

объединенны"̆ ИНетитут Адөрных исөледовании

ON HIGHER DERIVATIVE GRAVITY IN TWO DIMENSIONS

Submitted to «Physical Review D»

[^0]
1 Introduction

Recently, much attention has been paid to the investigation of models of twodimensional (2D) gravity. It is well known that the Einstein-Hilbert action in two dimensions coincides with the topological Euler number and, therefore, does not determine any dynamics for gravitational (metrical) degrees of freedom. Hence, one shonld consider some alternative dynamical descriptions of 2 D gravity. One of the simplest models. mainly inspired by the string theory. is dilaton gravity [l], gravitational variables are the dilaton and met ric fields ($0, g_{\mu \nu}$). In empty (without matter) space the classical equations of motion are exactly integrated [1] and the solution describes the 2D black hole. On the quantum level, it has been shown that this model is renormalizable [2]. The roupling with conformal matter is again exactly solvable classically and the solutions are configurations describing the formation of a blark hole by collapsing matter [3].

An other way is to formulate the theory of 2 D gravity in the framework of a consistrnt gauge approarh. Independent variables are now vielbeins and the Lorentz connection ($\left.e^{a}, w_{b}^{a}\right)$. The theory with Lagrangian quadratic in curvature R and torsion T [4] was shown to be exactly solvable [5]. One class of the solutions contains the de Sitter space-time with zero torsion. Other sohtions are of the black hole type [5]. Generally, one can consider the Lagrangian to be an arbitrary (not-necessarily quadratic) function of curvature and torsion [6]. Such a theory has essentially the same type of classical solutions.

Describing the gravitational degrees of frecdom on the 2D manifold M^{2} only by the metric ($g_{\mu \nu}$) without introducing any additional variables, one considers the following action:

$$
\begin{equation*}
S=\int_{M^{2}} d^{2}=\sqrt{-g} f(R) \tag{1.1}
\end{equation*}
$$

where $f(R)$ is, in principle, arbitrary (non-linear) function of the scalar curvature R determined with respect to the 2 D metric $g_{\mu \mu}$. Theories of such type were studied in higher dimensions [7] and in two dimensions $[8,9]$. Was obseryed that the theory (1.1) is equivalent to some type of scalar-tensor ($\delta . g_{\mu \nu}$) theory of gravity. Moreover, it was shown in [10] that (1.1) with Lagrangian $f=R \ln R$ describes the same black hole space-time as the string inspired 2D dilaton gravity.

One of the motivations for recent investigations of 2 D gravity (mainly of the dilaton type) that it can be considered as a "toy" model to study the process of formation and subsequent evaporation of a black hole. It has been argued by Hawking [11] that such a process is not governed by the usual laws of quantum mechanics: rather, pure states evolve into mixed states. However, it is commonly believed that a successful quantization of gravity and matter will provide us with a consistent solution of this problem. Quantum corrections may completely change the gravitational equations and the corresponding space-time geometry at the Planck scales. This problem is hard to analyze in four space-time dimensions. However, in two dimensions one can attempt to attack this problem using the dilaton gravity
theories as a toy model [3]. These toy models have an explicit semiclassical treatment of the back reaction of the Hawking radiation on the geometry of an evaporating black hole by including the one-loop Polyakov-Liouville term in the action (the review can be found in [12]). Unfortunately, the resulting equations are not exactly integrated and one can not obtain a definite answer. Therefore, one can try to find another theory of 2D gravity (among the alternatives) for which the relevant. semiclassical equations would be analytically solvable.

The main goal of our paper is the study of this problem for 2 D gravity described by an action of the form (1.1) along the lines of ref.[3]. We show that for $f=R \ln R$ the semiclassical field equations are exactly integrated and one can obtain a definite answer about the structure of space-time when the backreaction of the Hawking radiation on the black hole geometry is taken into accommt.

This paper is organized as follows. In the next two sections we investigate some aspects common for theories described by the artion (1.1). In Sec. 2 we demonstrate the integrability of classical fieid equations and find the exact solution. The oneloop renormalizability of the theory is analyzed in Sec.3. In the next two sections we mainly consider the case $f=R \ln R$. The coupling with conformal (scalar) matter is shown to be exactly solvable classically in Sec.4. The backreaction is taken into account in Sec.5.

2 Classical solution of the model

Under variation of the action (1.1) with respect to the metric g_{g} we obtain the following equations of motion:

$$
\begin{equation*}
\nabla_{\mu} \nabla_{\nu}\left[f^{\prime}\right]=\frac{1}{2} g_{\mu \nu}\left\{f(R)-R f^{\prime}(R)+2 \square\left(f^{\prime}\right)\right\} \tag{2.1}
\end{equation*}
$$

where $f^{\prime} \equiv \partial_{R} f(R)$ and $\square=\nabla^{\mu} \nabla_{\mu}$.
At first sight, (2.1) is a system of differential equations of very high order with respect to derivatives. For example, if $f=R^{2}$, thes (2.1) are equations of fourth order of metric $g_{\mu \nu}$ derivatives. However, we will see that it is not really so and the system (2.1) is rather easily solved.

Let us analyze at first possible solutions of (2.1) with the constant curvature $R=R_{1}=$ const. In this case we obtain that $f^{\prime}(R)=$ consl $=\left.f^{\prime}\right|_{R \approx R}$: everywhere in M^{2}. Then, from (2.1) we get that such a solution exists if the function

$$
\begin{equation*}
V(R)=f(R)-R f^{\prime}(R) \tag{2.2}
\end{equation*}
$$

is zero at the point $R=R_{1}: V\left(R_{1}\right)=0$. If $V(R)$ becomes zero at P different points $R_{i}, i=1,2, \ldots, P$, then for given $f(R)$ there are P different solutions of (2.1) with constant curvature. An additional condition is that the function $f^{\prime}(R)$ must be finite at $R=R_{i}$.

Assuming R to be a non-constant function on M^{2}, we consider a new variable $\phi=f^{\prime}(R)$ provided that this equation is solved (at least locally) with respect to R :
$R=R(\phi)$. Denote $V(\phi) \equiv V(R(\phi))$. Then (2.1) is rewritten as an equation on the new field ϕ :

$$
\begin{equation*}
\nabla_{\mu} \nabla_{\nu} \phi=\frac{1}{2} g_{\mu \nu}\{V(\phi)+2 \square \phi\} \tag{2.3}
\end{equation*}
$$

We obtain from (2.3) that $\xi_{\mu}=\epsilon_{\mu}{ }^{\mu} \partial_{\mu} \phi$ is the Killing vector [13]. Consequently, the field ϕ can be chosen as one of the coordinates on M^{2}. Then, metric reads

$$
\begin{equation*}
d s^{2}=g(\phi) d t^{2}-\frac{1}{g(\phi)} d \phi^{2} \tag{2.4}
\end{equation*}
$$

1 rom (2.3) we get that

$$
\begin{equation*}
\square 0=-1(\phi) \tag{2.5}
\end{equation*}
$$

For the metric (2.4) we have $\square o=-g^{\prime}(\phi)$ and eq.(2.5) reads

$$
\begin{equation*}
\partial_{o} g(\theta)=V(\theta) \tag{2.6}
\end{equation*}
$$

The solution takes the form

$$
\begin{equation*}
a(\phi)=\lambda+\int^{\hat{0}} \mid(\cdot \cdot) d b^{\prime} \tag{2.7}
\end{equation*}
$$

One can see that our model (1.1), (2.1) seens to be equivalent to some kind of 2D dilaton gravity with the dilaton field ϕ and potential $V^{\prime}(\phi)$.

Thus, surprisingly, our initial higher-derivative equations reduced to the first order equation (2.6) independently of the concrete form of the function $f(R)$. As a result, the solution (2.7) is determined only by one arbitrary integrating constant λ. The Killing vector $\xi_{\mu}=\epsilon_{\mu}{ }^{\nu} \partial_{\nu} \phi$ has bifurcation at a point where $\xi^{2}=-(\nabla \phi)^{2}$ equals zero. One can see from (2.4) that $g(\phi)=0$ at this point and we have a horizon.

Since the scalar curvature for the metric (2.4) is equal to $R=-g^{\prime \prime}(\phi)$, one can easily check that curvature for the solution (2.i) really coincides (if $f^{\prime \prime}(R) \neq 0$) with $R=R(\phi)$ obtained by solving the equation $\phi=f^{\prime}(R)$.

