


I. INTRODUCTION

Constrained systems are often considered in physics and therefore their quantization
deserves particular attention. To quantize such systems one usually uses the method of
canonical quantization. The method of geometric quantization of Kostant and Souriau!~*%
is a generalization of the standard canonical quantization on the curved phase manifolds
M. Geometric quantization of the constrained systems have been considered in Refs.6-12.
In these papers it has been supposed that the G-invariant polarization F exists on the
symplectic manifold (M,w). But the condition of G-invariance of polarization F does not
always take place and little is known about the quantization of constrained systems when
the G-invariant polarizations of M is absent.

The existence of polarization imposes the restrictions on the geometry of the mani-
fold M. In particular, the existence of a complex polarization of M is equivalent to the
existence of a complex structure J on M which is covariantly constant with respect to a
symplectic connection. We shall consider the groups G which do not preserve any com-
plex structure J on the manifold M, but preserve some family of complex structures. Of
course, this imposes strong restrictions on the geometry of the manifold M. After quanti-
zation of the manifold M we shall obtain the family of the Fock spaces H; parametrized
by the complex structures J and what'’s more the group G maps the Fock spaces with
different complex structures each into another. That is why for defining of the Fock space
of G-invariant states we should have the method of “covariant” identification of the (pro-
jective) Fock spaces corresponding to the different complex structures. In this paper we
shall describe a rather wide class of symplectic manifolds on which a family of complex
structures exists and discuss the quantization of such manifolds.

II. GEOMETRIC QUANTIZATION

A classical (mechanical) system is given by its phase space, i.e. a symplectic manifold
M with a 2-form w. In the formalism of geometric quantization it is necessary to introduce

i} a prequantization bundle L over M;

ii) a polarization F of M;

iii) a metaplectic structure on M.

We define the prequantization bundle L over M as a complex line bundle with the
connection V (associated with the connection form) coinpatible with the Hermitian struc-
ture <,> in fibres, the curvature 2-form Fy of which (}Fe(X,Y) = [Vx,Vy] - Vixy))
coincides with the symplectic 2-form w on M.

Theorem 2.1 : The prequantization bundle L over (M,w) ezists if and only if the
cohomology class of w is integral

For proof see Refs. 1-5.

Take for the Hilbert space of prequantization the space £2(M, L) defined as the com-
pletion of the space of smooth sections of L over M with compact supports with respect
to the inner product

(s,t) =/ < 8,¢ > wh
M

where <, > is given by the Hermitian structure of L. Then we define the Kostant-Souriau



prequantization r : C°(M) — EndC*( M, L) by setting
r(f)=[—iVy,

where a vector field X is defined by the formula X|w = —df and r(f) is Hermitian if f
is R-valued. It is not hard to see that

[r(f) (k) = —ir({[, }).
Thus, if we define operators
s(fy=i(f) = Vx, +1f, (2.1)
acting in the space £3(M, L), then we have
[s(), s(h)] = s({J. k}).

The introduced Hilbert space £L*(M, L) is too large to represent the phase space (M,w)
and we need a polarization,

Let TM be a tangent bundle over M and 7M = TM @ C its complexification. We
call by a polarization of (M,w) a subbundle F C T M such that

i) a fibre F, C TFM is a Lagrangian subspace in T°M for all z € M, i.e. the
restriction of w to F, vanishes and dimF, = n;

ii) a space of sections of the hundle F is closed under the Lie bracket.

If X — X is a complex conjugation then a subbundle 7 will also be a polarization.
The polarization F is called the complex polarization if FNF =0, i.e. TM = F, D F,
foranyz € M.

If M is a symplectic manifold with a complex structure J then a canonical Kahler
polarization F is defined by

Fo={Y,eT M :JY, = —iY¥,, zeM}. (2.2)

Kahler polarization is called positive {(see Ref.13) if the metric g on M defined by the
formula

9X.Y) =w(X,JY}, X.YCTM,

is positive definite.
Let F be a polarization F C T°M cof a symplectic manifold (M,w). Then we can
introduce the space of quantization .

Hp={$e L5(ML): Vyy=0,V¥Xe€T(M,F)}, (2.3)

where by I'(W, V) we denote the space of sections of a bundle V over W. For the Kahler
polarization F of (M,w) anambiguously defined by the complex structure J we will denote
the space of quantization by H;.

The introduction of a metaplectic structure on M is equivalent to the extension of the
structure group of the bundle TAf from the symplectic group Sp(2n, R) to the metaplectic
group Mp(2n, R} which is the connected double covering of Sp(2n, R).



Theorem 2.2 : A metaplectic structure on M exists if and only if the 1st Chern class
of M is even.

«For proofl see Refs. 1-5.

For a symplectic manifold (Af,w) of dimension 2n let L(Af) be the set of pairs (z, F;),
where z € M and F is a nonnegative polarization.'®® This manifold has the structure
of a bundle over M with projection («. /) — r. We define also the manifold L*(})
of positive Kahler polarizations of M as the bundle = : L*(M) — M of positive almost
Hermitian structures on M associated with the principal bundle of symplectic frame of
M. Denote by R(M,Sp(2n. R)) the principal Sp(2n, R)-bundle R — A of symplectic
frame on M and by § the symmetric space Sp(2n, BR)/U(n). Then L* (M) is defined as a
bundle

LY (M)=R Xigmy S (2.4)

associated with the principal bundle R. It means that the fibre #~1(x) of L¥(AI) — M
over a point x € M coincides with the space S, = Sp(2n. B)/U;(n) of positive Hermitian
structures on T, M. Scctions of & are identificd with almost complex structures on Af.

HI. SYMPLECTIC AND COMPLEX STRUCTURES ON R?>" AND L*(R*™)

Let us consider a vector space B** of dimension 2n with a canonical symplectic strue-

-1, 0

where g, v, ... = 1,...,2n. With the help of w for two arbitrary functions f and & oue can
define a Poisson bracket {f.h} = i, [, 4. where w*'ey, = 8. On R™ we introduce
a compatible with w complex structure J = (J#). i.e. an endomorphism J € Sp(2u. R) of
the space (R*",w) such that .J* = —1. Compatibility of « and J means that

ture )
w = swudr Adrt. (w) = ( 0 I ) (3.1)

, WX V) = (X)) = anad M = Wy

for any vector fields X and ¥. Such w and .J define a Kahler structure on B?" and the
2-form w is of type (1,1) in the complex structure J. We shall consider translationally
invariant complex structures, so they are defined by constant components J¥.

On R*™ we introduce the metric

g=w & 4. = w,,\.ll,\
and the Hermitian metric
h=g+iw & b, =g+ iv,.

