


1 Introduction

Rocentiy, much attention has been paid ‘10 the investigation of models of two-
dimensional (2D) gravity. 1t is well known that the Einstein-Hilbert actior in two
dimensions coincides with the topological Euler number and, therefore, does not
determine any dynamics for gravitational (meltrical) degrees of freedom. Hence, one
should consider some alternative dvnamical descriptions of 2D gravity. One of the
simplest models. mainly inspired by the string theory. is dilaton gravity [1], gravita-
tional variables are the dilaton and metric fields (0, ¢, ). In empty (without matter)
space the classical equations of motion are exactly integrated {1} and the solution
describes the 2D black hole. On the quantum level, it has been shown that this
model is renormalizable [2]. The conpling with conforimal matter is again exactly
solvable classically and the solutions are configurations describing the formation of
a black hole by collapsing matter [3].

An other way is to formulate the theory of 2D gravity in the framework of a
consistent gauge approach. Independent variables are now vielbeins and the Lorentz
connection (¢%,w% ). The theory with Lagrangian quadratic in curvature R and
torsion T [4] was shown to be exactly solvable [5]. One class of the solutions contains
the de Sitter space-time with zero torsion. Other solutions are of the black hole type
[5]. Generally, one can consider the Lagrangian to he an arbitrary (not-necessarily
quadratic) function of curvature and torsion [6}. Such a theory has essentially the
same type of classical solutions.

Describing the gravitational degrees of freedom on the 2D manifold A2 only
by the metric (g, ) without introducing any additional variables, one considers the

following action:

5:/:1‘2:\/—7}(1?). (1.1)
BV

where f{ R} is, in principle, arbitrary (non-linear) function of the scalar curvature R
determined with respect to the 2] metric g,,. Theories of such type were studied
in higher dimensions {7} and in two dimeunsions [8,9]. Was observed that the theory
(1.1) is equivalent to some type of scalar-tensor (6. g,, ) theory of gravity. Moreover,
it was shown in {10] that (1.1) with Lagrangian f = Rln R describes the same black
hole space-time as the string inspired 2D dilaton gravity.

One of the motivations for recent investigations of 2D gravity (mainly of the
dilaton type) that it can be considered as a "toy” model to study the process
of formation and subsequent evaporation of a black hole. It has been argued by
Hawking [11] that such a process is not governed by the usual laws of quantum
mechanics: rather, pure states evolve into mixed states. However, it is commonly
believed that a successful quantization of gravity and matter will provide us with a
consistent solution of this problem. Quantum corrections may completely change the
gravitational equations and the corresponding space-time geometry at the Planck
scales. This problem is hard to analyze in four space-time dimensions. However, in
two dimensions one can attempt to attack this problem using the dilaton gravity



theories as a toy model [3]. These toy models have an explicit semiclassical treat ment
of the back reaction of the Hawking radiation on the geometry of an evaporating
black hole by including the one-loop Polyakov-Liouville term in the action (the
review can be found in [12]). Unfortunately, the resulting equations are not exactly
integrated and one can not obtain a definite answer. Therefore, one can try to
find another theory of 2D gravity (among the alternatives) for which the relevant
semiclassical equations would be analytically solvable.

The main goal of our paper is the study of this problem for 2D gravity described
by an action of the form (1.1) along the lines of ref.[3]. We show that for f = Rln R
the semiclassical field equations are exactly integrated and one can obtain a definite
answer about the structure of space-time when the backreaction of the Hawking
radiation on the black hole geometry is taken into account.

This paper is organized as follows. In the next two sections we investigate some
aspects common for theories described by the action (1.1). In Sec.2 we demonstrate
the integrability of classical field equations and find the exact solution. The one-
loop renormalizability of the theory is analyzed in Sec.3. In the next two sections we
mainly consider the case f = RIn R. The coupling with conformal (scalar) matter
is shown to be exactly solvable classically in Sec.4. The backreaction is taken into
account in Sec.5.

2 Classical solution of the model

Under variation of the action (1.1) with respect to the metric g,, we obtain the
following equations of motion:

VWS = 20uAS(R) - RI'CR)+ 200/} (21)

where f' = Ogf(R) and O = V#V,,.

At first sight, (2.1) is a system of differential equations of very high order with
respect to derivatives. For example, if f = R2, then (2.1) are equations of fourth
order of metric g,, derivatives. However, we will see that it is not really so and the
system (2.1) is rather easily solved.

Let us analyze at first possible solutions of (2.1) with the constant curvature
R = Ry = const. In this case we obtain that f{R) = const = f'|p=g, everywhere
in M2, Then, from (2.1) we get that sucl a solution exists if the function

V(R) = J(R) - Rf'(R) (2:2)

is zero at the point R = R),: V(R;) = 0. If V(R) becomes zero at P different
points R;,t = 1,2,..., P, then for given f(R) there are P different solutions of (2.1)
with constant curvaturc. An additional condition is that the function f/( R) must
be finite at B = R;.

Assuming R to be a non-constant function on M?, we consider a new variable
¢ = f'(R) provided that this equation is solved {at least locally} with respect to R:
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R = R(¢). Denote V(¢) = V(R(¢)). Then (2.1) is rewritten as an equation on the
new field ¢: '

1
V.V,o= Egﬂv{v(d’) + 2D¢} (2.3)

We obtain from (2.3) that £, = ¢,*0.¢ is the Killing vector [13]. Consequently,
the field ¢ can be chosen as one of the coordinates on M2. Then, metric reads

1
ds® = g(o)dt? — ——do? 2.4
9(6) o (2.4)
From (2.3) we get that
Co = -V(¢) (2.5)

For the metric (2.1) we have Oo = —¢'(¢) and eq.(2.5) reads
dey(o) = V(o) (2.6)

The solution takes the form

o

gld) = A+ /l'( o)y (2.7)

One can sec that our model (1.1}, (2.1) seems to be equivalent to some kind of
2D dilaton gravity with the dilaton field ¢ and potential V(o).