In the vicinity of points where $\phi_{R}^{\prime}=f^{\prime \prime}(R)=0$ the equation $\phi=f^{\prime}(R)$ cannot be solved in a unique way. It is the only place where above solution is in-correct. Near a point like that the function $\phi(R)$ is as shown in Fig.I: there are two values R_{a}, R_{b} which correspond to the same value ϕ. So there are two branches of solution of equation $\phi=f^{\prime}(R)$. Let us consider this in more detail. Let $\phi^{\prime}(R)=0$ for some finite $R=R_{0}$. Note that only zero of odd order is interesting for us. In the vicinity of R_{0} the function $\phi^{\prime}(R)$ can be represented as follows

$$
\begin{equation*}
\phi^{\prime}(R)=a\left(R-R_{0}\right)^{2 k-1}, k=1,2, \ldots, \text { and } a>0 \tag{2.8}
\end{equation*}
$$

and hence we obtain

$$
\begin{equation*}
\phi(R)=\frac{a}{2 k}\left(R-R_{0}\right)^{2 k}+b \tag{2.9}
\end{equation*}
$$

and

$$
\begin{equation*}
f(R)=\frac{a}{2 k(2 k+1)}\left(R-R_{0}\right)^{2 k+1}+b R+c \tag{2.10}
\end{equation*}
$$

There are two branches of the solution of eq.(2.9) with respect to R :

$$
\begin{equation*}
R=R_{0} \pm\left[(\phi-b) \frac{2 k}{a}\right]^{\frac{1}{2 k}} \tag{2.11}
\end{equation*}
$$

In the vicinity of the point $x \in M^{2}$ where $R(x)=R_{0}$ there are two regions: where $R>R_{0}$ and where $R<R_{0}$. Our solution (2.4), (2.7) is valid in any of these regions taken separately. Consider the region where $R>R_{\mathbf{0}}$. Suppose for simplicity that $b=0, a>0$; then $\phi>0$. Then, we get for the potential V :

$$
\begin{equation*}
V(\phi)=-\frac{2 k}{2 k+1}\left(\frac{2 k}{a}\right)^{\frac{1}{2 k}} \phi^{1+1 / 2 k}-R_{0} \phi+c \tag{2.12}
\end{equation*}
$$

The corresponding metric (2.7) for $\phi>0$ reads

$$
\begin{equation*}
g(\phi)=\lambda-\frac{R_{0}}{2} \phi^{2}+c \phi-\frac{(2 k)^{2}}{(2 k+1)(4 k+1)}\left(\frac{2 k}{a}\right)^{1 / 2 k} \phi^{2+1 / 2 k} \tag{2.13}
\end{equation*}
$$

One can see that the metrical function $g(\phi)$ (2.13) has regular in $\phi=0$ first and second derivatives

$$
g^{\prime}(0)=0, g^{\prime \prime}(0)=-R_{0}
$$

However, the non-analyticity of (2.13) in $\phi=0$ manifests itself in that all the following derivatives are singular at this point:

$$
g^{(p)}(0)= \pm \infty, p>2
$$

This singularity means, in particular, that invariant $(\nabla R)^{2}$ is singular at the point x where $R(x)=R_{0}$. It should be noted that singularities of this type were earlier observed in $[14,15]$ for rather different theories.

In the region where $R<R_{0}$ we get

$$
\begin{align*}
& R=R_{0}-\left(\frac{2 k \phi}{a}\right)^{1 / 2 k} \\
& V(\phi)=\frac{2 k}{2 k+1}\left(\frac{2 k}{a}\right)^{1 / 2 k} \phi^{1+1 / 2 k}-R_{0} \phi+c, \phi>0 \tag{2.14}
\end{align*}
$$

Thus, the total space-time in the vicinity of the point $R=R_{0}(\phi=0)$ is represented by gluing of two sheets (the coordinate $\phi>0$ call be used to parameterize the points of both sheets in the neighborhood of $\phi=0$). The total space-time is shown in Fig.2.

Really, the scalar curvature R itself can be used as one of the coordinates. It covers, in particular, the whole vicinity of the point R_{0}. Then, in the coordinates (t, R) the metric reads:

$$
\begin{equation*}
d s^{2}=g(R) d t^{2}-\frac{\left[f^{\prime \prime}(R)\right]^{2}}{g(R)} d R^{2} \tag{2.15}
\end{equation*}
$$

For $R \sim R_{0}$ we can put $g(r) \sim 1, f^{\prime \prime}(R) \sim a\left(R-R_{0}\right)^{2 k}$ and hence the metric takes the form

$$
\begin{equation*}
d s^{2}=d f^{2}-r^{2}\left(R-R_{0}\right)^{1 k} d R^{2} \tag{2.16}
\end{equation*}
$$

Let us now consider some examples.
Example 1.

$$
\begin{equation*}
f(R)=R \ln R \tag{2.17}
\end{equation*}
$$

In this case $\varphi=\ln R+1 . R=0^{-1}$. Honce $\mid(0)=-R=-r^{-1}$. Since the potential $l(R)=-R$ is zero in $R=0$. it seems that one of the solutions is flat space-time. However, tho function $f^{\prime}(R)=1 n R+1$ is not detined for $R=0$. So if we come back to eq.(2.1). We obsmur that flat spacelime is not really a solution of the field equations.

If R is a non-constant function on.M^{2}. the solution is given by the metric (2.t) with

$$
\begin{equation*}
g(o)=\lambda-R(\sigma)=\lambda-r^{\circ-1} \tag{2.18}
\end{equation*}
$$

This solution coincides with that obtained in $2 d$ dilaton gravity and describes asymptotically flat black hole space-time. The essential difference of the solution (2.18) from that we have in dilaton gravity is that it doesn't describe flat space-time for any integrating constant λ.

The Lagrangian (2.17) seems to be ill-defined at $R=0$. However, we see that curvature $R(\phi)$ is cerywhere positive and the point $R=0$ really lies at the spatial infinity.

Example 2.

$$
\begin{equation*}
f(R)=a R^{2}+b R+c \tag{2.19}
\end{equation*}
$$

In this case $\phi=2 a R+b, R=\frac{1}{2 a}(\phi-b)$.i.e. $R(0)$ is linear function. Then, we get $V(R)=-a R^{2}+c=-\frac{1}{4 a}(\phi-b)^{2}+c$. If $r / a>0$. then $V(R)$ is zero at the points $R= \pm \sqrt{c / a}$. Thus, there are two solutions with the constant curvature: $R= \pm \sqrt{c / a}$. If R is non-constant on M^{2}. 1hen the solntion is given by (2.4) with $g(\phi)$ in following form:

$$
\begin{equation*}
g(\phi)=\lambda+c \varphi-\frac{1}{12 a}(0-b)^{3} \tag{2.20}
\end{equation*}
$$

This function has extremums at the points $\phi_{1,2}=b \pm 2 a \sqrt{r / a}$ corresponding to the curvature $R= \pm \sqrt{c / a}$. Depending on the constant λ (if a, b, c are fixed), $g(\phi)$ can have one, two or three zeros. It is worth noting that the space-time described by the metric (2.20) is not asymptotically flat. $R=0$ is reached at the point $\phi=b$ which stays on finite distance from any point $\phi \neq \pm \infty$. Thus, the points $\phi= \pm \infty$ lies at asymptotical infinity and the curvature is singular at this point. In this sense. the solution (2.20) is similar to that obtained in the 21) theory of gravity with torsion described by the action quadratic in curvature and torsion [9].

It should be noted that a behavior like that is rather typical of polynomial gravity (1.1). Indeed, let the function $f(R)$ near $R=0$ look like as $f(R)=a R^{\sigma}+c$. Then, $\phi=\alpha a R^{\alpha-1}, R(\phi)=\left(\frac{o}{\alpha 2}\right)^{1 / \alpha-1}$. One can see that for $\alpha>1$ the point $R=0$ corresponds to $\phi=0$ and, consequently, lies at a finite distance from any point $\phi \neq 0$. It means that space-time is not asymptotically flat. The last is reached only if $\alpha<1$: then $R-0$ means $\phi-+\infty$. However, in this case the function $f(R)$ is not analytical in $R=0$. It is the case in Examplet., where the solution is asymptotically flat. More generally. the solntion is asymptotically flat if the function $f(R)$ satisfies the condition: $f^{\prime}(R)- \pm \infty$ if $R-0$. It is casy to spe, however, that flat space-time is not a solution of field equations in this case, as we have seen in Examplel.

3 One-loop renormalization

The complete quantization of the model (1.1) is a rather difficult problem. In this section, we just calculate one-loop countor-terms and check the remormalizability of the model in one loop and not considering these problems as the mitarity. We assume in this section that $f^{\prime \prime}(R) \neq 0$.

We use the background method. The metric g_{μ}, is written in the form: $g_{\mu \nu}=$ $\bar{g}_{\mu \nu}+h_{\mu \nu}$, where $\bar{g}_{\mu \nu}$ is a classical background metric, $h_{\mu \nu}$ is a small quantum field. In the conformal gauge we have $h_{\mu \nu}=\sigma / 2 g_{\mu \nu}$ and the theory reduces to quantization of only a conformal mode σ. Expanding the action (1.1) in powers of σ we obtain the quadratic in σ expression

$$
\begin{align*}
& S\left[g_{\mu \nu}\right]=S_{C l}\left[\bar{g}_{\mu \nu}\right]+S_{\eta}[\sigma] \\
& S_{q}[\sigma]=\int_{M^{2}}\left[f^{\prime \prime}(R)(D \sigma)^{2}-2 R f^{\prime \prime}(\sigma \square \sigma)+\left(R^{2} f^{\prime \prime}+\int-R f^{\prime}\right) \sigma^{2}\right] \sqrt{g} d^{2} z \tag{3.1}
\end{align*}
$$

where the curvature $R=R[g]$ and the Laplacian $\square=\frac{1}{\sqrt{g}} \partial_{\mu}\left[\sqrt{g} g^{\mu \nu} \partial_{\nu}\right]$ are determined with respect to the background metric \bar{g}_{12}. We see from (3.1) that ($1 / f^{\prime \prime}$) is effectively the loop expansion parameter for gravity.