We suppose that the metric g is positive definite, i.e. J is positive. It is well known that
the collection of all such ./, that are compatible with w, is parametrized by the symmetric
space § = Sp(2n, R)/U(n). 1t may be shown (sce. c.g., Ref.11) that

S = Sp(2n. RYNsp(2n, R) = {J € Sp(20. R) : S, = Sl ). (3.2)



Remind that sp(2n. R) = {A € gl(2n. R) : ‘A + wA = 0}. where £ is transposition.

The space S is parametrized by the symmetric compleéx # x n matrix 7 = 1y + 7y,
detr; # 0, hecause the general form of the complex structure matrix J, satisfying all
above-formulated conditions. is'*

J=p)% " = ( T‘,Tf:l —nTn o n ) (3.3)

2 -T2 N

o _ 0 -1, {17 1 'rz‘I —Tz_lTl
J‘(l,.o""ou’”“o . J°

Using the matrices J = (J2) of the complex structure, one may identify B2 with C*
introducing the operators

P=%(l—z'J). I"=,%H+i.l). P+P=1. PP=0

1 . : | . , _

Pt = ;(6“,‘ —-idy), P = 5(6{,‘ 44ty PE g Pr =g PP =0, (3.1)
that project onto the (1,0) and (0,1) parts of a vector. This means that each vector
X € R* may be decomposed into the holomorphic X' and antiholomorphic XV

with respect to J parts:
. i
X=X00%g xO0  xU9= (1 —i)x, XM= é(l +iJ)X,

JXUO el = g xien) (3.5)

Any tensor on A** may be decomposed in the same way.

According to the description from Sec.ll, we define the space L*(R?") of all positive
Kabhler polarizations of ( R?",w) and L*{R*") will be the product manifold R*" x §. Space
L*{R®) is the trivial bundle:

T LYy — B (3.6)
of all positive Kahler structures on #*". Points = € L*(/2*") are the pairs z = (z,J)
where = € R*", J € § = Sp(2n, R)/U(n) and =(x,J) = z. The fibre 7=1(z) in any point
x € R? is the space S of Kahler structures on B?" defined above. Sections of the bundle
(3.6) are the spaces ( R*™,w, J) with fixed complex structures .J € S.

As in Riemannian case we can provide L+(R?*) with a natural complex structure J.
In fact, let us consider the natural splitting of the tangent bundle TL*(R?") iato a direct
sum '

TLY(R™) = R*™ 1 T(S) 3.7)
of horizontal and vertical subbundles of TL*{R*"). Complex structure J on R*™ has been
described before. The fibre Ty(S) in = = (x..J) € L¥(R?™) = R*™™ x S is tangent to S
at J, so it has a natural complex structure Js (sce, e.g., Ref.14). It may be defined as
follows. The condition J? = —1 implics that JNdJY) + (dJ})JY = 0 = JyJSdJ} = dJL.
This means!® that the non-zero projections of &7 are P#dJ? and P#dJS. We introduce
on S a complex structure Jg = (J%'} (where the indices (¥) are considered as the upper
ones and () as the Jower ones) with romponents J&' = J#6). 1t is easy Lo see that

ST = g & JE = 1, (3.8a)



JESPEAJS = iPrdJs,  JU PPAIS = —iPrdT, (3.8b)

where 8 := 848} is the Kronecker delta and for any “vector” T{ we have §42T¢ = T
From (3.8b) it follows that P#dJ? and P¥dJZ are (1,0)-type and (0, 1)-type one-forms on
S. Analogously, the holomorphic and antiholomorphic vector fields on § will be

ad .
800 = Py & JpdM =i, (3.9a)
| F
ooNy = ’;‘5‘37 & Ja0N s = _ipen), (3.9b)
i

Now we can define the complex structure 7 on L*(R?*") using the decomposition (3.7)
by setting J = J® 19 1® Js and it is completely defined by the holomorphic (antiholo-
morphic) vector fields (3.5) on R*" and (3.9) on S.

Symplectic structure 2 on L*(R?") may also be defined by using the decomposition
(3.7): )

Q=w@l+16,

where w is defined in (3.1} and 5 has been described, e.g., in Refs.5,14. In terms of J¥
and dJ#, the two-form §s has the form:

Qs = —%P‘;'P_{’dJ,‘,‘ AdJ. (3.10)

It is easy to see that s is real and compatible with Js. It is well-known (see, e.g., Ref.5),
that 05 = Rs, where Rs is a curvature of the determinant bundle over §.

IV. QUANTIZATION OF THE SPACE (R™,w,J) AND FOCK BUNDLE

We introduce a (trivial) prequantization bundle L ~ R*" x C over R*™ with connection
V = ds*V, = (9, + swins?), (4.1)

where 8, = 32 It is easy to see that the curvature 2-form Fy = [V, V. Jdz# A dz¥ of
the connection (4.1) coincides with the symplectic 2-form w.

Theorem 4.1 : The bundle L is a holomorphic bundle.

Proof: The two-form w is of type (1,1} with respect to any complex structure J € S
(see Sec.III). Because w is of type (1,1) w.r. to J, then (0,2) part of the curvature vanishes,
so that the connection (4.1) in L endows it with a holomorphic structure.

Take for the Hilbert space of prequatization the space £2(R*", L) defined as the com-
pletion of the space of square-integrable smooth section of L over R*" with respect to the

inner product

) = [ b,

where ¥, is complex conjugate to ;.



Let us consider the space O(R?",w, J) of holomorphic sections of the bundle L over
N = n N
Ry = (R*™w,J):

O(R™ w,J) = {.p € T(R™L): %(1 +iJ)Vxy = 0,V vector field X on R"‘} =

= {-/: e(R™ L): %(6,‘,‘ +iWV, =0, pv= l,...,2n} .
Now we define the Hilbert space H; of square-integrable holomorphic sections:
Hy = {$ € O(R™w,J): / $o " < oo, (a2)
Ran

The space Hj is the Hilbert space of quantization. In particular, we shall consider Hy =
H o, where J® is a fixed canonical (see (3.3)) complex structure on R?".

In Sec.lll we introduced the space L+(R*") = R?™ x S of all positive Kahler struc-
tures on R%" and holomorphic and antiholomorphic vector fields on L*(R?") defining the
complex structure J on L*(R™). Denote by L — L*(R?") the pull-back of L to L*(R*").

Theorem 4.2 : The bundle L is a holomorphic bundle.