Thus, surprisingly, our initial higher-derivative equations reduced to the first
order equation (2.6) independently of the coucrete form of the function f(R). As a
result, the solution (2.7} is determined only by one arbitrary integrating constant A.
The Killing vector £, = ¢,”8, ¢ has bifurcation at a point where £2 = —(V¢)? equals
zero. One can see from (2.4) that g(¢) = 0 at this point and we have a horizon.

Since the scalar curvature for the metric (2.4) is equal to R = —g"(¢), one can
easily check that curvature for the solution (2.7) really coincides (if f”( R) # 0) with
It = R(¢) obtained by solving the equation ¢ = f'(R).

In the vicinity of points where ¢} = f”(R) = 0 the equation ¢ = f(R) cannot
be solved in a unique way. It is the only place where above solution is in-correct.
Near a point like that the function ¢(R) is as shown in Fig.I : there are two values
R, Ry which correspond to the same value ¢. So there are two branches of solution
of equation ¢ = f'(R). Let us consider this in more detail. Let ¢/(R) = 0 for some
finite R = Rp. Note that only zero of odd order is interesting for us. In the vicinity
of Ry the function ¢'( R) can be represented as follows

#(R)=a(R- R)* ', k=1,2,..., and a>0 (28)

and hence we obtain ;
O(R) = 5(R~ Ro)* +b (2.9)

and a
f(R) = m(ﬁf - Ro)*t! + bR + ¢ (2.10)



There are two branches of the solution of eq.(2.9) with respect to R:
2k
R=Rot((6~ b= (2.11)

In the vicinity of the point z € M? where R(z) = Ry there are two regions: where
R > Rg and where R < Rg. Our solution (2.4), {(2.7) is valid in any of these regions
taken separately. Consider the region where B > Ro. Suppose for simplicity that
b =0, a > 0; then ¢ > 0. Then, we get for the potential V:

2k

TRt 1( 2Ry kgt _ g 00 + ¢ (2.12)

Vie) =
The corresponding metric (2.7) for ¢ > 0 reads
- Ro 2 (2k)? ZL 1/2k ;241 /2K 5 1s
g(d)=A 245 +c¢— @EF )(4EF D) a] ¢ (2.13)
One can see that the metrical function g(dJ) (2.13) has regular in ¢ = 0 first and
second derivatives
9'(0) =0, ¢"(0) = ~Ry
However, the non-analyticity of (2.13) in ¢ = 0 manifests itself in that all the
following derivatives are singular at this point:
¢®(0) = 400, p> 2

This singularity means, in particular, that invariant (VR)? is singular at the
point z where R(z) = Rg. It should be noted that singularities of this type were
earlier observed in {14,15] for rather different theories.

In the region where R < Ry we get

R=Ro- (de’)‘/“
2k 2k 12k 1+1/2k P
V(¢)= TN () ~Rodp+e, >0 (2.14)

Thus, the total space-time in the vicinity of the point R = Rp (¢ = 0) is repre-
sented by gluing of two sheets (the coordinate ¢ > 0 can be used to parameterize
the points of both sheets in the neighborhood of ¢ = 0). The total space-time is
shown in Fig.2.

Really, the scalar curvature R itself can be used as oue of the coordinates. It
covers, in particular, the whole vicinity of the point Ro. Then, in the coordinates
(2, R) the metric reads:

dr? (2.15)

2 _ 2 SO
ds® = g(R)dt ()



For R ~ fly we can put g(r) ~ 1. fY(R) ~ a(R — f)?* and hence the metric takes
the form
ds?t = dff — a (R - Roy"¥dR? (2.16)

Let us now consider some examples.
FEzample 1.

f(Ry=RInR (2.17)
In this casc 0 = MR+ 1. B = 1. Henee V(o) = =K = —¢®"1, Since the
potential V{R) = —R is zero in ! = 0. it seems that one of the solutions is flat

space-time. liowever, the function f(R) = In I + | is not defined for R = 0. So if
we come back to eq.(2.1). we observe that flat space-time is not really a solution of
the field cquations.
If Ris a non-constant function on 2. the solution is given by the metric (2.4)
with
gloy=A— R(o)= A — ¢! (2.18)
This solution coincides with that obtained in 2d dilaton gravity and describes asymp-
totically flat black hole space-time. The essential difference of the solution (2.18)
from that we have in dilaton gravity is that it doesn’t describe flat space-time for

any integrating constant A,
The Lagrangian (2.17) seemns to be ill-defined at B = 0. However, we sce that

curvature R(¢) is everywhere positive and the point ® = 0 really lies at the spatial
infinity.
Ezample 2.