The action $S_{q}[\sigma]$ can be written in the form

$$
\begin{equation*}
S_{q}[\sigma]=\int_{A^{\prime}} \sqrt{\tilde{g}} d^{2} z \sigma \dot{D} \sigma \tag{3.2}
\end{equation*}
$$

where \hat{D} is the fourth-order differential operator

$$
\begin{equation*}
\hat{D}=(\square+X) f^{\prime \prime}(\square+Y) \tag{3.3}
\end{equation*}
$$

and the functions X, and Y satisfy the following equations:

$$
\begin{equation*}
X+Y=-2 R, X Y=R^{2} f^{\prime \prime}+f-R f^{\prime} \tag{3.4}
\end{equation*}
$$

Calculating the functional integral over the conformal factor σ we can compute the infinite part of the one-loop effective action

$$
\begin{equation*}
I_{\infty}=\frac{1}{2}(\ln \operatorname{det} \hat{D})_{\infty}-\left(\ln \operatorname{det} \Delta_{g h}\right)_{\infty} \tag{3.5}
\end{equation*}
$$

where $\Delta_{g h}$ is the standard ghost operator corresponding to the conformal gauge.
By definition, for an elliptic $2 r$ order differential operator Δ defined on a twodimensional Riemannian manifold $\mathbf{N ~}^{2}$ we get:

$$
\begin{equation*}
\ln d e t \Delta=-\int_{t}^{+\infty} \frac{d t}{t} \operatorname{Tr} e^{-t \Delta} . \epsilon \rightarrow+0 \tag{3.6}
\end{equation*}
$$

The infinite part is given by ($L-\infty$):

$$
\begin{equation*}
(\ln d e t \Delta)_{\infty}=-\left(B_{0} L^{2}+2 B_{1} L+\frac{r}{2} B_{2} \ln \frac{L^{2}}{\mu^{2}}\right) \tag{3.7}
\end{equation*}
$$

where

$$
\begin{align*}
& \left(\operatorname{Tr}^{-t \Delta}\right)_{t \rightarrow 0}=\sum_{k=0}^{2} B_{k} t^{(k-2) / 2 r}+O(\sqrt{t}) \\
& B_{k}=\int_{M^{2}} b_{k}(\Delta) \sqrt{g} d^{2} z+\int_{\sigma M^{2}} c_{k}(\Delta) \sqrt{\gamma} d \tau \tag{3.8}
\end{align*}
$$

$b_{k}(\Delta)$ are the Seeley coefficients for the operator $\Delta\left(b_{2 p+1}=0\right)$. For simplicity we will assume that M^{2} is a manifold without a boundary ($\partial M^{2}=0$) and will neglect all boundary effects.

Note that L^{2} and L dependent terms are automatically absent in the dimensional or ζ-function regularization. So only the last term in (3.7) is of interest for us.

Now consider the Seeley coefficient for the elliptic fourth-order operator \hat{D} (3.3) (see [16]). Suppose that for some Δ_{4}

$$
\begin{equation*}
\Delta_{4}=\Delta_{2} \Delta_{2}^{\prime}, \operatorname{det} \Delta_{4}=\operatorname{det} \Delta_{2} \operatorname{det} \Delta_{2}^{\prime} \tag{3.9}
\end{equation*}
$$

Then, we get the corresponding expression for the Seeley coefficients [16]:

$$
\begin{equation*}
2 B_{2}\left(\Delta_{4}\right)=B_{2}\left(\Delta_{2}\right)+B_{2}\left(\Delta_{2}^{\prime}\right), \tag{3.10}
\end{equation*}
$$

Since the operator \hat{D} (3.3) has the structure (3.9) we obtain that

$$
\begin{equation*}
2 B_{2}(\hat{D})=B_{2}(\square+X)+B_{2}\left(f^{\prime \prime}(\square+Y)\right) \tag{3.11}
\end{equation*}
$$

For the operator

$$
\begin{equation*}
\Delta_{2}=\square+X \tag{3.12}
\end{equation*}
$$

the following result is well-known:

$$
\begin{equation*}
b_{0}\left(\Delta_{2}\right)=\frac{1}{4 \pi} ; b_{2}\left(\Delta_{2}\right)=\frac{1}{4 \pi}(1 / 6 R+X) \tag{3.13}
\end{equation*}
$$

To calculate the Seeley coefficients for the operator

$$
\begin{equation*}
\Delta_{2}^{\prime}=f^{\prime \prime \prime}(\square+Y), \tag{3.1.1}
\end{equation*}
$$

it is useful to observe that this operator can be transformed to (3.12) by introducing a new metric $\hat{g}_{\mu \nu}=\left(f^{\prime \prime}\right)^{-1} g_{\mu \nu}$:

$$
\begin{equation*}
J_{2}^{\prime}=\sigma_{i}+f^{\prime \prime} \hat{l} \tag{3.5}
\end{equation*}
$$

where $\square_{\tilde{g}}=\frac{1}{\sqrt{g}} \partial_{\mu}\left[\sqrt{g} \tilde{g}^{\mu \nu} \partial_{\mu}\right]$. Now nsing the resull (3.13) we obtain

$$
\begin{equation*}
B_{2}\left(\Delta_{2}^{\prime}\right)=\frac{1}{4 \pi} \int_{N^{2}}\left(1 /\left(\dot{R}+f^{\prime \prime} Y\right) \sqrt{\dot{g} \mu^{\prime}}=\right. \tag{3.16}
\end{equation*}
$$

or in terms of the old metrit $g_{\mu \nu}$ eq.(3.16) takes the form

$$
\begin{equation*}
\left.B_{2}\left(\Delta_{2}^{\prime}\right)=\frac{1}{4 \pi} \int_{N^{2}}(1 / 6 R+)^{\prime}\right) \sqrt{g} d^{2}= \tag{3.17}
\end{equation*}
$$

Thus, we obtain for $B_{2}(\hat{D})$:

$$
\begin{equation*}
B_{2}(\hat{D})=\frac{1}{8 \pi} \int_{M^{2}}(1 / 3 R+x+y) \sqrt{9} d^{2}= \tag{3.18}
\end{equation*}
$$

l'sing (3.4) we finally get

$$
\begin{equation*}
B_{2}(\hat{D})=-\frac{1}{4 \pi} \int_{w^{2}} 5 / 6 R \sqrt{9} d^{2}= \tag{3.19}
\end{equation*}
$$

The Seeley coefficient for the ghost oprator \mathcal{S}_{y}, is wrll-kiown [17]

$$
\begin{equation*}
b_{2}\left(\Delta_{2 h}\right)=\frac{1}{4 \pi}(2 / 3 h) \tag{3.20}
\end{equation*}
$$

Taking into account (3.7), (3.19-20) we obtain from (3.5) that the corresponding one-loop counter-term

$$
\begin{equation*}
I_{c t}=a \int_{M^{2}} R \sqrt{g} d^{2} z \tag{3.21}
\end{equation*}
$$

is surprisingly non-dependent on the concrete function $f(I)$. So the model (1.1) seems to be one-foop renormalizable. Of course, if one takes the next loops this result could be changed and possibly not for any $f(B)$ the theory is remormalizable. However, we do not consider higher leops here.

4 Coupling with conformal matter

Let us consider interaction of higher derivative gravity (1.1) with 2d conformal matter described by the action

$$
\begin{equation*}
S_{m a t}=\int_{M^{2}} \frac{1}{2}\left(\Gamma\left(V_{1}\right)^{2} \sqrt{g} d^{2}=\right. \tag{4.1}
\end{equation*}
$$

Then. we get the complete system of equations of motion:

$$
\begin{equation*}
T_{\mu \nu} \equiv \Gamma_{\mu} \Gamma_{\nu} O-\frac{1}{2} g_{\mu \nu}[1 \cdot(\partial)+2 \square O]+\frac{1}{2}\left(\partial_{\mu} \iota \cdot \cdot \partial_{1, c} \cdot-\frac{1}{2} I_{\mu, \mu} \partial_{2}\left(\cdot \partial^{\mu}(\cdot)=0\right.\right. \tag{4.2}
\end{equation*}
$$

where $\varphi=f^{\prime}(R)$. The equation of motion for matter reads

$$
\begin{equation*}
\square_{4} \cdot=0 \tag{-4.3}
\end{equation*}
$$

We will use the conformal gange in which the components of metric: $g_{++}=g_{--}=$ $0 ; y_{+-}=\frac{1}{2} \sigma^{\sigma}$. Then. e(. (-1.2) takes the form

$$
\begin{gather*}
T_{ \pm \pm}=\partial_{ \pm} \partial_{ \pm} \theta-\partial_{ \pm} \sigma i_{ \pm} \sigma+\frac{1}{2} \partial_{ \pm}(i)_{ \pm} \cdot=0 \tag{4.4}\\
T_{+-}=0<=>\quad\left(i_{+} \partial_{-} o=-1(o) r^{\sigma}\right. \tag{4.5}
\end{gather*}
$$

Moreover, we have the self-consisteney condition :

$$
\begin{equation*}
\left.\partial_{+} \partial_{-} \sigma=R(\sigma)\right)^{n} \tag{1.6}
\end{equation*}
$$

Equation (1.3) takes the form

$$
\partial_{+} \partial_{-} v=0
$$

and the solution reads

$$
\begin{equation*}
\varepsilon^{\prime}=b^{+}+\left(x^{+}\right)+e_{-}\left(x^{-}\right) \tag{-1.7}
\end{equation*}
$$

For the function $f(R)$ of general form eqs.(-1.t-6) are extremely non-linear diff r ential equations which are not exactly solved in general. Ilowerer, in some particular cases, for concrete $f(R)$, this problem can be essemially simplified.