Proof: To prove the assertion denote by ¥ the pull-back of the connection V to L. By
definition, the pulled back connection ¥ has zero components along fibres:

- 8
= [ i
V=Vt+dligm

where we have used J# as coordinates, parametrizing S = Sp(2n, R)/U(n). Remind that
not all of the components J2 ate independent because they satisfy the equations (3.2)
and J{J} = —6. Now deﬁne a V{®1)_gperator on sections Y of L — L*(R*™) by setting

(4.3)

TNy = (v<° W+ dJA Py P 3‘3,) b. (4.4)
So V(O ig the (0,1)-component of V w.r. to the complex structure J on L*(R™)
introduced above. The symplectic structure w on R*" being compatible with all Kihler
structures on R?" has the type (1,1) w.r. to any such structure, hence the curvature
Fg also has the type (1,1) w.r. to any Kahler structure. According to the definition
of the complex structure on L+(R™) it means that the curvature Fy of the pulled-back
connection V on L has the type (1,1) w.r. to the complex structure on L* (R*). It follows
that

(VY = FE =,

i.e. L is holomorphic. It can be also shown by direct calculations, using (4.1), (3.4) and
(4.4).
Remark: 1t is essentially Ward’s construction from the twistor theory (cf. Ref.16).
Denote by H the space of square-integrable holomorphic with respect to J sections
of the bundle L — L+(R*"):

H={%e2(L*R™),L): %(1 +iJ)Vx¥ =0, ¥ vector field X on L+(R™)} =



={¥e LY (™). L): PN =0. P} D g = 0. jov...=1,....2n}) (4.5)

" ')l\
Each space (R*",w.J) is section of the bundle L*(#2*) — R* and we obtain the Hilbert
space of quantization !; as subspace in I3 fix an argument J of holomorphic with
respect to J functions ¥(r..J) € 1.

Now we have the Kihler space L¥(R*"). the prequantization bundle L — L*R™)
over L+(R2") with connection V. the space LH(L¥(R?), L) of prequantization and the
space H of quantization associated to L¥(**). Connection {4.3) is ﬂat along the fibre
S in the bundle L*(R*™) — R**. Let us add to the connection dJ* 32 g7z along S a term
B dJiw PSPV, YV, which is a one-form on S with values in the algebra of differential
operators on R*, i.e. we introduce the differential operator

7
Dy = s+ BRIV, (4.6)
where B is some constant. Then the opccator
' V(B) = dr'Y, + dJ'DY

if B # 0 can not be interpreted as a counection in the bundle L — L*(R™) because it
is quadratic in derivatives. But it is correctly defined differential operator acting in the
space C2(L*(R™), L).

By virtue of properties of d.J)/. which have been discussed in Sec. I, the operator D)
has only the following nonzero components (holumorphic and antiholomorphic):

DO 7 — pupn = pa (0; + B P Y, v ) Y. ),,, A A
D(ﬂ.l) ll _ P"D" = pn U ()(ll.l)u
» )l'l'l n

Let us calculate the commutators of the operators DUD 7 and DO with the oper-
ators V! and JONE defining the (0.1)- components of umnv(tmn ¥V in L. Because of
2] coincides with the (0. 1)-components of ¥V along S then

(oI peN =0, -~ (1.Ta)
It is not difficult to verify that
(D PN = '1 PIS . (1.7h)

i.e. D(O")g preserve the holomorphic structure in the hundle L = LY(R*™Y in accordance
with the Theorem 4.2.
¥or the operator D“‘"':{ we have

(DI PEV,) = m/wv —IBPIPIN 4B W PPEY .

alp

Therefore )
D), PV = [dd DYV PIT ) =



== {d.l‘(l —2B)PIP] + 2B dJiw™uy, PPP} Y, = —dJ”(l ~4B)PIPV,, (4.8)

where we have used the property dJfw™ = dJyw™ of dJ¥. Thus, the right hand side of
(4.8) becomes zero if B = 1/4. Later we shall choose this value of the parameter B.
Finally, the commutator [D{!9), DI%})] is equal to

(l.ﬂ)n 0,1) 8] — Z.m =
(D a‘ o= ["()J“ ™ PSPV, Vs, PaJA]
§ W™ (8P} + 80P PIV.N - (4.9a)

-_aﬂﬁv. (4.95)

We see that the commutator is equal to the sum of two terms, where the first term (4.9a)
preserves the holomorphic structure in the bundle I — L*(R?") and the second term
(4.9b) does not preserve and does not contain the differential operators and depends ~aly
on J € S = Sp(2n, R)/U(n).

.Term (4.9b) may be compensated if one will consider the bundle L ® KV/? — L*(R*)
instead of [ — L*(R*), where K'/* — L*(R*"}is the square root of the bundle K which
has the fibre K; = A" F* at (z,J) € L*(R*). Here F* = {P#dz*, p,. w2n}.
By definition 3%, a metaplectic structure on symplectic manifold (M, w) isa line bundle
§ — L*M such that 62 = K. In our case the restriction of K2 = § to S is simply the
square root of the canonical bundle of S. Let R} = (R™,w,J) be an arbitrary section
of the bundle L*(R?*") — R?™. The pull-back of /(/% to K3* will be the trivial bundle,
because R3" is the flat Kihler manifold. Transition from the bundle L = LYM) to
the bundle L @ K2 — L*(M) corresponds to the metaplectic correction and to the
introduction of the half-forms developed in the approach of gecmetric quantization.!®®
Notice that Berry’s phase (see Ref.17) may be expressed through the curvature of the
bundle K/2 — § after the embedding of the space of external parameters of the quantum
system into §.%

So, let us calculate Fp = £{D%, Df]ldJ¢ A dJ}. Using formulae (4.7a) and (4.9), we
obtain . 1
Fp= —%P:P,‘(dJ: AdJ} = 30, (4.10)

where Qg is given by (3.10). It is well known (see, e.g., Ref.5), that the curvature of the
bundle K2 — § is equal to —381s. Therefore, if we add to the operator 7% a connection
in the bundle K2 — S which depends only on JY, then the modified operator D; will
preserve the holomorphic structure of the bundle L® K'Y o L*(R*) . The explicit form
of this connection in terms of 7, and 1; from (3.3) is well-known (see, e.g , Refs.18 and
5). But it is unknown in terms of J¥, that is why we shall consider below in all formulae
the operators D;,. Our considera.tion will be true for the “corrested operators” D“ too.

Notice, that becuuse (4.9b) depends only on J, the corresponding to (4. 9b) global
transformations wiil multiply all functions ¥ from H by exp(ip(J)). Thus, we have the
following result.

Theorem 4.3 : The operator D = dJ#DY preserves the projective space P(H) of

holomorphic sections of the bundle [ — L*{ R"‘)



Following Hitchin'®, we may make all further considerations for the space P().