J(Ry=aR* + bR + ¢ (2.19)

In this case ¢ = 2aR+b. R = .zlu(o — b)ie. R(o) is linear function. Then. we
get V(R) = —alR?+¢ = —4]—“(¢» -0t If cfa > 0. then V{R) is zero at the
points R = :!:\/—(%. Thus, there are two solutions with the constant curvature:
R= :t\/’c/_a. Il 12 is non-constant on A{. then the solution is given by (2.1) with
g(¢) in following form:

Hd)=A+co~ _L(o—b)“ (2.20)
12a

This function has extremums at the points ¢y = b3 2a\/r_/r; corresponding 1o the
curvature R = :t\/m. Depending on the constant A (if a.b. ¢ are fixed), g(®) can
have one, two or three zecros. It is worth noting that the space-time described by the
metric (2.20) is not asymptotically flat. R = 0 is reached at the point ¢ = b which
stays on finite distance from any point ¢ # toc. Thus, the points ¢ = 100 lies at
asymptotical infinity and the curvature is singular at this point. In this scuse. the
solution (2.20) is similar to that obtained in the 2D theory of gravity with torsion
described by the action quadratic in curvature and torsion {5}
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It should be noted that a behavior like that is rather typical of polynomial
gravity (1.1). Indeed, let the function f{R) necar R = 0 look like as f(R) = aRR* + .
Then, ¢ = aaR*~!, R() = (Z)!/°=1, One can sce that for a > 1 the point R =0
corresponds to ¢ = 0 and, consequently, lies at a finite distance from any point
¢ # 0. It means that space-time is not asymptotically flat. The last is reached
only if a < 1: then R — 0 means ¢ — +oc. However, in this case the functlion
S(R) is not analytical in R = 0. It is the case in Frample!., where the solution is
asymptotically flat. More generally. the solution is asyvmpiotically flat if the function
J(R) satisfies the condition: f(R) — £oc il # — 0. {t is casy to see, however. that
flat space-time is not a solution of field equations in this case. as we have seen in
Ezamplel .

3 One-loop renormalization

The complete quantization of the model (1.1} is a rather difficult problem. In this
section, we just calculate one-loop counter-terms and check the renormalizability
of the model in one loop and not consideriug these problemss as the unitarity. We
assume in this section that f”(R) # 0.

We use the background method. The metric g, is written in the form: g, =
Guo+h,,, where g, is a classical background metric. h,,, is a stall quantum ficld. In
the conformal gauge we have k,, = a/2¢,, and the theory reduces to quantization
of only a conformal mode o. Expanding the action (1.1} in powers of o we obtain
the quadratic in o expression

S[g,w] 2-551[!7;;”] + S,,[O’]

S,lo) = /[j”(R)(Da)z ~2R["(000) + (R*[" + [ — R )o?)/Gd?z (3.1)
M?

where the curvature B = R[g] and the Laplacian O = 7'5(')‘,[\/5_0“"0,,] are deter-
mined with respect to the background metric §,... We see from {3.1) that (1//") is
effectively the loop expansion parameter for gravity.

The action S,[o] can be written in the form

Solo] = / Vid?zo Do (3.2)
Af?
where D is the fourth-order differential operator
D=(0+X)f"O0+VY) (3.3)
and the functions X, and Y satisfy the following equations:

X+Y=-2R XY =R +[-Rf (3.4)
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Calculating the functional integral over the conformal factor o we can compute the
infinite part of the one-loop effective action

I, = %(ln det D)o — (In detB g1 )oo (3.5)

where A, is the standard ghost operator corresponding to the conformal gauge.
By definition, for an elliptic 2r order differential operator A defined on a two-
dimensional Riemannian manifold 3/? we get:

+n>cd
IndetA = — / —;Tre"m. €— 40 (3.6)
The infinite part is given by (L — oc):

2
(IndetA)o = —(Bol? + 2B, L + %Bz In ,‘%) (3.7)

where

2
(Tre™® )0 = Y But*=21% 4 O(VY),
k=0

By = /bk(A)\/_ﬂdzz+ /ck(A)ﬁdr, (3.8)
M2 a2

br(A) are the Seeley coefficients for the operator A (bzp+) = 0). For simplicity we
will assume that M? is a manifold without a boundary (3M? = 0) and will neglect

all boundary effects.
Note that L2 and L dependent terms are automatically absent in the dimensional

or (-function regularization. So only the last term in (3.7) is of interest for us.
Now consider the Seeley coefficient for the elliptic fourth-order operator D (3.3)
(see [16}). Suppose that for some Ay

Ay = AA), detAy = detAqdetA (3.9)
Then, we get the corresponding expression for the Seeley coefficients [16]:
2B;(A4) = By(Az) + B2(A3), (3.10)
Sinice the operator D (3.3) has the structure (3.9) we obtain that
2B,(D) = Bx(0+ X) + Bo(f"(D+Y)) (3.11)

For the operator
Ay =0+ X (3.12)



the following result is well-known:
1
bo(A;) = L ; ba(A) = —(1/6R+ X) (3.13)
4 4

To calculate the Seeley cocfficients for the operator
Ay = O +Y), (3.11)

it is useful to observe that this operator can be transforimed to (3.12) by introducing
a new metric §u. = (/") g0t

AL =0; + /Y. (3.151

where O = &gﬂ,,[ﬁﬁ"”(h]. Now using the result (3.13) we obtain

By(Ah) = 1—'7; /( VGR + 'Y )\Wad*: (3.16]
Ar2

or in terms of the old metric g,, eq.(3.16) takes the form

By(AY) = Tl; /(l/(ill+ V) Jgdis (3.17)
A2

Thus, we obtain for Ba( D):

By D) = ;f; /( V3R + X + Y )/gds (3.18)
M

Using (3.4) we finally get

‘Bz(f))= -5’;/5/6”\/@1‘2; (3.19)
AVES

The Seeley cocflicient for the ghost operator A, is well-known [17]
[
b2(A,) = _17(2/3”) (3.20)

Taking into account (3.7), (3.19-20) we obtain from (3.5) that the corresponding
one-loop counter-term
1y = a/ Rﬁ(ﬂ: (3.21)
M2
is surprisingly non-dependent on the concrete function f(R). So the mode] (1.1)
seems to be one-loop renormalizable. Of course, il one takes the next loops this

result could be changed and possibly not for any f( 1) the theory is renormalizable.
However, we do not consider higher loops here.