Let us consider the case when the following rymation is valid:

$$
\begin{equation*}
\partial_{+} \partial_{-}(\sigma-\omega)=0 \tag{4.8}
\end{equation*}
$$

It is the case when $f(R)$ satislies the rquation:

$$
\begin{equation*}
R+V(R)=R+f-R f^{\prime}=0 . \tag{4.9}
\end{equation*}
$$

Then. we get

$$
\begin{equation*}
\sigma-o=w_{+}\left(x^{+}\right)+r_{-}\left(r_{-}\right) \tag{4.10}
\end{equation*}
$$

On the other hand. one catl sem that $(a+0)$ atisfion the biouville equation

$$
\begin{equation*}
\partial_{+} \partial_{-}(\sigma+\sigma)=\frac{1}{2 r} r^{n+\omega} \tag{1.11}
\end{equation*}
$$

which has following gromeral solution:

$$
\sigma+o=\ln \frac{A^{\prime}\left(x^{+}\right) B^{\prime}\left(r^{-}\right)}{\left[1-\frac{1}{1} \cdot 1 B\right]^{2}} \equiv .3\left(x^{+} . x^{-}\right)
$$

Where A and B are still monown functions of r^{+}and r^{-}respertivel.
Thus. we obtain:

$$
\begin{equation*}
a=\frac{1}{2} d+\frac{1}{2} u=\frac{1}{2} \cdot j-\frac{1}{2} w \tag{1.13}
\end{equation*}
$$

From this we ser that

$$
\dot{\partial}_{+}^{2} \varphi-\dot{\partial}_{+} \sigma \dot{\partial}_{+} \sigma=\frac{1}{2}\left(\dot{j}_{+}^{2} j-1 / 2\left(j_{+} x\right)^{2}\right)-\frac{1}{2}\left(\dot{j}_{+}^{2} w-1 / 2\left(i_{+} w^{2}\right)\right.
$$

On the other hand, one can see the following identity:

$$
\left.\left(\dot{\partial}_{+}^{2}\right\}-1 / 2\left(\partial_{+}, j\right)^{2}\right)=\left\{A: x^{+}\right\}
$$

where we introdnced the Schwarzian drivative

$$
\begin{equation*}
\{F: x\}=\frac{\partial_{x}^{3} F}{\partial_{x} F}-\frac{3}{2}\left(\frac{i_{x}^{2} F}{\partial_{x} \mathcal{F}}\right)^{2} \tag{1.14}
\end{equation*}
$$

Them, we get for the $(++j$-component of equation (4.1):

$$
\begin{equation*}
\left\{A ; x^{+}\right\}-\left(\partial_{+}^{2} u w_{+}-1 / 2\left(\partial_{+} u_{+}\right)^{2}\right)+2 T_{++}^{u}=0 \tag{4.15}
\end{equation*}
$$

where $T_{++}^{2 ;}=1 / 2\left(\partial_{+} \psi_{+}\right)^{2}$. Similarly, we oltain for the ($-\cdots$ - component of eq.(4.4):

$$
\begin{equation*}
\left\{B ; x^{-}\right\}-\left(\partial_{-}^{2} w_{-}-1 / 2\left(\partial_{-} w_{-}\right)^{2}\right)+2 T_{--}^{u^{\prime}}=0 \tag{4.16}
\end{equation*}
$$

Using the known property of the Schwavian deribtive (see for example [18]), one can see that egs. (4.15)-(4.16) are invariant utder $S L(2, R)$ A, $S L(2, R)$ group transformations:

$$
\begin{align*}
& A-\frac{a A+b}{r A+d} \cdot a d-b r=1 \\
& B-\frac{m B+u}{k B+p} \cdot m p-a n=1 \tag{4.17}
\end{align*}
$$

Vader the coordinate transformations $x^{ \pm}-y^{ \pm}\left(x^{ \pm}\right)$wr have:

$$
\begin{equation*}
H\left(x^{+}, x^{-}\right)-H\left(y^{+}, y^{-}\right)-\ln \left(\frac{\partial y^{+}}{\partial x^{+}} \frac{\partial y^{-}}{\partial x^{-}}\right) \tag{4.18}
\end{equation*}
$$

On the other liand, $w_{ \pm}$transforms as follows:

$$
\begin{equation*}
w_{ \pm}\left(x^{ \pm}\right)-w_{ \pm}\left(y^{ \pm}\right)-\ln \left(\frac{\partial y^{ \pm}}{\partial x^{ \pm}}\right) \tag{4.19}
\end{equation*}
$$

We can uss this symmetry to put $w_{ \pm}=0$. Then, one obiains equations on functions A and B :

$$
\begin{align*}
& \left\{A ; x^{+}\right\}=-\left(\partial_{+} \psi_{+}\right)^{2} \\
& \left\{B ; x^{-}\right\}=-\left(\partial_{-} v_{-}\right)^{2} \tag{4.20}
\end{align*}
$$

When the matter is absent ($T_{ \pm \pm}=0$), the solution of equations

$$
\begin{equation*}
\left\{A ; x^{+}\right\}=0,\left\{B ; x^{-}\right\}=0 \tag{4.21}
\end{equation*}
$$

is one of the following types. If $A^{\prime \prime}=0$, then

$$
\begin{equation*}
A=a x^{+}+b \tag{4.22}
\end{equation*}
$$

if $A^{\prime \prime} \neq 0$, then

$$
\begin{equation*}
A=\int-\frac{a}{x^{+}+b} \tag{4.23}
\end{equation*}
$$

Correspondingly, we get for $B\left(x^{-}\right)$:

$$
\begin{equation*}
B=m x^{-}+n \tag{4.24}
\end{equation*}
$$

or

$$
\begin{equation*}
B=d-\frac{m}{x^{-}+n} \tag{4.25}
\end{equation*}
$$

The metric takes the form:

$$
\begin{equation*}
d s^{2}=\frac{\left[A^{\prime} B^{\prime}\right]^{1 / 2}}{\left(1-\frac{A B}{4 t}\right)} d x^{+} d x^{-} \tag{4.26}
\end{equation*}
$$

Shifting x^{+}, x^{-}on constants we get $b=n=0$ in (4.22-2.5). Though A, B depend on the set of constants, the metric (4.26) depends only on one arbitrary constant. Let, for example, $A^{\prime \prime}=B^{\prime \prime}=0$, then

$$
\begin{equation*}
d s^{2}=\frac{c d x^{+} d x^{-}}{\left(1-\frac{c^{2}}{4 e} x^{+} x^{-}\right)} \tag{4.27}
\end{equation*}
$$

where $c=\sqrt{a m}$. In other cases, if $A^{\prime \prime}$ and $B^{\prime \prime}$ are not zero, the metric takes the form:

$$
\begin{equation*}
d s^{2}=\frac{c d x^{+} d x^{-}}{c^{2} x^{+} x^{-}-\frac{1}{4 e}} \tag{1.28}
\end{equation*}
$$

where $c=\left(1-\frac{f d}{4 e}\right)(a m)^{-1 / 2}$. The scalar curvature is given by the formula:

$$
\begin{equation*}
R=\frac{1}{e} \frac{\left(A^{\prime} B^{\prime}\right)^{1 / 2}}{\left(1-\frac{A B}{4 e}\right)} \tag{4.29}
\end{equation*}
$$

It has singularity if $A B=4 \epsilon$, which one can also see from egs.(4.27). (4.28). The points of horizon satisfy: $A B=0$. The spare-time (4.2T-28) is of the same type as the black hole solution in the 2 D dilaton gravity $[1,3]$. However, there is no such integrating constant for which the metric (4.27-28) is flat. The flat spacetime is mot a solution of field equations that has already been noted above. This is an essential difference between the string inspired 2D dilaton gravity [1] and higher derivative gravity (1.1) with $f=R \ln R$. Therefore, eqs.(4.4)-(4.6) do not describe the black hole formation from regular (flat) space-time due to the infalling matier as wo liad in the dilaton gravity [3]. The "bare" biack hole is necressary. The infalling matier only deforms this initially singular space-time.

As an example let us now consider the falling of r-like impulse of matter on the black hole. The matter energ. \boldsymbol{y}^{-}momentum tensor takes ibe form: $T_{++}^{+}=\lambda \lambda^{+} x^{+}$ $\left.x_{0}^{+}\right) . T_{-}^{\mathbf{w}^{-}}=0(\lambda>0)$. It describes the δ-like impulse of matter propagating atomg the x^{-}-direction. Suppose that the spare-time for $x^{+}<r_{0}^{+}$is a solution of the fielal equations without matter such that $A=a r^{+} . B=m . r^{2}$. For $r^{+}>x_{1}^{+}$tho fintion $B\left(x^{-}\right)$is the same while $A\left(x^{+}\right)$is found from the equation:

$$
\left\{\lambda ; x^{+}\right\}=-\lambda \lambda\left(x^{+}-x_{0}^{+}\right)
$$

For $x^{+}>x_{0}^{+}$the function $A\left(x^{+}\right)$is a solution of re.(.1.30) with the zero right-hand side

$$
\begin{equation*}
A=\frac{a x^{+}+\beta}{\kappa x^{+}+\gamma} \cdot \sigma \gamma-\kappa \beta=1 \tag{.1.31}
\end{equation*}
$$

where the constants $\alpha, \beta, \kappa, \gamma$ are found from the continuty condition of functions $A\left(x^{+}\right) . A^{\prime}\left(x^{+}\right)$and the gap condition for $A^{\prime \prime}\left(x^{+}\right)$at the point $x^{+}=x_{0}^{+}$. The last condition is easily obtained integrating (4.30) in the interval ($x_{0}^{+}-c, x_{0}^{+}+c$) and then taking the limit $\boldsymbol{c}-0$. As a result one obtains:

$$
\begin{equation*}
A^{\prime \prime}\left(x_{0}^{+}+0\right)-A^{\prime \prime}\left(x_{0}^{+}-0\right)=-\lambda A^{\prime}\left(x_{0}^{+}\right) \tag{4.32}
\end{equation*}
$$