In virtue of translation invariance of complex structures J on R*", the bundle L*+(R*") —
R* is trivial: L*(R*) = R* x S. That is why we may define a projection p: L*(R*) —
S, p(z,J) = J. Because of this, in the space_ H of holomorphic sections of the bundle
L — L*(R?*) and in the projective space P(#) there exists the structure of a complex
vector bundle over $:

H={JH,—~S$ (4.11a)
Jes .

PHy=\JPH)—S (4.116)
JES

with the fibres H; in points J € S for # and the fibres P(Hj;) in points J € § for
P(f). Operator D = dJ!Dy was interpreted as the projectively flat connection in the
bundle (4.11a) or as the flat connection in the bundle (4.11b).!-? [t is beautiful and
correct interpretation, because D contains the derivatives of the first order on coordinates
of the base § of the bundles (4.11), and the terms P PyV,V., which are the part of
the generators of the symplectic group Sp(2n, R) acting in the space of sections I'(S, H)
and T'(S, P(H)) of the bundles (4.11). Therefore Fp in (4.10) is the curvature of this
connection.

Having the flat connection D, we can introduce a space F of covariantly constant
sections of the bundle (4.11a):

F={¥el(S H): D¥ =0} (4.12)

This space is isomorphic to the space Hy of quantization and may be used as definition
of the space of quantization in the case when there is not a single natural choice of the
complex structure, but a preferred family S. Analogously, with the help of connection
D (without the metaplectic correction) we can introduce a space P(F) of covariantly
constant sections of the bundle (4.11b):

P(F)={¥ e (S, P(H)): D¥ =0}. (4.13)

This space is isomorphic to the projective space P(Hp) of quantization (rays in the Hilbert
space Hp).

V. MARSDEN-WEINSTEIN REDUCTION
AND G-INVARIANT POLARIZATIONS

On a symplectic manifold M with a 2-form w for two arbitrary functions f and & one
can define a Poisson bracket {f,k} = w(Xy, X»). Here a vector field Xy is defined by the
formula X |w = —df, where X |w denotes the contraction of X with w. A correspondence
f — X; maps a Lie algebra C*°(M) of functions on M (with the Poisson bracket) to the
Lie algebra of the Hamiltonian vector fields on M (with the ordinary commutator).

Let G be a connected Lie group embedded into the group of the symplectomorphisms
of M. Let G be the Lie algebra of G. Then to each element £ € G one may correspond a
symplectic vector field X on M. The action of G on M is called 2 Hamiltorian action if
to each vector field X (£ € G) there corresponds a function ¢¢ € C(M), such that



XeJw = —dopg (5.1)

Let G* be a space dual to G. Using functions ©¢ on M one may define an AdG-
equivariant momentum map p: M — G* by the formula

< p(},€ >= pelx),

where £ € G, p(z) € G~.
Let us consider a constraint set Mo = p™1(0) = {z € M : pe = 0, V€ € G}. We
suppose that G acts freely on Mg. In such a situation the reduced phase space Mg is

_obtained as the quotient??
’ Mg = Mp/G. (5.2)

For the description of quantization of Mg and conditions under which Mg will be a man-
ifold, see Refs.6,23,24. It may be shown???® that there is a natural symplectic structure
wg on the space M.

There is a canonical representation of the Lie algebra G on smooth sections of L given
by the operators: ]
s{pe) = Vx, +ipg, (5.3)

where e € C(M) and X correspond to € € G (see (5.1)). We suppose that there exists
a global action of G on L such that the induced action of G is given by (5.3).

Consider the submanifolds My = ¢~1(0) and Mg = Mo/G in M. Let x: My — Mg
be the projection map and 5: Ay — M be the inclusion map.

Theorem 5.1 : There is unique line bundle (Lg,Vg) with connection Vg on Mg
such that . .

x"Le=n"L and x"Vg=7"V.
The curvature of the connection Vg is the symplectic form we.

For proof see Ref.6.

Since the Hermitian inner product <,> is G-invariant, there is a unique Hermitian
inner product < , >g on Lg such that y* <, >g=»" <, >. Thus Lg, Vg and <, >z
are prequantum data on M.

Let F be a polarization of M. It is clear that we may associate with F a polarization
Fg of the reduced space Mg if and only if the polarization F is invariant with respect
to the action of the group G.5-!2 In particular, in Ref.6 the following theorem has been
proved:

Theorem 5.2 : Let G be a connected compact Lie group, M e Hamiltonian G-space
and F a G-invariant, positive definite Kdihler polarization of M. Then there is canonically
associated with F a positive definite polarization Fg of the reduced space Mg.

Having polarizations F and Fg, one may introduce the following spaces

HE = {$ € Hr: s(pe)y = 0, Y€ € G}
Hr, = {$ € L*(Mg,Lg): X|Vad =0, VX € (Mg, F5)}

In Refs.6-12, it has been proved that these spaces are isomorphic as vector spaces: HE =
HE,. We shall not discuss here the more difficult questions connected with the introduction
of an inner product on HE and Hp, (see Refs. 5-12).
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Note that the interesting example of the combination of ideas from Sec.IV and the
Marsden-Weinstein reduction is given by Chern-Simons theory in (142) dimensions.'®~%
In this theory the initial space M is the space of all gauge fields in principal bundle (with
structure group ') over a Riemanian surface of genus g. Complex structure on the infinite
dimensional space of connections is indueed froni the complex structure on the Riemannian
surface parametrized by (6g—6) dimcusivnal Teichmiiller space T, when g > 1. Symmetry
group G of the theory is the infinite dimensional group of gauge transformations. This
group preserves the complex structure on the space of all connections. and after the
Marsden-Weinstein reduction the theory is described by the finite dimensional Kihler
manifold M. on which the family of complex structures, parametrized by the space T,
are defined. There is no preferable point in 7', therefore we should introduce the bundle of
the Fock spaces over Ty with the (projectively) flat connection, permitting onc to identify
all Fock spaces corresponding 1o dilferent choices of complex structure.

~ Generally speaking, it is difficult to properly correlate the quantization of the phase
space M and the reduced phase space M. In Refs.6- 12, it was accomplished by requir-
ing that the auxiliary structures on (M. @) necessary for quantization (in particular -
polarization F) be G-invariant. Then they can be projected 1o compatible quantization
structures on {M.wg). But the condition of (-invariance of polarization /7 does not
always take place and we shall consider the possibility of its weakening.

VI. QUANTIZATION OF THE SPACE (/#*"..v) WITH QUADRATIC
FIRST-CLASS CONSTRAINTS

As an example of the *

of the space (R*",w). This example is very important because it is known® that cvery
symplectic manifold (A1,£2) with Q of finite integral rank can be realized as a reduction
of some { R, w). Thus, (R?..) is universal for svmplectic geometry insofar as reduction
is concerned.

