 2(1-v •n /c)(1-v2jc2)- 112 , 12 1 1 2 1 
(5.8b) 

E =m c 2 E =0 11 1 22 ' (5.8c) 

the last of which is in accordance with (4.10). 

Evidently, E
21

=E2 for v
1
=0, due to which (5.8a) expresses the 

usual Doppler effect in terms of energies of the corresponding par-

ticles [ 6] . In fact, if we have a moving with a 3-veloci ty V =V 
' 

source of massless particles (e.g. photons) with 3-velocities v
2
=cn 

and energy (with respect to the source) Ezt=Eo' which are regis-

tered by immovable in this frame observer, we will find that the 

particles are with energy E=E
2

, which due .to (5.8a) is 

E=E (1-v•n/c)- 1 it-v2/c2) 112 . 
0 

( 5. 9) 

The corresponding formulae for m1=0 and m2*0 are obtained from 

the above ones by means of the change 1 ---72 ____,.1 of the subscripts in 

them. 

In the case when m =m =0, we have x (s )=(ct,ctn )+y, s =t, 12 aa aaa 

a=1,2, so 

v =en, n
2
=1, V =c(l,n ), (V ) 2=0, £((V ) 2)=+1, 

aaa a a a a 

p =(E/c)(1,n ), )1. =IJ (t)=E /c
2

, a=1,2, 
a a a a a 

and the equations (5.3b) remain the same. Hence: 

E
21

=Ez'1-n1•n2), E12=E 1(1-n1•n 2), 

E =E =0. 11 22 

So, if n
1
=n

2
, then E21 =E12 =0 and vice versa. 

( 5. 10) 

(5.11) 

(5.12a) 

(5.12b) 

At the end, we shall consider the concepts of relative vela-

city and deviation velocity in special relativity. 
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Let K be a fixed inertial frame of reference in which an arbi-

trary moving particle 2 has a 4-radi us-vector x
2 

( s 2) I K =Cct, x 2 ( t)), 

s =t(1-v2jc2) 112 , v =x, where t is the time in K. Let the inertial 2 2 2 2 

frame K' be attached to the particle 1 having in K a world line 

x
1
(s

1
) IK=(ct,tv1), v

1
=const, s =t(1-v2/c2)l/2. The world line of 

' ' 
the observer is completely arbitrary. 

In the frame K, we have 

dx I V 

1 

_ a K _ ( ) ( 1 _ 2) -1/2 
a K-----a:s--- - c, Va Va ' . 

and in K' , we get 

a=l, 2, 

vliK'=(c,O), V21K'=(c,v;)(l-v;2>-l/2' 

(5.13a) 

(5.13b) 

where v; is the 3-velocity of the particle 2 inK' (i.e. with res

pect to the particle 1) in a sense of special relativity (see [6]). 

Consequently, as we are working in a pseudo-Euclidean case, due 

to (2.6) the relative velocity is AV
21

=V2-V1. So, we get: 

I 
2 2 -1/2 2 2 -1/2 8V 21 K::::(1-v2jc) (c,v)-(1-VJC) (c,v1), (5.14a) 

2 2 -l/2 
8V21 1K'=(t-v; /c) (c,v;)-(c,O). (5.14b) 

Besides, in the pseudo-Euclidean case h 21 =x2(s 2)-x1(s1), so that: 

h 21 (K=(O,x2(t)-tv1), (5.15a) 

hl-<ox') 21 K 1 - ' 2 ' (5.15b) 

where x; is obtained from x 2(t) by a Lorentz transformation descri

bing the transition from K to K' [6]. 

Due to (2.6) the deviation velocity is 

v21=dh21/ds=(ds1/ds)(dh21/dsl)=(dt/ds)(dh21/dt), 

where s 1=t' is the time inK' [6], from where, we get: 
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dt 
V 21 I K = ds ( 0 ' v 2 -v 1 ) ' 

ds 
v2tiK'=dst(o,v;). 

(5. 16a) 

(5.16b) 

So, if the observer coincides with the first particle, then 

s
1
=s and V

21
jK,=(O,v;). This shows 

city is a direct generalization of 

that in fact the deviation vela-

the relative velocity in a sense 

of special relativity. 