From continuity of $A\left(x^{+}\right)$and $A^{\prime}\left(x^{+}\right)$one gets:

$$
\begin{align*}
& a x_{0}^{+}=\frac{\kappa x_{0}^{+}+\beta}{\kappa x_{0}^{+}+\gamma} \tag{1.33}\\
& a=\left(\kappa x_{0}^{+}+\gamma\right)^{-2} \tag{4.34}
\end{align*}
$$

and from the gap condition (4.32) we obtain

$$
\begin{equation*}
\frac{2 \kappa}{\left(\kappa x_{0}^{+}+\gamma\right)}=\lambda \tag{4.3.5}
\end{equation*}
$$

These equations and $\alpha \gamma-\kappa \beta=1$ are enough to find the form of $A\left(x^{+}\right)$for $x^{+}>x_{0}^{+}$:

$$
\begin{equation*}
A\left(x^{+}\right)=a \frac{x^{+}+\frac{1 x_{0}^{+}}{2}\left(x^{+}-x_{0}^{+}\right)}{1+\frac{1}{2}\left(x^{+}-x_{0}^{+}\right)} \tag{4.36}
\end{equation*}
$$

The metric for $x^{+}<x_{0}^{+}$takns the form

$$
\begin{equation*}
d s^{2}=\frac{\sqrt{m m} d x^{+} d x^{-}}{\left(1-\frac{m i}{1} x^{+} x^{-}\right)} \tag{+1.37}
\end{equation*}
$$

and the cormponding curvalure is the following

$$
\begin{equation*}
R=r^{-1} \frac{\sqrt{a m}}{\left(1-\frac{3 m}{4} r^{+} r^{-}\right)} \tag{4.38}
\end{equation*}
$$

This metric describes the hack hole with horizon in $x^{+} r^{-}=0$ and singularity at $.^{+} x^{-}=\frac{4 c}{4 m}$.

We will assume that $x_{0}^{+}>0$. i.e. impular falls from astmptotically flat region which lies right of borizon $\left(r^{+}=0\right)$. Thria. for $x^{+}>r_{0}^{+}$we obtain for the metric

$$
\begin{equation*}
d s^{2}=\frac{\sqrt{a m}}{\left[1+\frac{1}{2}\left(x^{+}-x_{0}^{+}\right)\right]}\left[1-\frac{1 m}{1}\left(\frac{\left.x^{+}+\frac{x^{+}}{0} x^{+}-x_{0}^{+}\right)}{1+\frac{1}{2}\left(x^{+}-x_{0}^{+}\right.}\right) x^{-}\right] \tag{-1.39}
\end{equation*}
$$

and the curvalure

$$
R=c^{-1} \sqrt{a m m}\left[1+\frac{\lambda}{2}\left(x^{+}-r_{0}^{+}\right)-\frac{a m}{11}\left(r^{+}+\frac{\lambda r_{11}^{+}}{\underline{2}}\left(r^{+}-r_{0}^{+}\right)\right) \cdot r^{-}\right]^{-1}
$$

$$
\begin{equation*}
r^{-}=\frac{1 c}{a m} \frac{\left(1+\frac{1}{2}\left(r^{+}-r_{0}^{+}\right)\right)}{\left(r^{+}+\frac{r_{0}^{+}}{2}\left(r^{+}-r_{0}^{+}\right)\right)} \tag{1.11}
\end{equation*}
$$

The derivative of the function (.1.11):

$$
\partial_{+} x^{-}=-\frac{\psi_{i}}{a m}\left(x^{+}+\frac{\lambda x_{0}^{+}}{2}\left(x^{+}-x_{1}^{+}\right)\right)^{-2}
$$

is negative and we have that for $x^{+}>r_{0}^{+}$the function (I. HI) is the monotonically decreasing one smoohly ghed with $r^{-}=\frac{1 r}{t^{m}} \frac{1}{r^{+}}$at $x^{+}=r_{0}^{+}$. Moreover. in the limit $x^{+}-\infty$ it limits to $x^{-}-x_{\infty}^{-}=\frac{1}{a^{\prime}}\left(x_{0}^{+} ; 1 / \lambda\right)^{-1}$. The lotal space-time for all x^{+} is shown in Fig.3. In the asymptotically flat region $\left(x^{+}>0\right)$ it is similar to that we have for the 21 dilaton gravity case [:3].

It should be noted that the function $f(R)=R \ln R$ is not a unigue one for which equations (4.1-6) are exactly integrated. hudeed, we ohtain from (1.5-6):

$$
\begin{align*}
& \left.4 \partial_{+} \partial\right)_{-}(\sigma-\theta)=(I+1) e^{n} \\
& \left.(j)_{+} \partial\right)_{-}(\sigma+\sigma)=(h-i)^{a}
\end{align*}
$$

These equations are reduced to the sistem of the Liouville cquations if

$$
\begin{equation*}
R+V=a c^{-\infty} \cdot R-l=b \tag{1.13}
\end{equation*}
$$

where a, b are constants. These conditions are equisalent tothesssien of differmitial equations on the function $f(R)$

$$
\begin{align*}
& R+f-R f^{\prime}=a a^{\prime} f^{\prime} \\
& R-f+R f^{\prime}=b f^{\prime} \tag{-4.14}
\end{align*}
$$

One obtains immediately from this

$$
\begin{equation*}
u=1 \cdot 2\left[u^{-f^{\prime}}+m^{\prime \prime}\right] \tag{1.15}
\end{equation*}
$$

Solving (4.t5) with resper iof ofortans:

$$
\begin{equation*}
f^{\prime}=11 \frac{R \pm \sqrt{R^{2}}-\pi b}{b} \tag{1.16i}
\end{equation*}
$$

Integrating his we fillally get:

$$
\begin{equation*}
f(R)=R \ln \frac{R \pm \sqrt{R^{2}-a_{b}}}{b} \mp \sqrt{R^{2}-a b^{2}} \tag{1.17}
\end{equation*}
$$

 theory. Sote only that for $a, b \neq 0$ it dereriben the assmptotically singular rather than asymptotically flat spare-time.

5 Solution with backreaction

As wo haw discribed in the latroduction quantum corrections are msmally assmod to remove the black hole singularity. One can try to analyan this problem semiclassically considering quantum grarity compled to a latge momber N of free scalar finds. In the limit $h \rightarrow 0$ with $.1 /$ fixed. it in a system in which the leading order of a perturbative expansion is a quantum throry of matter iat classical geometry. Integrating out the mater wr hawe all effection action drscribing the backreaction of matter and llawking radiation on the geometry, which we hope to treat classically [19]. In ref.[3] it was proposed to use this approach to study the problem in two dimensions for dilaton gravity. However, the resulting quantum-corrected field equations are not exactly solved $[3,12,20]$ though some reasons observed in favor of that singularity are still present in this semiclassical theory. We apply here the approach of [3] for theory of gravity drseribed by the action (1.1).

In two dimensions, integrating out the conformal scalar fields one gets the Polyakov-Liouville action:

$$
\begin{equation*}
S_{P L}=\frac{N}{90} \int d^{2} x_{1} \sqrt{-g} \int t^{2} x_{2} \sqrt{-g} R\left(x_{1}\right) \square^{-1}\left(x_{1}, x_{2}\right) R\left(x_{2}\right) \tag{5.1}
\end{equation*}
$$

here \square^{-1} denotes the Green function for the Laplacian. It should be noted that Spl incorporates both the Hawking radiation and the effects of its backreaction on the geometry. We neglect here the contribution of the ghosts [21]. The full effective aciion

$$
\begin{equation*}
S_{r f f}=S_{g r}+S_{m a t}+S_{P L} \tag{5.2}
\end{equation*}
$$

gives rise to the following system of equations (the metric is taken to be conformally flat. $g_{-+}=\frac{1}{2} e^{7}$):

$$
\begin{gather*}
\partial_{ \pm} \partial_{ \pm} \varphi-\dot{\partial}_{ \pm} \sigma \partial_{ \pm} \partial+2 r\left[\partial_{ \pm}^{2} \sigma-\frac{1}{2}\left(\partial_{ \pm} \sigma\right)^{2}-t_{ \pm}\right]+T_{ \pm \pm}^{v}=0 \tag{5.3}\\
\mid \partial_{+} \partial_{-} \sigma=-i^{+}(V(\phi)+2 r R) \tag{5.4}
\end{gather*}
$$

where $c=\frac{N}{18}$ and $T_{ \pm \pm}^{6}=\frac{1}{2} \partial_{ \pm}\left(\partial_{ \pm}\right)$. Equation ($\overline{5} .1$) is obtained as variation of the action (5.2) with respect to g_{+-}. Since the scalar curvature is a known function of o. we must add the condition of seif-consistency:

$$
\begin{equation*}
1 \partial_{+} \partial_{-} \sigma=R(\omega) r^{\sigma} \tag{5.5}
\end{equation*}
$$

The scalar matter equation

$$
\partial_{+} \partial_{-} \zeta^{\prime}=0
$$

gives

$$
\succcurlyeq^{\prime}=\left(x^{+}\right)+\psi^{-}-\left(x^{-}\right)
$$

For general function $f(R)$ these equations seem to be not exactly integrated. Therefore, we will consider in this section only the case

$$
S_{g r}=\int R \ln R \sqrt{-g} d^{2} x
$$

and show that for this type of gravitational action the system (5.3-5) is exactly solved. In this case $R(\phi)=\epsilon^{\phi-1}, V(\phi)=-R$. Equations (5.4), (5.5) take the form

$$
\begin{align*}
4 \partial_{+} \partial_{-} \phi & =\frac{(1-2 c)}{e} e^{\phi+\sigma} \tag{5.6}\\
4 \partial_{+} \partial_{-} \sigma & =\frac{1}{e} e^{\phi+\sigma} \tag{5.7}
\end{align*}
$$

Let $\mathrm{c} \neq 1$.