Let G be an arbitrary connected subgroup of Lie group Sp(2n. R). which acts on
(2?",w). Denote by T, = (7, %) the constant. matrices of the generators of representation
of the Lie group G in the space R*:

Mo Tid = 0T &= LA =BT 2= [T

arsden-Wetnstein reduction. we shall consider the reduction

.

where f5, are the structure constants of GLa b= 1. o= dim (G Let us also define
the realization of the Lie algebra G of the Lic group (7 ax a subalgebra with the generators
X, in the Lie algebra of Hamiltonian vector liclds on (1%, 2)

Xo=-T " r"d, = [X.. \o] = [ X (6.1)
It is casy Lo see that
Cx e = Naww +w X, +wn X, =0

because T, C sp(2n, R), and thevelore Ty, = 1wy, = Than, = T,
Let us correspond functions 2, to the Hamiltosian vector ficlds X, by formula (5.1).
We have

Ly
@a = gl rtat {6.2)

1 -


http://imporl.au

{?M‘r’b} =X, = “"wau‘r’uav‘?b = facb‘r’r (6.3)
and m = dimG < n constraints ¢, = 0. « = l.....m. define the submanifold (»>~(0) in
R?" (constraint set). In virtue of (6.3). the [Tamiltonian vector fields X, are tangential to
@~ 1(0). Assuming that for all z € >=!(0) the stabilizer group of z (a discrete subgroup
of G) is trivial, from the description in See.V we obtain the reduced phase manifold of
G-invariant states of the system as the guotient

RE = #7(0)/G.

Now, on H?" let us choose some complex structure J from § = Sp(2n, R)/U(n).
Calculate the Lie derivative Ly, of Ji:

Cx, JJo = XJ 0, +JeX], — Jo X8, =Ted, - 3T, = [T., JL. (6.4)

It .is important that although the Lie group G does not preserve the fixed complex
structure J, but it preserve the family S of the complex structures on (#*",w) because
G C Sp(2n, R).

It turns out that for ¢, from (6.2) the operators s(p,) = Vx, + #@, (acting in the
space L?(R®", L)) coincide with the vector fields X,: s(y,) = X,. Therefore we should
define the lift X, — X, of the vector fields X, on the space (R*,w) to the vector '
fields X, on the space L*(R?") described in Sec.IIl. This lift will be defined from the
condition of preserving by the lifted vector fields X, of the antiholomorphic part V@D
of the connection V in the bundle L — L*(J#?") which have been introduced in Sec.IV.
In this case the lifted group G will transform a holomorphic section ¥ of the bundle
L — L*(R*) into the holomorphic sections. Thus, the explicit form of the generators
X, is defined from the conditions

Ve =%, B0 e =

[\na P J‘I’ [\ “ aJ J 0

where ¥ is any holomorphic section of the bundle L — L*(£%) (for definition see (4.5)).
Proposition 6.1: Vector fields X, = X, + [J, T,,];‘,a—z; on L*(R™) are infinilesimal au-

tomorphisms of the complex structure J on [*(R?"). Fields X, preserve the holomorphic

structure in the bundle L — L*(R™).
Proof: 1t is relatively easy to check that

Lg o= X J0+JEXT, - JOXE, =0, {6.5a)
Lz Jod = X, J8 4 Jre— D gyl ,4=0 (6.55)
XaVve = yﬁ()‘l" nn anQ ) ,
[Xay PYV,) = 105 )V = T, 2901, (6.6a)
] a
(X 53101‘ *Pv(m o ;U, =T, 584 - T,5001 2. (6.65)

Formulae (6.5) mean that L3 J = 0. From (6.6) it is obvious that the lifted vector fields
X, preserve the space H of holomorphic sections of the bundle L — L*(R™).

12



Remark: Notice that if [J, 7,] = 0 for some fixed complex structure J, then T, € us{(n).
But from this it does not follow that [J',T,] = 0, where J’ is another complex structure
from § = Sp(2n, R){U(n).

Now we know the action of the group G in the space H of holomorphic sections of the
bundle L — L*(R?"), therefore we can define a G-invariant subspace HS in the space f.
By definition . N

Hé={¥eH: XW¥=0a=1,.,m=dimG}. (6.7)
This space is not the space of quantization which may be corresponded to the reduced
phase space RZ' = ¢~1(0)/G, because functions ¥ € HS depend on extra variable J € §.
But because of the translational invariance of the complex structures J on (R?"*,w) the
space L+(R*") for (R*",w) has a structure of double fibration:

L+(R2n) £,
T Rli . (6.8)

That is why in the space H there exists the structure of the bundle # — S, which
has been described in Sec.IV. In this bundle the projectively flat connection D has been
introduced. If the action of the group G in H preserves this connection (or, in other
words, [X’,,DZ] ~ D) then this action can be pushed down to the action in the space
P(F) of covariantly constant with respect to D sections of the bundle P(H) — §.

Pruposition 6.2: The action of the group G preserves the connection D in the bundle
P(H) > S.

Proof: Let us calculate the commutator [X,, Dy It is not hard to verify that

[Xa, DY) = T, D% - T.5DA. (6.9)

From (6.9) it is easy to see that [X,,D%]¥ = 0 on the functions ¥ from the space P(F)
(see (4.5) and (4.13)).

Thus, the action of the group G with the generators X, transforms the covariantly
constant with respect to D sections of the bundle P(H) — S to the covariantly constant
ones. Therefore vz can introduce the G-invariant subspace P(F)C in the space P(F):

P(FI¥=P(F)NS°={¥ e P(H): D¥=0, X,¥=0, a=1,...,dimG}. (6.10)

The space P(F)C will be the projective space of quantization associated with the reduced
phase space RY = ¢~1(0)/G. We shall not discuss here the introduction of a Hermitian
inner product in P(F)¢, which may be induced from the Hermitian inner product in /]

in a natural way. .

Note that the vector fields X,, corresponding to the constraints ¢,, contain the deriva-
tives with respect to J¥. Components of J* may be interpreted as additional “times” and
the described above approach is connected with the “multitemporal” approach, developed
in Ref.26. Our approach also generalizes the approach to quantization of systems with
quadratic first-class constraints, developed in Ref.27, on the case when the symmetry
group G does not preserve a polarization.
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VII. ON QUANTIZATION OF GENERAL MANIFOLDS (M,w)

Now we shall discuss the generalization of the quantization scheme of the space
(R*™,uyp) described in Sec.V] on arbitrary symplectic manifolds (M,w). As before, we
shall consider the positive Kihler polarizations of M and the bundle r : LY (M) — M of
the (almost) complex structures over M (see Scc.ll). Let L — M be the prequantization
bundle over M with connection V having the curvature equal to w. We have to define
the pull-back bundle L = x*L — L*(2Al} and provide it with the complex structure 7.
Using it, we are able to introduce the space A of holomorphic with respect o0 7 sections
of the bundle L — L+(M).