6. COMMENTS 

In this work many times was met the problem for comparing (de

fining the difference of) two defined at different points vectors. 

Below is presented a general scheme for the used in the present 

work method in a manifold M endowed with a transport along paths I 

in its tangent bundle. 

Let A E::T (M), a=1,2, r:J~M and . . . 
s

1
,s

2
EJ and z

1
,z

2
EM. Let 

(A):=I> A, 
2 1 s ~s 2 

(A) :=I' A. 
1 2 5 ~s 1 

' ' ' ' 

r(s )=z , . . a=1,2 for some 

( 6. 1) 

Now instead of A
1 

and A
2 

one can compare the vectors A
1 

and 

( A
2

) 1 , or equivalently the vectors A
2 

and ( A
1

) 
2

. The corresponding 

differences (defined by I), by definition, are 

6A2t:=(A)t-At' ll.At2:=(At)2-A2. (6.2) 

Evidently, for a linear transport along paths L these two 

quantities are connected by 

tJ.A =L r I1A , tJ.A =L r ll.A 
12 5 ~s 21 21 s ~s 12 ( 6. 3) 

1 2 2 1 

In manifolds with a transport of vectors along paths and a co-

16 

variant differentiation there arises a "mixed" acceleration 

'!___I ov ds x 21' 
but there are not physical reasons that it plays some 

significant role. 

Let x, denote one of the vector fields of velocity, accelera-

tion or momentum of the a-th, a=1, 2 particle. In sections 2 and 3 

we introduce the quantities 

, 
(X) :=I j, ,X ET (M), 

2 1 r --J.r 2 x ( 'L ( s l ) 

' ' ' 
llX :=D.X (s·x):=I 11~ 

2 I 2 1 ' l s --H:( (X) t-Xt)= 

, "· =I I 

' 
,(I;, ,X -X )ET (M). 

---H r --J.r 2 1 x(s) 

' ' ' 

Analogously, if • • 1J ·J ~M. 
' 

SEJ, 1J*(t*):=x (s) 
s s 2 2 

:=x(s) for some t*,t**eJ* and using the same paths r 
s s s s 

define the quantities 

, 
(X) :=I~ ,X ET (M), 

1 2 r ~r 1 " ( T ( 5)) 
s s 2 2 . 

"" 6X 12 ,=6X 12 (s;x):=I ~ ~~((X 1 ) 2 -X 2 )= c --H 

' ' ". , 
=Is (I~ ,X -X )ET (H), * *~ r ~r 1 2 >d s) c --H 

> ' 

(6.4) 

(6.5) 

and 1J*(t4 *):= 
' ' 

SEJ, we can 

( 6. 6) 

( 6. 7) 

the latter of which, in a case of linear transport along paths L, 

due to (1.1) and (1.3) is connected with ll.X
21 

by . 
1Js 0 s 1Js 

6X=-L oL, ,oi" 12 * ~* r ~r t 
t ~t s 5 

~t I (ll.X ) 
s 21 . ( 6. B) 

' 
If L

0 
does not depend on o or if 1J~ is a product of o and 1J 

' ' ' 
and the equalities (2.6) and (2.7) of [1] are true, then according 

to [1], proposition 3.4 the last equality reduces to 

ll.X =-ll.X 
1 2 21 ( 6. 9) 

For some purposes, in (4.1) one can put c(Q):;-1 instead of 
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c(0)=+1. Our general results do not depend on that choice. 

Opposite to (4.11), if we admit that lim E
21

=0, i.e. a conti
• _,, 
' 

nuous dependence of £
21 

on m
2

, then we arrive at an explicit con

tradiction with the physical reality. Namely, if this is so, then 

due to 11-
2
(s);tO from (4.1), we get V

2
(s

2
)=0 for m

2
=0, which contra

dicts the fact that we are dealing with a material particle but not 

with the vacuum. Besides, the equality £
21

=0 for m
2

=0 means that 

any massless particle, e.g. a photon, has zero (relative) energy 

with respect to any other particle, something which, evidently, is 

not true. 
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