Then, from (5.6-7) we obtain

$$
\begin{align*}
& \partial_{+} \partial_{-}[(1-2 c) \sigma-\phi]=0 \\
& \partial_{+} \partial_{-}[\phi+\sigma]=\frac{(1-c)}{2 e} e^{\phi+\sigma} \tag{5.8}
\end{align*}
$$

These equations are easily solved

$$
\begin{align*}
& (1-2 c) \sigma-\phi=w_{+}\left(x^{+}\right)+w_{-}\left(x^{-}\right) \equiv w \\
& {[\phi+\sigma]=\ln \frac{A^{\prime} B^{\prime}}{\left(1-\frac{(1-\mathrm{c}}{4 c} A B\right)^{2}} \equiv \beta} \tag{5.9}
\end{align*}
$$

where $A=A\left(x^{+}\right), B=B\left(x^{-}\right)$. Finally, we get for the ronformal factor σ and field ϕ :

$$
\begin{equation*}
\sigma=\frac{1}{2(1-c)}(w+3): \rho=\frac{(1-2 c)}{2(1-r)} ;-\frac{1}{2(1-r)} n \tag{5.10}
\end{equation*}
$$

With respect to the coordinate changing $x^{ \pm}-y^{ \pm}\left(r^{ \pm}\right)$wo haw

$$
\begin{align*}
& \beta\left(x^{+}, x^{-}\right)-\ln 3\left(y^{+}, y^{-}\right)+\left(\partial_{+} y^{+} y_{-} y^{-}\right) \\
& w^{ \pm}\left(x^{ \pm}\right)-w^{ \pm}\left(y^{ \pm}\right)-(1-2 r) \ln \left(\partial_{ \pm} y^{ \pm}\right) \tag{5.11}
\end{align*}
$$

Hence, the fields σ and ϕ transform as a usual conformal factor and a scalar field. respectively:

$$
\begin{equation*}
\sigma\left(x^{+}, x^{-}\right) \rightarrow \sigma\left(y^{-}, y^{+}\right)-\ln \left(\partial_{-} y^{-} \partial_{+} y^{+}\right) \cdot \alpha\left(x^{+}, x^{-}\right)-\sigma\left(y^{+} \cdot y^{-}\right) \tag{5.12}
\end{equation*}
$$

One ran easily see that

$$
\begin{align*}
& \partial_{ \pm}^{2} \phi-\partial_{ \pm} \sigma \partial_{ \pm} \phi+2 c\left[\partial_{ \pm}^{2} \sigma-\frac{1}{2}\left(\partial_{ \pm} \sigma\right)^{2}\right]= \\
& \frac{1}{2(1-c)}\left[\partial_{ \pm}^{2} \beta-\frac{1}{2}\left(\partial_{ \pm} \beta\right)^{2}\right]+\frac{1}{2(1-c)}\left[\partial_{ \pm}^{2} w(-1+2 r)+\frac{1}{2}\left(\partial_{ \pm} w\right)^{2}\right] \tag{5.13}
\end{align*}
$$

As before, we have in terms of the Schwarzian derivative

$$
\begin{align*}
& \partial_{+}^{2} \beta-\frac{1}{2}\left(\partial_{+} \beta\right)^{2}=\left\{A ; x^{+}\right\} \\
& \partial_{-}^{2} \beta-\frac{1}{2}\left(\partial_{-}, j\right)^{2}=\left\{B ; x^{-}\right\} \tag{5.14}
\end{align*}
$$

Let moreover $c \neq 1 / 2$, then we call nse the symmetry (5.11) to put $\|=0$. Then. equations (5.3) take the form

$$
\begin{align*}
& \left\{A ; x^{+}\right\}=-2(1-c) T_{++}^{\psi}+4 c(1-c) t_{+}\left(x^{+}\right) \\
& \left\{B ; x^{-}\right\}=-2(1-c) T_{-}^{\psi}+4 c(1-r) t_{-}\left(x^{-}\right) \tag{5.15}
\end{align*}
$$

Eqs.(5.15) are ordinary differential equations with respect to A. B.
The metric and curvature, respectively, read:

$$
\begin{equation*}
d s^{2}=e^{\frac{A}{2(1-c)}} d x^{+} d x^{-}=\left[\frac{A^{\prime} B^{\prime}}{\left(1-\frac{1(-c)}{4 r} A B\right)^{2}}\right]^{\frac{1}{2(1-c)}} d x^{+} d x^{-} \tag{5.16}
\end{equation*}
$$

$$
\begin{equation*}
R=\frac{1}{r} \frac{\frac{11-2 n \cdot 9}{-1-1}}{r}=\frac{1}{(}\left[-\frac{A^{\prime} B^{\prime}}{\left(1-\frac{(1-9}{1 t} \cdot 1 / 3\right)^{2}}\right]^{\frac{1-2(1)}{2!1-n}} \tag{5.17}
\end{equation*}
$$

If the right hand side of o(4.(5. [5) is zero(i.e.. mattor is absent). then the solution of eq.(5.15) is alrearly kiown (ser ($1.20-25$) . Lef. for example, it take the form (1.22). (-1.2. $)$ wilh $b=n=0: A=a . r^{+} . B=m, r^{-}$. Them. the metric and sralar curvature take the form

If $r=$ O. we ohtain the "classical" black hole paci-lime with space-like singularity at $r^{+} r^{-}=\frac{1}{a m}($ wro assume that am >0).

 the points of horizon satisfy the condition (i)o $)^{2}=0$. Which for (5.1 s$)$. (5.19) meatis that $r^{+} x^{-}=0$. The diagram of this space-time is shown in Fig. S. The regions 1 and III are asympotically Ma1.

Let $r>1$ and consider the falling in this space time of the mattor impolse
 assume that impulse falls in the region I which is asymphotically flat. i.e. $r_{0}^{+}<0$. For $x^{+}<x_{0}^{+}$the space-time is doscribed by 1 he metric (s, l) and has curvature (5.19). For $x^{+}>x_{0}^{+}$the solmbon of raf(i.1.5) is fonmd in the same way as before (see the previons section). Boreover, the sulntion has the form similar to (A.3(i)

$$
\begin{equation*}
A\left(x^{+}\right)=\pi \frac{x^{+}+\frac{(11-\cdot)^{+}}{2}\left(r^{+}-r_{01}^{+}\right)}{1+\frac{1\left(1-r^{-}\right)}{2}\left(r^{+}-r_{0}^{+}\right)} \cdot r^{+}>r_{0}^{+} \tag{5.20}
\end{equation*}
$$

We olbtain correspondingly for the mot ric

$$
\begin{align*}
& d s^{2}=(a m)^{\frac{-1}{2(-1)}}\left[1+\frac{\lambda}{2}(1-r)\left(r^{+}-r_{i 1}^{+}\right)-\right. \\
& \frac{a m(1-r)}{l r^{r}} \cdot r^{-}\left(r^{+}+\frac{\lambda}{2}(1-r) x_{0}^{+}\left(r^{+}-x_{0}^{+}\right)\right]^{\frac{1}{-1}} d r^{+} d r^{-} \tag{5.21}
\end{align*}
$$

and scalar curvature

$$
\begin{align*}
& R=1 / r(a m)^{\frac{2 \cdot-1}{2 r-1)}}\left[1+\frac{\lambda}{2}(1-r)\left(x^{+}-x_{11}^{+}\right)-\right. \\
& \left.\frac{a m(1-r)}{1 r} r^{-}\left(x^{+}+\frac{\lambda}{\underline{2}}[1-r) x_{0}^{+}\left(r^{+}-x_{11}^{+}\right)\right)\right]^{-\frac{2,-1}{r-1}} \tag{5.22}
\end{align*}
$$

For $x^{+}>x_{0}^{+}$the singularity lins on the rurte

$$
\begin{equation*}
\left.x^{-}=\frac{1 r}{a m(1-r)} \frac{\left(1+\frac{1(1-r)}{2}\left(x^{+}-r_{0}^{+}\right)\right)}{\left(x^{+}+\frac{1(1-r)}{2} \cdot+x^{+}\right.}\left(x^{+}-x_{0}^{+}\right)\right) \tag{5.2:3}
\end{equation*}
$$

which is smoothly glued with the curve $x^{-}=\frac{1}{\text { am(1-i) }} 1 / x^{+}$at the point $x^{+}=x_{0}^{+}$. Calculating a derivative of the function (5.2:3), we obtain that

$$
\begin{equation*}
\partial_{+} x^{-}=-\frac{1}{m m(1-r)}\left(x^{+}+\frac{\lambda(1-r)}{2} x_{0}^{+}\left(x^{+}-x_{0}^{+}\right)\right)^{-2} \tag{5.2.1}
\end{equation*}
$$

i.e.. the function (5.23) is monotonically incrasing (womomber that wo ronsider the case $c>1$). The function (5.2:3) takes an infuiter tatue at $r_{1}^{+}=\left(1+\frac{2}{\text { (1-a) } x_{0}^{+}}\right) x_{0}^{+}$.
 $r^{+}>f_{0}^{+}$. as is shown in Fig.i. On the oflar hatad. the simgularity in the region IV asymptotically tends to $x_{\mathrm{c}}^{-}=\frac{2 \cdot 2}{7 \mathrm{~m}}\left(1+\frac{3(1-3}{2} \cdot r_{1}^{+}\right)^{-1}$. Theresulting space time is shown in Fig. 5 . We see that for large . . . $r>1$. Whe singularily domsn't disappear but simply becomes timelike. which is simitar on that we have for the 2D diaton gravity [20].