As in the Riemannian case, taking a sy mplectlc connection D on M, we can always
provide L*(M) with a natural almost complex structure J.2%-32 Unfortunately, this al-
most complex structure is almost never integrable (it is integrable <= M is conformally
symplectic flat?*?3?). It is therefore appropriate to seek subbundles of L*(M) picked
out by the geometry of M in the hope that some of these are complex manifolds. One
way to do this is to restrict the holonomy of Al and consider those elements of L*(A)
that are compatible with the holonomy of Af 282931

So let our 2n-dimensional sympleciic manifold (M, w) admit a connection D with
holonomy group K C Sp{2»,R). Let P(M,K) — M denote the holonomy bundle,
i.e. the reduction of symplectic frame bundle R(M, Sp(2n, R)). The typical fibre § =
5p(2n, R)/U(n) of L*(M) decomposes into a disjoint union of A-orbits and L+(A) de-
composes into a disjoint union of subbundles, each one associated to P with such an
orbit as typical fibre. We choose a A -invariant symmetric submanifold @ of §, with a
K -invariant complex structure Jg. We denote by Z = P x; @ the associated bundle with
fibre Q. Thus we define the symplectic twistor bundle of A with the holonomy group K
as the subbundle

n:Z—-M

in L*(M) with complex fibres Q.

Conditions of the integrability of the almost complex structure on Z are more weak
than on L*(M), and in Refs. 28-31 one may find a number of examples of the manifolds
M which are not conformally flat and to which the twistor spaces Z with the integrable
complex structure J correspond. Namely, in Refl.28 it has been shown that the almost
complex structure J on Z is integrable if the curvature RP and the torsion TP of the
connection D on M satisfy the equations

P.TP(P.X,PY) =0, (1.1a)

PIRE(Pr-\,, PIY)PZ =0, (7”1)

for all J. € @, = x~%(z) and X,Y € T.M. Here P and P are the associated projectors
onto i eigenspaces of J. For examples of the manifolds, connection D on which satisfies

condition (7.1), see Refs. 29-31.
Suppose that a manifold (M,w) is such that the almost complex structure J on the
associated with it twistor bundle Z is integrable. Thus we can define the space

A={ver(zi): %u +ig)T% =0}, (1.2)
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of the holomorphic with respect 1o J sections of the bundle L — Z. In (7.2) we denote
by V = x°V the pull-back of the connection ¥ to L. Now we Lave to define the bundle
A — Q with the (projectively) flat connection. Globally it is possible only if on (M,w)
there exists a family of covariantly constamt with respect to symplectic connection D
complex structures J parametrized by the space Q. This imposes strong restrictions on
the geometry of the manifold (A/.w). But such manifolds exist and we shall call them the
self-dual manifolds. Now we shal! describe an important class of such manifolds considered

in Refs. 33, 34, 31.

VIII. MANIFOLDS WITH THE GRASSMANN-SPINOR STRUCTURE

Let our 2n-dimensional symplectic manifold M admits a connection with a holonomy
group G; x G3 C Sp(2n, R), i.e. the holonomy group splits into a product of two normal
subgroups G; and G;. Let P(AM,G, x (G2) — M denote the holonomy bundle, i.e. the
reduction of the symplectic frame bundle R(M, Sp(2n, R)). Thus GG, x G, is a connected
linear group of transformations of the space 1 = R?™ and P — M is a G, x G,-structure,®

Let the vector space V€ = (" may be represented as a tensor product VC = EyG Ny,
where Ep and Ny are some complex representation space of (7; and G respectively. In
addition, group G acts trivially on the vector space Ng while group G2 acts trivially on
the vector space £y. The Gy x Gy-module V7 is identified with the set of fixed points of
some antilinear involution o : o =1 (rral structure®).

Now one may introduce the following associated with P vector bundles:

E=7P X Gy xGa 1‘:0. N=P X6y xGs Avu (Sl)

with fibres £, ~ Ep and N; 2 N, at each point r € M. From condition T€M ~ E, 2 N,
it follows that we have the isomorphism of the complexified tangent bundle T A over M
and of the tensor product £ @ N of the bundles E and N:

T'M ~EaN. . (5.2)
Such manifolds have been considered in Refs.33.34,31 and called the manifolds with
grassmann-spinor structure (GS-manifolds in short). Quaternionic Kahler manifolds A
with G, = Sp(1) and G, = Sp(m) (dimM = 2n = 4m) give the simplest example of such
manifolds. 3"
Definition' A connected linear Lie group Gy C GL(Ey) is called a group of hwistor
type if its Lie algebra G, has an clement Jy with J} = —1.
Remark: In other words, J; is a complex structure in the vector space £y that is

considered as a real manifold with diniz £y = 2dimcE,.
We fix such an element J; and denote by A, (by @Q,) the subspace of elements X € G;
that commute (anticommute) with J,. Then Q; = [J1,6G1] and

Gi=Ai @ (8.3)
is a symmetric decomposition of the Lie algebra G,. The left multiplication by J; dcfines
an adK’j-invariant complex structure Jo, in Q;:

JQ, H -11.‘-. RY € Ql
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The symmetric decomposition {8.3) corresponds to the affine symmetric space
Q = (.4(1(-'1 ).I] = G']/]f].

where K| = Zg,(J1) is the centralizer of J; in the group ;. The operator Jg, defines an
invariant complex structure Jg on Q. We say that Q@ = G, /K, is the complex symmetric
space associated with a group G, of twistor type and a complex structure J; C G,. Many
examples of such groups one may find in Refs.30,31, but the classification of all semisimple
linear groups of twistor type is an open problem.

The Lie algebra of G; x (2 can be represented inthe form G, @10106, =6, %6,
and the complex structure J; in £y defines the complex structure operator

J=J ol (8.4)

in the space V = (1 + o)(Eo T No).

The group G; acts on @ = G1/h|, = G| x G/ Ky x G by the left translations and
G has trivial action on ¢J. We introduce the fwistor bundle of M as the bundle Z - M
associated with the principle bundle P(17. Gy x Gy ):

7I':Z=p)<(;,x(;,Q—Dﬁ’[.

Sections of the bundle Z — M are identified with almost complex structures on M.