4 Coupling with conformal matter

Let us consider interaction of higher derivative gravity (1.1) with 2d conformal
matter described by the action

Sonar = /%(TL')I\/T’]{F: (41)

A2

Then, we get the complete system of equations of motion:
N — l - . -) . 1 ; ; l . AT o
Ty =V, V,0- 5_!],,.,[‘ (o) + 200] + ;(rl,, i e — ;y,,,,d,,t'd v)=0 (1.2)

where ¢ = f'(R). The equation of motioy for matter reads

O =0 (1.3}

We will use the conformal gange in which the components of metric: gyq = g =
0 gp- = %(—”. Then. eq.(-1.2) takes the form

Tis = 04040 — dradio+ ;"i vdee =0 (-1.4)

Too =0 <=> Midydo=~V (o) (4.5)

Morcover, we have the sell-consisteney condition :

Hdpda = R(o)" (-1.6)
Equation (-1.3) takes the form
(')+(')._ L= 0
and the solution reads
e= et + e (07) {(L.7)

For the function f{R) of general form cgs.(-1.1-6) are extremely non-linear dif! -r-
cntial equations which are not exactly solved in general. However, in some particular
cases, for concrete f(R). this problem can he essemtially simiplilied.

Let us consider the case when the following equation is valid:

D d_(d-0)=10 (1.8)
It is the case when f( R) satisfies the equation:
R+VIR)=R+ [-Rf =0. (4.9)

i.c., Wl\oll f(R)= RIn R. This case was considered in Erample 1.



Then. we get
g~-0= u'+(.r+)+ w_{r_) (-1.10)

On the other hand. one can see that (7 4 o) satisfiex the Liouville equation
I | P
94d-(a+ o) = 5-c e (1.11)

which has following general solution:

Mat B’
G4+ o=In et = St ) 12
"o ) ()

where A and B arc sGll unknown functions of ot and +~ respectively.
Thus. we obtain:

= _ZJ —i-:z-u'. o= o {113)

From this we see that
.}2 . . _1.‘; l).’ ]_' (¢ 2
o~ dpodio= ;Z—((q_d —~ 1 /205.4)7)y— Slopw — 172084 u)7)
On the other hand. one can see the following identity:
(023 — 1/2(0,3P) = { At}

where we introduced the Sehwarzian derivative

DEF 3 iEF
Fog) = 22 _ (2 4.1
Feok =5 F zuf) (44

Then, we get for the (+4)-component of equation (1.1):
{Az¥ )~ (0hwy ~ 20wy )} + 215, =0 (4.15)
where Ty, = 1/2(d, ¥4 ). Similarly, we obtain for the {— - )-component of eq.{1.4):
{B;07 Y = (2 wo ~ 12D w_ )4+ 217_ =0 (4.16)

Using the known property of the Schwarzian derivative (see for example [18}), one
can see that eqs.(4.15)-(-1.16) are invariant under SL(2, 1) 4: S1L(2. R) group trans-

formations:

. }
. ! 2 ad — bhe = |

A+

ml 4+ n -
B — Tm wmp— kn =1 (4.17)

Under the coordinate transformations x¥ — gF(x%) we have:

gt dy~
Dw¥ dr— (4.18)

Alet.emy — Alytoy )~ Ind
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On the other hand, wy transforms as follows:

+
we(zF) — wy(y*) - ln(%—y (4.19)

We can use this symmetry to put wy = 0. Then, one obiains equations on functions
Aand B:

{Aizt} = —(8+¥4)°
{Biz"}=~(0-v-) (4.20)

\Wheu the matter is absent (T = 0), the solution of equations
{Azt} =0, {B:x"} =0 (4.21)

is one of the following types. If A” = 0, then

A=art b (4.22)
il 4”7 # 0, then .
A = f—' L+_-|-_b (423)
Correspondingly, we get for B{x™):
B=mx"4+n (4.24)
or n
B=d-— (4.25)
2" +n

The metric takes the form:

(A g
ds* = (‘—:%_B—)d.?:'“d:c' {4.26)
Je

Shifting z*,z~ on constants we get b = n = 0 in (4.22-25). Though A, B depend
on the sei of constants, the metric (4.26) depends only on one arbitrary constant.
Let, for example, A” = B” = 0, then

cdztdz™

ez fr 4.
(1- Sx+z-) .2

ds? =

where ¢ = y/am. In other cases, if A” and B” are not zero, the metric takes the

form:

cdztdz~
ds® = pr S S— ﬁ (1.28)
where ¢ = (1 ~ g—)(am)"l/ 2. The scalar curvature is given by the formula:
1 (AIBI)]/Z
p=248) " 4.29)
e(1-42) (
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It has singularity if AB = 4e. which one can also see from cgs.(4.27). (1.28). The
points of horizon satisfy: AB = 0. The space-time (.27-28) is of the same type as
the black hole solution in the 2D dilaton gravity [1,3]. However, there is no such
integrating constant for which the metric (4.27-28} is flat. The flat space-time is nof
a solution of field equations that has already been noted above. This is an essential
difference between the string inspired 2D dilaton gravity {1} and higher derivative
gravity (1.1) with [ = Rln R. Therefore, eqs.(4.1)-(1.6) do not describe the black
hole formation from regular {flat) space-time due to the infalling matter as we had
in the dilaton gravity [3]. The "bare™ black hole is necessary. The infalling matier
only deforms this initially singular space-time.

