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I. INTRODUCTION 

Constrained systems are often considered in physics and therefore their quantization 
deserves particular attention. To quantize such systems one usually uses the method of 
canonical quantization. The method of geometric quantization of Kostant and Souriau1-5 

is a generalization of the standard canonical quantization on the curved phase manifolds 
M. Geometric quantization of the constrained systems have been considered in Refs.6-12. 
In these papers it has been supposed that the G-invariant polarization F exists on the 
symplectic manifold (M,u>). But the condition of G-invariance of polarization F does not 
always take place and little is known about the quantization of constrained systems when 
the G-invariant polarizations of M is absent. 

The existence of polarization imposes the restrictions on the geometry of the mani
fold M. In particular, the existence of a complex polarization of M is equivalent to the 
existence of a complex structure J on Л/ which is covariantly constant with respect to a 
symplectic connection. We shall consider the groups G which do not preserve any com
plex structure J on the manifold /W, but preserve some family of complex structures. Of 
course, this imposes strong restrictions on the geometry of the manifold M. After quanti
zation of the manifold M we shall obtain the family of the Fock spaces Hj parametrized 
by the complex structures J and what's more the group G maps the Fock spaces with 
different complex structures each into another. That is why for defining of the Fock space 
of G-invariant states we should have the method of "covariant" identification of the (pro
jective) Fock spaces corresponding to the different complex structures. In this paper we 
shall describe a rather wide class of symplectic manifolds on which a family of complex 
structures exists and discuss the quantization of such manifolds. 

II. GEOMETRIC QUANTIZATION 

Л classical (mechanical) system is given by its phase space, i.e. a symplectic manifold 
M with a 2-form u. In the formalism of geometric quantization it is necessary to introduce 

i) a prequantization bundle L over M; 
ii) a polarization F of M; 
iii) a metaplectic structure on M. 
We define the prequantization bundle L over M as a complex line bundle with the 

connection V (associated with the connection form) compatible with the Hermitian struc
ture < ,> in fibres, the curvature 2-form Fv of which {\Fv{X, Y) = [Vx, Vy] - 4[X,Y\) 
coincides with the symplectic 2-form и on M. 

Theorem 2.1 : The prequantization bundle L over (M,a>) exists if and only if the 
cakomology class ofuis integral. 

For proof see Refs. 1-5. 
Take for the Hilbert space of prequantization the space C2(M, L) defined as the com

pletion of the space of smooth sections of L over M with compact supports with respect 
to the inner product 

(M)= / <s,t>un, 
JM 

where <, > is given by the Hermitian structure of L. Then we define the Kostant-Souriau 
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prequantization г : C°°(Af) —» End£2(A/, L) by setting 

Hf) = f- iVX/ 

where a vector field X/ is defined by the formula Xj\u> = —df and r(f) is Hermitian if / 
is fi-valued. It is not hard to see that 

W/),r(ft)] = -ir({/,fc}). 

Thus, if we define operators 

*( / ) = »>(/) = V X / + i / , (2.1) 

acting in the space C2(M,L), then we have 

M/) ,*(*) l = *({ / .*})• 

The introduced Hilbert space C(M, L) is too large to represent the phase space (M,u>) 
and we need a polarization. 

Let TM be a tangent bundle over M and T° M = TM 0 С its complexification. We 
call by a polarization of (M,u>) a sublimit] le F С Т0М such that 

i) a fibre Fx С T^M is a Lagrangian subspace in TXM for all x e M, i.e. the 
restriction of ш to Fz vanishes and dimFx — n; 

ii) a space of sections of the bundle F is closed under the Lie bracket. 
If X —» X is a complex conjugation then a subbundle F will also be a polarization. 

The polarization F is called the complex polarization if F П F = 0, i.e. TfM = Fx
!&Fx 

for any x € M. 
If M is a symplectic manifold with a complex structure J then a canonical Kahler 

polarization F is defined by 

F* = {К e Tf M : Л > ; = -«%, i e K ) . (2.2) 

Kahler polarization is called positive (see Ref.13) if the metric g on M defined by the 
formula 

g(X,Y)=u{X,JY), X,YCTM, 
is positive definite. 

Let F be a polarization F С Т°М of a symplectic manifold (M,w). Then we can 
introduce the space of quantization 

HF = {Ф e £ 2 ( i W , i ) : V.vV' = 0, VA' € Г(А/, F)) , (2.3) 

where by T(W, V) we denote the space of sections of a bundle V over IV. For the Kahler 
polarization F of (M,u) anambiguously defined Ъу the complex structure J we will denote 
the space of quantization by Hj. 