Another case happens if r lies in the interval $1 / 2<r<1$. One can ser that power in the exprossion for the curcature (5.19) becomes negative. Hence, the metric (5.18) describes space-time which is whular for any finite x^{+}and x^{-}. In
 The curcature is zero though the metric I_{+}takes an infinite value on this hine. We obtain singularity if x^{+}or x^{-}takes infinite value. It is conveniont to change variables: $x^{ \pm}=\left(y^{ \pm}\right)^{-1}$. Then. the metric and curvature take the form

$$
\begin{align*}
& d s^{2}=\frac{1}{\left(y^{+} y^{-}\right)^{2}}\left[\frac{\sqrt{a m}}{1-\frac{(1-c) m m}{1 c y^{+} y^{-}}}\right]^{\frac{1}{1-c}} d y^{+} d y^{-} \\
& R=1 / r\left[\frac{1}{\sqrt{a m}}\left(1-\frac{(1-c) a m}{4 r y^{+} y^{-}}\right)\right]^{\frac{2 r-1}{1-r}} \tag{5.25}
\end{align*}
$$

In the coordinates $\left(y^{+}, y^{-}\right)$the singularity lies on the light cone $y^{+} y^{-}=\mathbf{0}$. Asymptotically (for $y^{+} y^{-}-\infty$) this space-time is of comstant curvature.

The special case is $c=1 / 2$.
One can see from (5.11) that $w^{ \pm}\left(x^{ \pm}\right)$transform as usual scalar fields. Hence, one cannot put $w=0$. Taking into account (5.13). (5.14) we obtait for eq.(5.3):

$$
\begin{align*}
& \left\{A ; x^{+}\right\}+\frac{1}{2}\left(\partial_{+} w\right)^{2}+T_{++}^{\prime \prime}-t_{+}=0 \\
& \left\{B: x^{-}\right\}+\frac{1}{2}\left(\partial_{-} w\right)^{2}+T_{-}^{\prime}-t_{-}=0 \tag{5.26}
\end{align*}
$$

The metric and curvature take the form:

$$
\begin{align*}
& d s^{2}=\frac{A^{\prime} B^{\prime} e^{u^{+}} e^{\prime \prime \prime}-}{\left(1-\frac{4 B}{B e}\right)^{2}} d x^{+} d x^{-} \\
& R=1 / e e^{-w^{+} e^{-w^{-}}} \tag{5.27}
\end{align*}
$$

We may use the coordinate freedom to choose A and B as new coordinates: $u=$ $A\left(x^{+}\right), r=B\left(x^{-}\right)$. Since under $x^{+} \rightarrow y^{+}\left(x^{+}\right)$the Schwarzian derivative transforms as follows [18]:

$$
\begin{equation*}
\left\{A ; r^{+}\right\}-\left(\partial_{+} y^{+}\right)^{2}\left\{A ; y^{+}\right\}+\left\{y^{+} ; x^{+}\right\} \tag{5.28}
\end{equation*}
$$

eqs.(5.26) are rewritten in the following form:

$$
\begin{align*}
& \frac{1}{2}\left(\partial_{u} u\right)^{2}+T_{u u}^{u}=t_{u} \\
& \frac{1}{2}\left(\partial_{v} u\right)^{2}+T_{u u}^{u}=t_{v} \tag{5.29}
\end{align*}
$$

Note that inhomogeneons piece of law (5.28) cancels in (5.26) with the corresponding transformation of $t_{ \pm}$, so that finally wo come to expression (5.29). In the new roordinates we have

$$
\begin{align*}
& d s^{2}=\frac{c^{w^{+}+(u)} e^{w-(w)}}{\left(1-\frac{6 c}{8 c^{2}}\right)^{2}} d u d v \\
& R=1 / \epsilon c^{-w^{+}(u)} e^{-w-(v)} \tag{5.30}
\end{align*}
$$

In general, the solution of eqs.(5.29) depends on the choice of boundary conditions,i.e., on appropriate functions t_{u}, t_{v}. These functions mean the flow of the Hawking radiation due to the falling matter with energy-momentum tensor $T_{\mu \nu}^{\psi}$. Physically, it seems to be reasonable to assume that the cnergy back radiated cannot be larger than the energy of the falling matter, i.e. $t_{ \pm} \leq T_{ \pm \pm}^{\psi}$. From (5.29) we obtain that unique possibility is the following: $T_{ \pm \pm}^{\psi}=t_{ \pm}$. Hence, one gets $w_{ \pm}=$const and, consequently, the total space-time is of the constant curvature: $R=e^{-(w+1)}$. Notice, that only for $c=1 / 2$ there exists a constant curvature (de Sitter) solution of equations (5.3)-(5.5).

The other special case is $c=1$.
Then, as one can see from (5.6) and (5.7) we obtain

$$
\begin{equation*}
\partial_{+} \partial_{-}(\sigma+\phi)=0 \tag{5.31}
\end{equation*}
$$

This equation has the solution

$$
\begin{equation*}
\sigma+\phi=w=w^{+}\left(x^{+}\right)+w^{-}\left(x^{-}\right) \tag{5.32}
\end{equation*}
$$

Inserting this into (5.7) we get an equation on conformal factor σ :

$$
\begin{equation*}
\partial_{+} \partial_{-} \sigma=\frac{1}{4 e} e^{w}=\frac{1}{4 e} e^{w^{-}} e^{\omega^{+}} \tag{5.33}
\end{equation*}
$$

which has the solution:

$$
\begin{equation*}
\sigma=\frac{1}{4 e} \int^{x^{+}} e^{w^{+}\left(z^{+}\right)} d z^{+} \int^{x^{-}} \epsilon^{w v^{-}\left(z^{-}\right)} d z^{-}+\alpha\left(x^{+}\right)+\beta\left(x^{-}\right) \tag{5.3.1}
\end{equation*}
$$

We use the coordinate freedom to put $\alpha\left(x^{+}\right)=0, \beta\left(x^{-}\right)=0$. One can see that $\partial_{ \pm} \sigma$ satisfy the following equation

$$
\begin{equation*}
\partial_{ \pm}^{2} \sigma=\partial_{ \pm} u_{ \pm} \partial_{ \pm} \sigma \tag{5.35}
\end{equation*}
$$

Taking this into account and putting (5.32), (5.3.1) into (5.3) we obtain that $w_{ \pm}$ satisfy the following equations:

$$
\begin{equation*}
\partial_{ \pm}^{2} w_{ \pm}=-\left(T_{ \pm \pm}^{u}-2 t_{ \pm}\right) \tag{5.36}
\end{equation*}
$$

The general solution of (5.36) takes the form

$$
\begin{equation*}
w_{ \pm}\left(x^{ \pm}\right)=-\int^{r^{ \pm}} d u \int^{u}\left(T_{ \pm \pm}^{w}-2 t_{ \pm}\right) d z \tag{5.37}
\end{equation*}
$$

If matter doesn't contribute (i.e. the right-hand side of (5.36) is zero), then

$$
\begin{equation*}
w^{+}=a x^{+}+b, w^{-}=m x^{-}+d \tag{5.3}
\end{equation*}
$$

where a, b, m, d are constants. Below we consider the case $a, m>0$.
Let us now consider the δ-like matter contribution ($t_{ \pm}$are putted to zero) $T_{++}^{w^{\prime}}=$ $\lambda \delta\left(x^{+}-x_{0}^{+}\right), T_{--}^{\psi}=0(\lambda>0)$. Then, $w^{-}=m x^{-}+d$ for all x^{+}and w^{+}takes the form

$$
\begin{align*}
w^{+} & =a x^{+}+b, \quad \text { if } x^{+}<x_{0}^{+} \\
& =(a-\lambda) x^{+}+b+\lambda x_{0}^{+}, \text {if } x^{+}>x_{0}^{+} \tag{5.39}
\end{align*}
$$

Choosing the integrating constants in (5.34) to be zero we have correspondingly for σ :

$$
\begin{align*}
\sigma & =\frac{1}{4 e a m} e^{m x^{-}+d} e^{a x^{+}+b}, \text { if } x^{+}<x_{0}^{+} \\
& =\frac{1}{4 e m(a-\lambda)} e^{m x^{-}+d}\left[e^{(a-\lambda) x^{+}+b+\lambda x_{0}^{+}}-\frac{\lambda}{a} e^{a x_{0}^{+}+b}\right], \text { if } x^{+}>x_{0}^{+}(. \tag{5.40}
\end{align*}
$$

We see that the metric $g_{+-}=\frac{1}{2} e^{\sigma}$ is everywhere positive and regnlar for any finite x^{+}, x^{-}.

It is worth observing that the scalar curvature $R=1 / c e^{w-\sigma}$ can be written in the form:

$$
\begin{equation*}
R=\frac{1}{e} x e^{-\alpha x} \tag{5.41}
\end{equation*}
$$

where we introduced the function $\backslash(\backslash>0)$ 1aking the form

$$
\begin{align*}
1 & =r^{(1+i+1)},\left(m x^{-}+2 x^{+}\right) \cdot \text { if } x^{+}<x_{0}^{+} \\
& =r^{(1 n+i)} f^{\left(m, x^{-}+(2-1) x^{+}+i x_{0}^{+}\right)} \text {if } s^{+}>x_{0}^{+} \tag{5.42}
\end{align*}
$$

and function a is $a=\frac{1}{\text { tran }}$ for $r^{+}<x_{0}^{+}$and

$$
\begin{equation*}
a=\frac{1}{\operatorname{lr} m(a-\lambda)}\left[1-\frac{\lambda}{n},(1 \cdots)\left(r^{+}-r_{3}^{+}\right)\right] \tag{5.43}
\end{equation*}
$$

for $\boldsymbol{a}^{+}>x_{0}^{+}$. One can see lhat a is position bout for $\lambda<a$ and $\lambda>a$. Moreover in takes position finite value in the limit $\lambda-\mu$:

$$
a-\frac{1}{\operatorname{lom} m}\left[\frac{1}{a}+r^{+}-r_{n}^{+}\right] . \quad \text { if } \lambda-a
$$

Hence. We nhath that her furcton a is positite for all r^{+}and the curvature R (5.41) is finite for all r^{+}, x^{-}. We ohtain the asymptotially tat space time which is free from singularity and horizons.