As an example let us now consider the falling of 4-like impulse of matter on the
black hole. The matter energy-momentum tensor takes the form: T3, = Azt -
.rg'). Tf_ = 0 (A > 0). It describes the é-like impulse of matter propagating along
the z~-direction. Suppose that the space-time for ¥ < rF is a solution of the field
equations without matter such that 4\ = ar*. B = wr~. For o4 > oF the lunetion
B{z7) is the same while A{2%) is found from 1he equation:

{2} = =2t -2l {(-1.30)

For z* > zf the function A(x*) is a solution of eq.(-4.30) with the zero right-hand

side
axt + 14

T k2t 4y
where the constants a, 3.k, 7 are found from the continuity condition of functions
AMz*). A'(z*) and the gap condition for A”(z%) at the point 2t = 2f. The last
condition is easily obtained integrating (4.30) in the interval (x} - «zf +¢) and
then taking the limit ¢ — 0. As a result onc ohtains:

.oy —R3=1 (1.31)

Azl +0) - Az - 0) = -2 (2]) {4.32)

From continuity of A(zt) and A(zt) one gets:

+

axf = ot (4.33)
KTy + ¥

a= (f;a:g + 7)_2 . (:1.34)

and from the gap condition (4.32) we obtain
25
__+"____ = (4.35)
("31'(] +7)

Thesc equations and oy —x/3 = 1 are enongh to find the form of A{x*) for 2+ > 'c:,'

At
at + —i‘L(.’L"" - .'L'S-)

I+ 3zt - 2f)

Alz¥)=a (1.36)
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The metric for +7 < 1} takes the form

I e Vamdrtde 137)
ds -(I—%"”ﬁ.r+r') (1.37

aud the corresponding curvature is the following

R=el VI (1.38)

(1~-22r+r=)

+

This metric describes the black hole with horizon in +7r~ = 0 and singularity at
rtpm = de
oM

We will assume that #f > 0. ie. impulse falls from asymptotically flat region
which lies right of horizon (&t = G). Theu, for #+ > "}T we abtain for the metric

” vam detde—
d<” = (-1.39)
(2t =rd0 My
[~ T(W)I ]
and the curvature
_ A am Art o
R =" Vamfl + 5(.:'“* ~ ok - T(.:-+ + ——2“ (ot —aIne)? (-1.140)

Oue can see from (110) that for xt > .r(f stngilarity lies on the enrve:

e 1 %‘.+_‘,+
P L i it L _ (141)

am nrd
(ot + 4‘,—(.1"* ~ .rl+, Y

The derivative of the function (1.-11):

e Aot .
D + RRUNI S ey
dpr” = —-—(u —T(l — oy b}
am 2
is negative and we have that for »+ > .r('t the function (L. 11) is the monotonically
decreasing one smoothly gluied with »— = %;'—'; at rt = rt. Morcover, in the limit
rt — oo it limits to x™ — 2, = ;",%(.r(f i—'_‘,’,\)_'. The total space-time for all »+

is shown in Fig.3. In the asvmptotically flaf region (o > 0} it is similar to that we
have for the 21 dilaton gravity case [3].

It should be noted that the function f(#8) = R1In R is not a unique one for which
cquations (:1.1-6) are exactly integrated. ludeed. we obtain from (1.5-6):

A d_(a— o) =(R+ V)"
dpd_(a+p)=(B -V )" (-1.42)

These equations are reduced to the system of the Liouville equations if

R+V =ac™. R-1V =bhe” (1.13)
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where a.b are constauts, These conditions are equivalent to the sysiom of differential
cquations on the function f(fR)

Rt f—Rf =ac~)
R=f+ Rf =bed {-1.11)

Omne obtains immediately from this
= l/‘ﬁ{m LA Y ]' {(1.17)
Solving (4.13) with respect 1o f* one ubiains:

It + \/F" —._l;l_l

fr=In =" (1. 16)
b
Integrating this we finally get:
R+ VR ab —
f(R) = Rln -—‘--/——1 VR - ub (1.47)
)

where both sighs () ave available il (@b} > 0. We do nat consider heve this kind of
theory. Note only that for a.b Z 01t deseribos the asymptoticallv singular rather

than asvmptotically flat space-time.

5 Solution with backreaction

As we have discribed in the Introduction gnantum corrections are nsnally assnmed
to remove the black hole singnlarity. One can try to analyze this problem semi-
classically considering quantom gravity coupled to a large nnmber N of free scalar
fields. In the limit 2t — 0 with V& fixed. it s a svstem i which the leading order
of a perturbative expansion is a quantura theory of matter in classical geometry.
Integrating out the matter we have an offective actiont describing the hackreaction
of matter and Hawking radiation on the geometry, which we hope to treat classi-
cally {19]. In ref[3] it was proposed to use this approach to study the problem in
two dimensions for dilaton gravity. However, the resulting quantum-corrected field
equations are not exacily solved [3.12.20] though somie reasous observed in favor
of that singularity are still present in this semiclassical theory. We apply here the
approach of [3] for theory of gravity described by the action (1.1).