The introduction of a metaplectic structure on M is equivalent to the extension of the 
structure group of the bundle TM from the symplectic group 5p(2n, R) to the metaplectic 
group Mp(2n, R) which is the connected double covering of 5p(2n, R). 
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Theorem 2.2 : A metaplectic structure on M exists if and only if the 1st Chern class 
of Л/ is even. 

• For proof see Refs. 1-5. 
For a symplectic manifold (M,w) of dimension 2n let L(M) be the set of pairs (x,FI), 

where x € M and F is a nonnegative polarization.'3 ' ' This manifold has the structure 
of a bundle over M with projection (.r. /•'.,.) —» J-. We define also the manifold L+{.\1) 
of positive Kaiiler polarizations of M as the bundle л- : L+{M) —• M of positive almost 
Hermitian structures on M associated with the principal bundle of symplectic frame of 
Л/. Denote by Ti(M,SpC2n. R)) the principal Sp(2n, /?)-bundle Ц -» Л/ of symplectic 
frame on Л/ and by 5 the symmetric space Sp(2n. R)/l!(n). Then L+(M) is defined as a 
bundle 

£+(.V) = « x „ w S (2.4) 

associated with the principal bundle TZ. It means that the fibre j r - , ( i ) of L+(M) —> Л/ 
over a point x £ Л/ coincides with the space S,- = SpT('2n. R)/lT

T(n) of positive Hermitian 
structures on TXM. Sections of ir are identified with almost complex structures on M. 

HI. SYMPLECTIC A N D COMPLEX S T R U C T U R E S O N R2n A N D L*(R2n) 

Let us consider a vector spare It2" of dimension 2м with a canonical sympltctic struc
ture 

u, = у ^ А г " Л ,!.,'•. U „ . ) = ( Д '0" ) (3.1) 

where ft, v.... = l,. . . ,2n. With the help of и.' for two arbitrary functions / and ft one can 
define a Poisson bracket {/,/,} = *mi)„fi)J,. where u:"V\,. = K- 0 n д 2 " w c introduce 
a compatible with u/ complex structure ./ = (.//,'). i.e. an eiulomorphism ./ € Sp('2i>. R) of 
the space (R2n,ui) such that .1* = — I. Compatibility of u.' and J means that 

, u;(7.¥.7V) = - ; (Л ' .П «=*~-.x„4V; = u v 

for any vector fields „Y and V. Such u; and ./ define a Kahler structure on R2n and the 
2-form ш is of type (1,1) '" tlie complex structure J. We shall consider translationally 
invariant complex structures, so they are defined by constant components Jj}. 

On R2" we introduce the metric 

g = u:J •*=*• ii„v=u!„\J,. 

and the Hermitian metric 

ft = g + iui «=*• ft„„ - ()„„ + iuiv„. 

We suppose that the metric IJ is positive definite, i.e. ,/ is positive. It. is well known that 
the collection of all such ./. that are compatible with u \ is parametrized by the symmetric 
space S = S]t{'2n, R)/U(n). It may be shown (sec. e.g.. Kef. I-I) that 

.<? = Sp(2n. R) П M'2u, /?) = {•/£ >>(2». / 0 : . / > x „ = 7 > V l } . (3.2) 
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Remind that spl'ln. ft) = {A 6 <jl('iii. ft) : '.-lu.' + *iA = 0}. where I is transposition. 
The space S is parametrized by I he symmetric compWx n x n matrix т = Tj + *т2, 

detr2 ф 0, because the general form оГ the complex structure matrix J. satisfying all 
above-formulated conditions, is14 

Ml-.'•)• '-(гг.)- *Ч?-?."")• 
Using the matrices J = (J") of the complex structure, one may identify ft2" with C" 

introducing the operators 

P = I (1 - i j ) . Я = I{1 + / . / ) . P+P = 1. ЯЯ = 0 •*=* 

P" = } № - Wh К = ^ W + Ml)- РЦ + H = С f f P * = 0, (3,1) 

that project onto the (1,0) and (0. I) parts of a vector. This means that each vector 
X 6 R2r' may be decomposed into the holomorphic A ' " 0 ' and antiholomorphic .V'01 ' 
with respect to J parts: 

X = A'<''°»<Ь A'<°», .V"°» = I ( 1 - U)X. .V0-" = i ( l + iJ)X, 

JA'"-0 ' = iA'"">. ./A'< 0 , ) = -/A'<0-". (3.5) 

Any tensor on ft2" may be decomposed in the same way. 
According to the description from Sec.II, we define the space L+(R2") of all positive 