Thus, the solution of equations (5.3)-(5.5) for $6=1$ describes everywhere regular space-time. This case gives un good examphe when the guantum corrections (taken into account in the form of the Pofyaker-Liouville wrm in the action (5.2)) can really remowe the space-time singularity of the chassical (black hole) solution. (1 should be noted that this result essentially depemls on the quantum state or. equivalemtly. on the choice of appopriate boudary conditions (functions t_{t}). In the case muder consideration the choice was to get asymperically flat space-time.

Some remarks ars in order. As we haw sem in Section 3. (eq.(3.1)) for action (1.1) the vahe ($1 / 5^{\prime \prime}$) is effertively hoop mansion paramoter for gravity. The semiclassical approximation (5.2) is valid under the comution: $\left|1 / f^{\prime \prime}\right| \lll$. For $f=R \ln R$ we have $\left(f^{\prime \prime}\right)^{-1}=R$. ('omserguenty. wo oblain the condition: $|R| \ll \lambda$. This condition is rather matural and it moms that somiclassical approximation works far from the points where the curvature indinitely grows. It is seen from the ahowe
 near the space time singularity where this comdition is mot walid and hener the semidassical approximation failed. However, we can sere that for $X=\left\{\begin{array}{l}x \\ (r) \\ =1)\end{array}\right.$ the curvature $R(5.4)$ is bounded and has a maximum value: $R_{\text {mas }}=\left(e^{2} a\right)^{-1}$. We have that $\alpha=(\operatorname{tam})^{-1}$ where $(a m)$ is an integrating constant. Thus, we ohtain that a semiclassical approximation is valid for $r=1$ ewerywhere in the space-time if $(\mathrm{am}) \ll 12 \mathrm{r}$. The last condition can always be hedd by an appropriate choier of the integrating constant ((mm). For $X=21(r=1 / 2)$ the curvature R was shown to be constant: $R=r^{-(\mu+1)}$. By an appropriate choier of the constant w one cat control the condition $R \ll A$, so the semiclassical approximation is correct aloo in this case.

Fig.1: The shape of the function $\phi(R)$ in the vicinity of point $R=R_{0}$ where $\phi^{\prime}(R)=f^{\prime \prime}(R)=0$. There are two values R_{a}, R_{b} of R which correspond to the same value φ. So the inverse function $R(\phi)$ has two branches.

Fig.2: The space-time near the time-like line $R=R_{0}(\phi=0)$ where $\phi^{\prime}(R)=$ $f^{\prime \prime}(R)=0$. It consists of two sheets glued along the line $R=R_{0}$.

Fig.3: The space-time obtained by the falling of δ-like impulse of matter at $x^{+}=x_{0}^{+}$on the black hole. For $x^{+}>x_{0}^{+}$the singularity is slightly deformed and asymptotically reaches the new horizon at $x^{-}=x_{\infty}^{-}$.

Fig.4: The black hole space-time deformed by guant um backroaction for $c>1$. The singularity now is time-like and points of horizon satisfy the condition $x^{+} x^{-}=$ 0 . The regions I and IIl are asymptotically flat.

Fig.5: The space-time obtained by the falling of δ-ljke impulse of matter at $x^{+}=x_{0}^{+}$on the black hole for $c>1$. The singularity for $x^{+}>x_{0}^{+}$is slightly shifted and asymptotically tends to new horizon at $x^{+}=x_{1}^{+}$and $x^{-}=x_{\infty}^{-}$.

6 Discussion

In resume, we have obtained that the preliminary hove that one-loop quantum corrections remove the classical black hole singularity . not realized for very large $N(c \gg 1)$. The space-time singularity is still present in the general solution for the action (5.2) in this regime. However. something interesting happens when N takes some finite (not very large) values. We have shown that for $\mathcal{N}=48$ ($c=1$) the solution of the system (5.2) describes geodesically complete space-time regular everywhere. The corresponding scalar curvature (5.4!) takes only finte values. In 1.he other case, when $N=2.1(c=1 / 2)$ the semiclassical action (5.2) describes the (de Sitter) space-time of constant curvature. This space-time is also obviously free from singularities. Remember that N is the number of scalar fields or, more generally, N is the number of sorts of paticles in a matter multiplet.

We conclude with some remarks in the order of disctussion. It seems to be reasonable to consider the requirement of space-time regularity as some kind of principle: " The sprice-times singularitios must be abssent in the complefe quantum theory of grevity and mather". Then. our semiclassical analysis can be interpreted as that this "regularity principle" is not valid in general. But it leads to some restrictions on the particle contents of the theory. In the case under consideration, it constraints the number of matter fields λ. There are some well known principles in modern physics which bound the particles spectrum: for example. the requirement of anomalies cancellation. Therefore. it would not be very surprising if the black hole physics gives us one more. In this paper, we have considered the two-dimensional case. However, the same situation can take place in four dimensions [15].

Of course, our study is just semiclassical and cannot be considered as a strict proof. The analysis in the framework of the complete quantum theory is necessary. However, the above consideration seems to be an argument in favor of the hypothesis on the relation betwen absence of the space-time singularities and particle spectrum of the theory.

7 Acknowledgments

I would like to thank Yu.Obukhov for comments on calculating the Seeley coefficients for 4 -th order differential operators. I also thank L.Avdeev, D.Fursary, D.Kazakor. M.Kalmykov, I.Volovich for very useful discussions. This work was supported in part by the grant Ph1-0802-0920 of the liternational Science Foundation.

References

[1] G.Mandal, A.Sengupta and S.Wadia, Mod.Phys.Lett. AG (1991), 1685: E. Witten, Phys.Rev. D44 (1991), 314;
[2] J.G.Russo, A.A.Tseylin. Nurl.Plys. B382 (1992). 259.
[3] C.G.Callan. S.B.Giddings. J.A.larwey and A.Strominger, Phess.Rev. D45 (1992), R100.5;
[1] M.O.Katanaev. L.V.Vorich. Amb.Phes. v. 197 (1990). I; M.O.Katanaev. J.Math.Phys. v. 34 (199\%). 700. W.Kımmer. D.J.Schwarz, Phys.Rev. D45 (1992). 3628; W.Kummer. D.J.Schwarz, Nucl. Phes. B382 (1992). 171:
[5] S.Solodukhin, JETP Lett.. 57 (1993). 329: Plys.Let1. B319 (1993). 87.
[G] E.W.Mielke, F.Gronwald. Yin.N.Ohukhov, R.Tresguerres and F.W.Hehl, Phys.Rev. D 48 (1993). 3618: I.V.Volovich. Mod.Phys.Latt. A8 (1993), 1827.
[7] J.D.Barrow, A.C.Ottewill. J.Phys. A16 (19R3). 2757: S.Cotsakis, G.Flessas. Phys Rev. D48 (1993, 3577: S.Alignemi. D.L. Wilthire, Phys.Rev. D46 (1992), 1.475; V.H.Hamity. D.E.Barraco. Gen.Rn.Grav. 25 (1993). 161:
[8] H.Kawai. R.Nakayama. "Quantum R^{2} grarity in Two Dimmusions". KEK preprint 92-212.
[9] T.T.Burwick, "All-Order Quantum (irmity in Turo Dimr usions". SJAC-PUB627 (1993).
[10] V.P.Frolov, Phys.Rev. D46 (1992), 5383.
[11] S.W.Hawking, Phys.Rev. D14 (1976), 2460.
[12] J.A.Harvey and A.Strominger, "Quantum Asperts of Black Holes", Enrico Fermi Institute Preprint (1992), hep-tl/9209055: S.B. Giddings. "Toy Model for Black Hole Evaporation", UCSBTH-92-36, hep-1h/9209113.
[13] T.Banks, M.O. Loughlin. Nucl.Phys. B362 (1991), 649.
[14] S.P.Trivedi, Phys.Rev. D47 (1993). 4233: A.Sirominger and S.P.Trivedi, Phys.Rev. D48 (1993). 5778.
[15] D.I.Kazakov, S.N.Solodukhin, "On Qunnfum Deformation Of The Schwarzschild Solution", Preprint JINR, E2-93-371 (1993).
[16] E.S.Fradkin, A.A.Tseytlin, Nucl.Phys. B201 (1982), 469.
[17] E.S.Fradkin, A.A.Tseytlin, Ann.Phys. 143 (1982), 413.
[18] A.H.Chamseddine, M.Reuter, Nucl.Phys. B317 (1982), 757.
[19] E.Tomboulis, Phys.Lett. B70 (1977), 361.
[20] T.Banks, A.Dabholkar, M.R.Douglas and M.O.'Loughlin, Phys.Rev. D45 (1992), 3607; S.W.Hawking and J.M.Stewart, Nucl.Phys. B400 (1993), 393
[21] A.Strominger, Phys.Rev. D46 (1992), 4396.

Received by Publishing Department on May 19, 1994.

[^0]: *E-mail address: solodukhin@main1.jinr.dubna.su