In two dimensions, integrating out the conformal scalar ficlds one gets the

Polyakov-Liouville action:

N . .
Spr = % d*x /=g /llz:l.'z./—ylf(;::,)D"(.‘r,,.]:z)li(.‘tg) (5.1)

14



here O-! denotes the Green function for the Laplacian. It should be noted that
Spir, incorporates both the Hawking radiation and the effects of its backreaction on
the geometry. We neglect here the contribution of the ghosts [21]. The full effective
aciion

Srj'] = S_qr + Smnt + SPL (52)

gives rise 1o the following system of equations (the metric is taken to be conformally
flat g_y = Le7):

: 1 2 -
dp0p@ — 0p0ds0 + 2efdio — E(t)ia)“ 1)+ T{, =0 (5.3

o= —c"(V(o)+ 2¢R) (5.4)
where ¢ = % and T}y = 104 vdyv. Equation (5.1) is obtained as variation of the
action (5.2) with respect 1o g4—. Since the scalar curvature is a known function of
o, we must add the condition of seif-consistency:

104 0_0 = R(&)e” : (5.5)
The scalar matter equation
dyd-=0
gives

o= vpla®) +g_(27)

For general function f(R) these equations seem to be not exactly integrated.
Therefore, we will consider in this section only the case

Syr = /Rln Ry=gd*z

and show that for this type of gravitational action the system (5.3-5) is exactly
solved. Tn this case R(¢) = ¢~ V(#) = ~ R. Equations (5.4), (5.5) take the form

1040 = L2040 (5.6)
e
40,0 0 = %e""’” (5.7)
Letc#1.
Then, from (5.6-7) we obtain

840_[(1 - 2c)0 — ¢] = 0
8+0_[p+ o] = “—2‘e°—)e¢+ﬂ (5.8)
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These equations are easily solved

(1-2c)0—¢p=welzt)+wfr )= w
A'B!
+ol=lh ——f———- =7 5.9
{¢ ] (- (‘;‘.!“‘B)z {1.9)

where A = A(z*), B = B(z~). Finally. we get for the conformal factor o and field
¢ 1 1-2¢) 1
y . - -2 i3 . -
7——————2(1_6)(u7+3). o= 2“—(.)J 2“_’_)11 (5.10)

With respect to the coordinate changing »* — y¥(rt) we have

Blat,z7)— By .y )+ 0yt d_y™)
wh(z) — wF(yE) - (1 = 2e) (s y?F) (5.11)

Hence, the fields o and ¢ transform as a usnal conformal factor and a scalar field.
respectively:

o(zt, 27 )~ oy, yt) ~ -y~ dyy™) o(xF,27) — o(y*.y7) (5.12)

One ran easily see that
¢ — 8p0040 + 2030 - l(i)io)"] =

1
2(1_6)[31!3 "7*"’2]*2(1 [(‘)iw(—l+2{)+—(‘)k")2] (5.13)

As before, we have in terms of the Schwarzian derivative
1
98- E(“-H’)z = {A:zxt})

&Pp - %((’).d}" ={B:z7) {5.14)

Let moreover ¢ # 1/2, then we can nse the symmetry (5.11) to put w = 0. Then,
equations (5.3) take the form

{A;z*} = =201 - OTY, + de(1 - )ty (=)
{Bix™) = =201 = )TY_ +dell —ejt_(x7) (5.15)

Egs.(5.15) are ordinary differential cquations with respect to (1. B.
The metric and curvature, respectively, read:

A'B

—~——~—]2“l—"du.‘+(l:r_ (5.16)
U=-c) :
(1 - 5=AB)?

5 g
ds? = e =datdz™ = |
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(l=2c) ¥y t1=2cs
/,‘v:l,'ﬁﬁzl[ A8 Sfasd (5.17)

¢ L '_l_‘_'- ”;)

If the right-hand side of eq.(5.13) is zero (i.e.. mafter is absent), then the solution

of eq.(5.15) is already known (see (1.22-25)). Let. for example, it take the form

(L22) (4.2 with b= n = 0: A = art. B = msr~. Then. the metric and scalar
curvature take the form

) (L I (5.18)
il - U__-——.——-")'”h P
I N [z -
W= [ —Y— — T (3.19)

1— Vi B
ol - (-—-i-;—"L.r*‘,r')

e =0 we ul)lain the “classical™ black hole space-time with space-like singularity

at ot = - (we assuine that e > 0). -
For e < 1/2 0t ¢ > | we see from (5.19) that space-time still has singularity at
st = = s time-like for ¢ > 1 and space-like for ¢ < 1/2. s belore.

amf{l—e)”

the points of horizon satisfv the condition (¢)* = 0. which for (5.18). (5.19) means
that +*e~ = 0. The diagram of this space-time is shown in Fig. . The regions 1
and I are asymptotically fla,

Let ¢ > 1 sln(l consider the falling in this space-time of the matter impulse
++ = Ae(xt ~ Ju ) A > 0. We will negleet contribution of 14 (%) into (5.15). We
assume that impuise falls in the region T which is asymptotically flat. e, »F < 0.
for ot < .rg the space-time is described by the metric (3.18) and has curvature
5.19). For 2% > x} the solution of rq{5.13) is found in the same way as before
(see the previous section). Moreover, the solution has the form similar to (-1.36)

1++~—-——-——‘)'“( t-) o+

+y — ~ ot o
MHaT)=wa - '2_‘ " ¥ > (5.20)
We abtain correspondingly for the motrie
2 =l A
ds® = (am)T-D[] + S0 = et -ty -
am(l A L - -
—147-—) Pt 4 - eyt — eI N T detdr {5.21)

and scalar curvature

R= l/r(mn)'l'f:::‘[l + ,é(l —e)rt — by -

am(l — ¢}

o
N
LV

(et —(l-—r)l (r* ——1”))—7——! (5.2

-be
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For z* > z} the singularity lies on the curve