Choose a connection form 8: TP — (G, % Gz) in the Gy x Gp-structure P — M.
We denote by D the connection {associated with 0) on TM, TP and RP its torsion
and curvature. Because T°M = E & N, the connection D may be represented as a
tensor product D = D, @ 1 & 1 ® D, of the connection D, in the bundle £ - M
and of the connection D; in ‘the bundle ¥ — M. Morcover, we have® A2T*CM =
S2E* @ AXN= @ AZE" @ SPN™ = A2T"CM 4 A2T"M. In particular, for the curvature
tensor we have R? = R? @ RP, where RY ¢ ALT*CM and RP € A2T*CM.

The G x G-connection D generates the splitting of the tangent bundle TZ into the

direct sum
TZ=H&®Y (8.5)

of horizontal and vertical subbundles of TZ. The space V. (the vertical subspace) in
z € Z is tangent to the fibre 77'(n(z)) of Z — M and H, (the horizontal subspace) is
some supplementary subspace (characterizing by #). Recall that the fibres of Z — M are
identified with @ = G,/K, ~ Q. (2 = =(z}) and . induces an isomorphism from %, to
T M.

By definition, points z € Z are pairs = = (2,J;), where z = 7(2) € M and J; is
an almost complex structure on T M. For each z € M the operator J: belongs to Lie
algebra (G, @ G.). and has the form J, = J,(x)©1 € G,(z) @ 1. The isomorphism =, lifts
the almost complex structure J, to an almost complex structure J? on #,. So we obtain
an almost complex structure J* on horizontal subbundle . There also exists a natural
complex structure J¢ on the vertical subbundle V which equals to the complex structure
Jg on fibre Q = Qg(;;. Hence we can define an almost complex structure J on Z using

the decomposition (8.5) by setting

T=T" 4T (8.6)
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We have the bundle Z — M of almost Kihler structures on M and suppose that they
are positive. The space Z has a natural almost complex structure J described above.
We consider now the conditions (on G, x Gy, P and #) under which this almost complex
structure J is integrable. For the GS-manifolds under consideration the following theorem
has been proved in Ref.31:

Theorem 8.1: Let Gy xG2 C GL(Ey® Ny) be a group of twistor type and let J = J,@1
be a complez structure on V that belong to the ideal G, ® 1 of the Lie algebra G, @ Ga.
Let Z be the twistor space of G; x G;-structure with torsionless connection D, associated
with J. Assume that dimN, > 2 or dimN, = 2 and the second prolongation of the algebra
G C gl(Eg) is equal to zero. Then the almost complez structure J on the twistor space
Z is integrable.

Recall that the kth prolongation r(* of a linear subspace r C gli(W) is defined as the
intersection

r® = (r @ S*W*) 0 (W @ SHH ™).

The almost complex structure J on Z depends on the choice of the connection form
9.%82:31 Given another G; x G,-connection with covariant derivative DY, we shall intro-
x

duce the tensor

A(X,Y) = DyY - DxY
Theorem 8.2: The Gy x Gp-connections D and D' give the same almost complez
structure J on Z if and only if A satisfies

P.A(R.X,P.Y)=0 (8.7)

for each x in M, vectors X,Y in T:M and J, in Q..

For proof see Refs.28, 29, 31. ;

As a corollary, the integrability conditions (7.1) depend only on the class of G, x Gj-
connections according to the equivalence relations that the tensor A satisfies condition
(8.7). We point out the important result that has been proved by Alekseevsky.™® It has
been shown that if the first prolongation (G; ® 1 + 1 ® §;)®) of the Lie algebra of the
holonomy group G, x G3 is equal to zero then in the bundle P(M,G) x G3) = M over M
the unique canonical connection D exists, finding of coefficients for which is reduced to
the solving of linear equations. For many semisimple Lie groups G, and G, (in particular,
if Gy C Sp(Eo), G2 € Sp(No)) the condition (C; ® 1 + 1 ® G2)V) = 0 is satisfied and on
such manifolds a unique canonical connection D exists. Later we shall consider only such
symplectic GS-manifolds M which are provided with the unique canonical connection. For
more detailed description of the connection between J and the choice of the connection
form 8 see Refs. 28, 29, 31.

We described the GS-manifolds, groups of twistor type and twistor spaces Z. We
suppose that conditions of the Theorem 8.1 are satisfied and hence the almost complex -
structure 7 on Z is integrable. Grassmann-spinor manifold is called self-duel if the bundle
E — M is flat.®* Remind that the complexified tangent bundle of GS-manifold M has
the form TCM = E ® N and the curvature tensor splits: R? = R @ R, Self-duality
is equivalent to the condition RY* = 0, i.e. connection along the subspaces E, C TEM is
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flat. The hyper-Kahler manifolds AM*™ (n = 2m) give the simplest example of self-dual
GS-manifolds.373831

Let us consider the subbundle P(M, () — M in the bundle P(M, G, x G,) and the
bundle

Py xg, Gy — M, (8.8)

associated with the principal bundle P;, where G; acts on the left on P;. Condition of
self-duality also means that connection in the bundle (8.8) is flat. In the twistor fibre
bundle Z, which may be considered as associated with the principal G,-bundle P;:

Z = Pl Xy (CI’]/’\’]) b M, (8.9)

the flat connection is induced. So the bundle (8.9) has the global parallel (w.r. to D; and
D=D,0161Q D,) sections (complex structures J = Ji(x) @ 1). Therefore the twistor
space Z of self-dual GS-manifold M is the proeduct manifold M x Q, where Q = G;/K;.

IX. QUANTIZATION OF REDUCED SELF-DUAL
GRASSMANN-SPINOR MANIFOLDS

The D-parallel complex structures J on A under consideration are parametrized by
the space . That is why we may define a projection

p:Z-0Q

by corresponding a point (0, J;+g) of the manifold @ = G1/K; to each point (z,J.) of
the manifold Z, transfering J, D-parallel to the origin r = 0, where all non-cquivalent
complex structures are parametrized by the manifold Q. We shall denote a point J € Q
and the corresponding complex structure on A1 by the same letter J. The fibre p~1(J) in
a point J € @ can be identified with the complex manifold M = (M, J), i.e. M provided
with the complex structure corresponding to J € Q.

Thus, we have a double fibration

LA (9.1)

which is crucial for our considerations. Double fibration similar to (9.1} arises naturally
in different problems of the twistor theory. In particular, Hitchin has defined® a double
fibration of the type (9.1) where M is substituted by a 4m-dimensional hyper-Kéhler
manifold and G,/K, = SU(2)/U(1) = C'P'. In this case Z appears to be a (2m + 1)-
dimensional complex manifold and points of M are identified with real holomorphic sec-
tions of Z — CP'. The main difference between these constructions and our diagram
(9.1) is that the twistor spaces, considered in Ref.40, consist of complex structures com-
patible with a Riemannian metric while ours consist of complex structures compatible
with a symplectic form.