- le (14 =D+ gt )
S TRy ) (5.23)
(rt + '__'2_'41_(;,‘+ — I“T))
which is smoothly glued with the curve = = am“_h) 1/0% at the point 2+ = »f.
Calculating a derivative of the function (5.23). we obtain that
- - e + /\(i - + + 432 5
Dpr™ = —m[.r ———2——.1‘” (ot - o h) (7.21)

e.. the function (5.23) is monotonically inereasing (remember that we (mni(lm lhtI
case ¢ > 1). The function (5.23) takes an infiuite value at «#f = (1 + 5 ) — g,

¢ < rF < 0.0 I omeans that singularity n the region 11 is shgln[\ .slullml for
7* > of. as is shown in Fig.s. Ou the other hand. the singularity in the region
IV asymptotically tends to 7, = ZI’“\(I + = \“—' J IU )=t The resulting space-time is
shown in Fig.5. We see that for large .V . r > . the singnlarity doesn’t disappear
but simply becomes time-like, whicl is simihr tn that we have for the 2D dilaton

gravity [20].

Another case happens il ¢ lies in the interval 1/2 < ¢ < 1. One can see that
power in the expression for the curvature (5.19) becomes negative.  Hence, the
metric (5.18) describes space-time which is regular for any ﬁnitv F and 2=, Iy
particular, it is the case for the points on the line ot~ = ,”““ 5 (or AB = “_r,)
The curvature is zero though the metric gy_ takes an infinite value on this line.
We obtain singufarity if 2% or 2~ takes infinite value. It is convenient to change
variables: £ = (%)~!. Then. the metric and curvature take the forin

2 _ 1 [ vam
T (uty~12 {(1~¢c)arn
(y y ) - Teyty-

]Tl—fvvlyﬂly'

ds

(1 — ) 2c2

- ; l T=r 95 1:4
k= l/([\/m(l T NE (5.25)

In the coordinates (y+,y~ ) the singularity lies on the light cone y*y~ = 0. Asymp-
totically (for y*y~ — o) this space-time is of constant curvature.

The special case is ¢ = 1/2.
One can see from (5.11) that wE(z*) transform as usual scalar fields. Hence,
one cannot put w = 0. Taking into account (5.13). (5.14} we obtain for eq.(5.3):

1 ; 0
{/I;.".'+} + 5((‘).*‘"’)2 + 'I‘_:_+ - I+ =0

{B:2"} + _-;((‘)_ Wl + T —t_=0 (5.26)
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The metric and curvature take the form:

' IJu'+ oo
1152 = :l—lj—(—:‘?e—rdl'*-dx—
(1-3)
R=1feem e (5.27)

We may usc the coordinate freedom to choose A and B as new coordinates: u =
A(z*), v = B(r7). Since under x* — y*(r*) the Schwarzian derivative transforms
as Tollows (18]

{Acrt} — (Qeyt Pty ) + (et} (5.28)

egs.(5.26) are rewritten in the following form:

] 2 :
5(0" WP+ T =ty

}

| S,
S0l + 17, = (5.29)
Note that inhomogeneons piece of law (5.28) cancels in (5.26) with the corresponding
transformation of {1, so that finally we come to expression (5.29). In the new
coordinates we have
+
. et (u)eu/_(l']
ds® = ——o — _dudr

(1- 42
R=1/cc M) (5.30)

In general, the solution of eqs.(5.29) depends on the choice of boundary condi-
tions,i.e., on appropriate fuuctions ¢,, f,. These functions mean the flow of the
Hawking radiation due to the falling matter with energy-momentum tensor T,'f:,.
Physically, it seems to be reasonable to assume that the cnergy back radiated can-
not be larger than the energy of the falling matter, i.e. ty < Tiy. From (5.29)

we obtain that unique possibility is the following: T:ﬁ'i = t3. Hence, one gets
ws = const and, consequently, the total space-time is of the constant curvature:
R = e~(wt1)_ Notice, that only for ¢ = 1/2 there exists a constant curvature (de
Sitter) solution of equations (5.3)-(5.5).

The other special case is ¢ = 1.
Then, as one can see from (5.6) and (5.7) we obtain

O040(0+0)=0 (5.31)
This equation has the solution
og+d=w=wrzt)+w (27) (5.32)
Inserting this into (5.7) we get an equation on conformal factor o:

1 w_i w™ _wt
6+6_G_Ee = .E € (5.33)

19



which has the solution:

O AR * (-
g = ZZ/ v (= )dz+/ e Gz fa(zt) + B(z7) (5.31)
We use the coordinate freedom to put a(z*) = 0, §(z~) = 0. One can sec that
0340 satisfy the following equation
fio = dyswidsa (5.35)

Taking this into account and putting (5.32), (5.31) into (5.3) we obtain that ws
satisfy the following equations:

R wy = (TP, —2t4) (5.36)

The general solution of (5.36) takes the form

r¥ u
wa(z¥) = —/ du/ (T__’é’i ~ 203 )dz (5.37)

If matter doesn’t contribute (i.e. the right-hand side of {5.36) is zero), then
wt=azt +b v =ma” +d (5.38)

where a,b,m,d are constants. Below we consider the case a,m > 0.

Let us now consider the §-like matter contribution (4 are putted to zero) Ty, =
Ad(zt — zf), TY_ =0(A>0). Then, w™ = mz~ + d for all z+ and w* takes the
form

+
It

azt +b, if <z}
(a=Mzt +b+Axd, if 2t >z} (5.39)

w

Choosing the integrating constants in (3.34) to be zcro we have correspondingly for
a:

1 - +
g = — "7 +den:t +b i 1_+ < zt
4eam i 0
1 mz=4d[, (e~ \jrt+bdrzT A art b : + +
= ——e e\ o — —e?MoT0] ¥ > 23 (5.40
dem(a — A) [ a boif of )
We see that the metric g4 = %e" is everywhere positive and regular for any finite

+ -
zt,z™.
It is worth observing that the scalar curvature £ = 1/ce™™7 can be written in

the form: \
R= ;xe""“ (5.41)



where we introduced the function \ (\ > 0) 1aking the form
\ = ((h-f-vf)‘(m.r‘+mr+]l "' 1 < ‘l.a’
o . .+ .
'(Iu+:{][(77.J +(7—\)J++,\J(, ]~ ’f _r+ > .r; (—)12)

and function a is o = —— for »* < r}F and

RIS

] A 4
LS § (Nt =0T 3.
o denelee ~ ,\)[ (I’ | (5-13)

for «+% > IJ' One can see that a is positive hoth for X < @ and A > a. Moreover it
takes positive finite value in the limit XA — a:
S o
o — —If—3rt —aFl 0f N-—-a EREY]
Henee, we obtain that 1the function o is positive for all % and the curvature R
(511} is finite for all et 7. We obtain the asvmptotically flat space-time which is
free from singularity and horizons.,

Thus, the solution ol equations (5.3)-{3.5) for ¢ = | describes evervwhere regular
space-time. This case gives ns good example when the quantum corrections (taken
into account in the form of the Polvakov-Liouville term in the action (5.2)) can really
remove the space-time singularity of the classical (bfack hole) solution. It should
he noted that this result essentially depends on the quantum state or. equivalently,
on the choice of appropriate boundary conditions (functions 1), In the case nnder
consideration the choice wus to get asvmptotically flat space-time.

Some remarks are in order. As wo have seen in Section 3. (eq.(3.1)) for action
(1.1} the value (1/f") is effeetively loop expansion parameter for gravity.  The
semiclassical approximation (5.2) is valid under the condition: |17} << V. For
S = Rln B we have (f7)7F = R. Consequently. we obtain the condition: R} << V.
This condition is rather natural and it means that semiclassical approximation works
far from the points where the curvature infinitely grows. It is seen from the above
cousideration that for fixed very large N (¢ >> 1) there necessary exists a region
near the space-time singularity where this condition is not valid and hence the
semiclassical approximation failed. However, we can see that for Vo= X (¢ = |)
the curvature R (5.41) is hounded and has a maximm value: B, = (2}~ We
have that « = (deam)™! where (am) is an integrating constant. Thus, we abtain
that a semiclassical approximation ix valid for ¢ = I evervwhere in the space-time
il (am) << 12¢. The last condition can always he held by an appropriate choies of
the integrating constant tain). For X' = 21 (¢ = 1/2) the curvature # was shown
to be constant: B = ¢~ | By an appropriate choice of the constant « one can
control the condition # << N so the semiclassical approximation is correct also in

this case,
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Fig.1: The shape of the function o(R) in the vicinity of point R = [Ro where
¢'(R) = f'(R)= 0. There are two values Rq, ity of R which correspond to the same

value o. So the inverse function R(9) has two branches.

t

Fig.2: The space-time near the time-like line R = Rg (¢ = 0) where ¢'(R) =
J*(R) = 0. It consists of two sheets glued along the line R = Rq.



Fig.3: The space-time obtained by the falling of é-like impulse of matter at
z* = z} on the black hole. For z* > g} the singularity is slightly deformed and
asymptotically reaches the new horizon at z~ = z3,.
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Fig.4: The black hole space-time deformed by quantum backreaction for ¢ > 1.
The singularity now is time-like and points of horizon satisfy the condition 2+a2~ =
0. The regions I and I1l are asymptotically flat.

Fig.5: The space-time obtained by the falling of §-like impulse of matter at
z+ = z{ on the black hole for ¢ > 1. The singularity for 2+ > z} is slightly shifted
and asymptotically tends to new horizon at z+ =z} and z~ = z.
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6 Discussion

In resume, we have obtained that the preliminary hope that one-loop quantum
corrections remove the classical black hole singularity . not realized for very large
N (¢ >> 1), The space-time singularity is still present in the general solution for
the action (5.2) in this regime. lHowever. something interesting happens when V
takes some finite {not very large) values. We have shown that for N = 48 (¢ = 1)
the solution of the system (5.2) describes geodesically complete space-time regular
everywhere. The correspouding scalar curvature {3.11} takes only finite values. In
the other case. when N = 21 (¢ = 1/2) the semiclassical action (5.2) describes
the {de Sitter) space-time of constant curvature. This space-time is also obviously
free from singularities. Remember that ¥V is the number of scalar ficlds or, more
generally, N is the number of sorts of particles in a matter mulitiplet.

We conclude with some remarks in the order of discussion. It seems to be
reasonable to consider the requirement of space-time regularity as some kind of
principle: ™ The space-time singularitics must be absent in the complete quantum
theory of gravity and mattcr ~. Then, our semiclassical analysis can be interpreted
as that this "regularity principle”™ is not valid in general. But it leads to some
restrictions on the particle contents of the theory. In the case under consideration,
it constraints the number of matter fields X'. There are some well known principles in
modern physics which bound the particles spectrum: for example. the requirement
of anomalics cancellation. Thercefore. it would not be very surprising if the black hole
physics gives us one more. In this paper. we have considered the two-dimensional
case. However, the same situation can take place in four dimensions [15].

Of course, our study is just semiclassical and cannot be considered as a strict
proof. The analysis in the framework of the complete quantum theory is necessary.
However, the above consideration seems to be an argnment in favor of the hypothesis
on the relation between absence of the space-time singularities and particle spectrum
of the theory.
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