Let us describe the definition of the complex structure on Z by the use of the struc-
ture of the doublc fibration (9.1). Consider the bundles #~'(T'M) and p=*(T'Q) over Z
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which are the pull-backs of the tangent bundles of Af and @ = G/ K\ respectively. The
projections 7 and p generate the natural bundle homomorphisms

% : T2 = 0~ (TAM). p.:TZ = p~Y(TQ).

We call the kernel of 7. the vertical subbundle ¥V of TZ and the kernel of p. the
horizontal subbundle H of TZ. Note that the fibre V, in a point z € Z is identified
by p. with the tangent space T5Q in the point J = p(z) € Q and so has the complex
structure Jg defined on Q. Let J* be a complex structure equal at a point z € Z to
the complex structure Tk on H. = T::)M given by the point z = (z,J;). Now we can
define a complex structure J on Z by formula (8.6). Note that this complex structure
J is constructed with the help of canonical symplectic connection D on M and that is
* why it is unique. The projection p: Z — @ will become a holomorphic map w.r. to this
complex structure J.

Self-dual GS-manifold M is the Kahler manifold with the positive complex structure J
(parametrized by the space @} and the unique canonical connection D. For complexified
cotangent bundle we have T°°M = T'“'o’ ) T_;‘o‘”. In each point z € M we consider

a ane-dimensional space Ky,y = A" 7_;::')‘" Now let us introduce the canonical bundle

Ky = A" T, sections of which are Iy(,). The existence of the metaplectic structure
on (M,w) is equivalent3~® to Lhe existence of a line bundle &5 over M such that (6;)% = K,
and we denote l\’_;/2 = by.

We have the bundle Z — M of positive Kahler structures on M. Let us introduce the
complex line bundle (cf. Ref.13.5)

K7~z (9.2)
over Z, which has fibre l\';(f) at (x,J(r)) € Z. Tie bundle (9.2) defines a metaplectic
structure on M. The restriction of /2 to the fibre of Z over cach x € M is the half-form
bundle K2/* over the space (J» ~ G,;/N;. Moreover, this bundle is the restriction of
standard half-form bundle over the space Sp.(2n, R)/U.(n) discussed in Sec.IV (see Refs.
13, 5). The pull-back of K2 to a section A1, = (M. J) of the bundle Z is the half-form
bundle K /2 The bundle i'/? may be called, following the physical tradition, the ghost
bundle of Z (or the restricted half-forms bundle).

Let L — M be the prequantization line bundle over Af with the connection V. Denote
by L — Z the pull-back of L to Z. Then L is a holomorphic bundle. Proof repeats word
by word the proof of Theorein 4.2 from Sec.1V.

We denote by V the pull-back of the connection V to L and define a V“’ ".opcratar
on section 1 of L — Z by setting -

VO = é(r + TV

The symplectic structure w on M being compatible with all Kahler structures on Al has
the type (1,1) w.r. to any such structure, hence the curvature Fy also has the type (1.1)
w.r. to any Kahler structure. According to the definition of the complex structure on Z
it means that the curvature Fy of the pulled-back connection ¥ on L has the type (1.1)
w.r. to the complex structure of Z. It follows that

(@(0.]))2'/', - F‘!,u'z)bi‘ =0,
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i.e. L is holomorphic. Finaily. we introduce the product of the bundles L and K1/2
Lonv—z
Bundles L 2 l\'J %and I & K2 are holomorphic.™

Denote by V' a connectlon in the bundle K S5 Z. Then V' = V& 1 + 1@V will be
a connection in the bundle L © A2, Wo introduce the space I1 of holomorphic sections

of the bundle L @ K'1/%

H={¥eT(Z Lo K'?: éu +iT)VVy¥ =0,V X €I(2,TZ)). 9.3)

Since there exists the projection p : Z — Q { see {9.1)), in the space H there is the
structure of a complex vector bundle over Q:

iH—qQ {9.4)

with the fibres H; in J € Q. Here Hy is the space of bolomorphic with respect to J
sections of the bundle L @ I'”2 — Al

Now, let we have a Hamlltonian action of a connected Lie group G on the self-dual
GS-manifold M and this group may be embedded as a subgroup into the group G,.
Denote by G the Lie algebra of the Lie group G' and by X, the Hamiltonian vector
fields corresponding to £ € G. Generally speaking, these vector fields do not preserve
the fixed complex structure J on A, hut they preserve the family of complex structures
on M parametrized by the space Q. Since M is a self-dual GS-manifold, vector fields
X¢ preserve not only the symplectic structure w (Lxw = 0), but also the canonical
connection I on M. It is well-known.* tlmi in this case the unique lift X; — X€ of the
vector fields X¢ on M to the vector fickls X¢ on the twistor space Z exists, and the Jifted
vector fields \ preserve 1he complex str ucture J on Z. On Q = G,/K, the canonical
G -invariant symplectic structure {lg exists®®3! and therefore we have the symplectic
structure Qz =w @1+ 1@ Qg on Z = M x Q as on the direct product of manifolds. It
is obvious that CA Qz = 0. Now, to the vector fields X¢ one may correspond functions

Pe € C™(Z) (see Sec.V) and operators s{i3¢) = Vxe + i%¢, acting in the space H of
sections of the bundle Lonvis z
Because .X preserve the complex structure J on Z, the operators s(pg) will preserve

the holomorplnc structure of the bundle L =3 K12 - Z. Hence, s(15¢) preserve the space
H of holomorphic sections of this bundle, and we can define a G-invariant subspace AC

in the space H:
. HE = {W e f1: s(ge)¥ =0, V€ €G) (9.5)

In other words, the operators s(i3¢) act in the space of sections of the bundle A — @ and

pick out in it the G-invariant, subspace H%. .
Now we should define a flat connection D in the bundle # — @ and introduce the

space of covariantly constant sections of the bundle H — Q:

F={¥el(s):Dv =0} (9.6)



Detailed description of this connection for arbitrary symplectic manifolds (M,w), on which
a family of complex structures locally exists, are given in the paper of Hitchin.!® The
connection exists and because we have introduced the meiaplectic correction (we used
L @ K2 instead of L), it will be flat. For self-dual GS-manifolds the explicit form of
this connection is simplified, but nevetherless its description is rather complicated and
we shall not give it here. We hope to simplify the description of D and to give it in a
separate paper. It will be also shown that the operators s(@¢) preserve the connection
D and therefore for self-dual GS-manifolds M we can introduce the G-invariant subspace
FG in the space F:

FC={¥ (S H): DV =0, s(¢)¥ =0, V¢ € G}. (X))

The space FC will be the physica! Fock space of quantization associated with the reduced
phase space Mg for the case when M is thie self-dual GS-manifold.
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