Kahler polarizations of (ft2n, ui) and /,+ (ft2") will be the product manifold ft2n x S. Space 
i+(f t 2 n ) is the trivial bundle: 

7Г : /,+(ft2") — ft2" (3.6) 

of all positive Kahler structures on ft2". Points z £ L+(ft2*) are the pairs z = (x,J) 
where x € ft2", J € S = 5p(2n, R)/U(n) and ir(.r,./) = i . The fibre Jr_1(x) in any point 
x 6 ft2" is the space .*> of Kahler structures on ft2" defined above. Sections of the bundle 
(3.6) are the spaces (ft2",u>,./) with fixed complex structures J £ S. 

As in Ricmannian case we can provide /.+(ft2") with a natural complex structure J. 
In fact, let us consider the natural splitting of the tangent bundle TL+(f t2 n) i.ito a direct 
sum 

TL*(Rin)=Rln>bT(S) (3.7) 

of horizontal and vertical subbundles of TL+ (ft2"). Complex structure J on ft2" has been 
described before. The fibre Tj(S) in : = (j-.V) € L+{R2n) = ft2" x 5 is tangent to S 
at J, so it has a natural complex structure .Is (see, e.g., Ref.14). It may be defined as 
follows. The condition J2 = - 1 implies that J;)UUx) + (<U*)JZ = 0[_=*• W^tf - dJ£. 
This means15 that the non-zero projections of ffc/J are P£dJ° and PgdJl- We introduce 
on 5 a complex structure Js = (J1^) (where the indices (£) are considered as the upper 
ones and (*) as the lower ones) with components Jj£ = JS^t- I ' ' s еааУ t o s e e t n a ' p 

• C « = -*£ *> Js = - 1 , (3.8a) 
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J«PSUI = ie*dj;, J^PSdJi = -iPsdJi, (3.8b) 

where 6$ := 656* is the Kronecker delta and for any "vector" 7J we have б£Т% = T*. 
From (3.8b) it follows Ibai.Pfdj; and PfdJ? are (l.O)-type and (0, l)-type one-forms on 
S. Analogously, the holomorphic and antiholomorphic vector fields on S will be 

e « " » j = P * A . <* J ^ ^ t = i ^ 0 ) l (3.9a) 
! Д 

^ ' • l i P ^ & j£tf*»: = -ig№i. (3.96) 

Now we can define the complex structure J on L+(R2n) using the decomposition (3.7) 
by setting J = J®l(Bl®Js and it is completely defined by the holomorphic (antiholo
morphic) vector fields (3.5) on R2n and (3.9) on S. 

Symplectic structure fi on L+(R2n) may also be defined by using the decomposition 
(3.7): 

Cl = w © 1 + 1 ® fis, 

where ai is defined in (3.1) and fts has been described, e.g., in Refs.5,14. In terms of J* 
and dj£, the two-form Sis has the form: 

«s = - ^ T W Л А7*. (3.10) 

It is easy to see that Sis is real and compatible with J§. It is well-known (see, e.g., Ref.5), 
that Sis = ftsi where Я5 is a curvature of the determinant bundle over 5 . 

IV. QUANTIZATION OF T H E SPACE (R2n,u>,J) A N D FOCK B U N D L E 

We introduce a (trivial) prequantization bundle L ^ й 2 п х С over R2n with connection 

V = o W , . = о-х"(0д + 5Ч.л*А), (4.1) 

where д№ = ^ r . It is easy to see that the curvature 2-form Fv = |[V,„ V„]aV Л dx" of 
the connection (4.1) coincides with the symplectic 2-form ш. 

Theorem 4.1 : The bundle L is a holomorphic bundle. 
Proof: The two-form w is of type (1,1) with respect to any complex structure J e S 

(see Sec.III). Because ш is of type (1,1) w.r. to J, then (0,2) part of the curvature vanishes, 
so that the connection (4.1) in L endows it with a holomorphic structure. 

Take for the Hilbert space of prequatization the space C2(R2n, L) defined as the com
pletion of the space of square-integrable smooth section of L over R2n with respect to the 
inner product 

(Ф1,Фг) = I Мгш", 

where фу is complex conjugate to ф\. 
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Let us consider the space 0{R2n,u>,J) of holomorphic sections of the bundle L over 

0(R2n,u,J) = 1фе T(R2n,L): Ul + iJ)V.¥tf> = 0,V vector field X on Я* 1 } = 

= U e r(R2», L): I(«; + w;)v^ = o, ,*, * = 1, ...,2nJ. 
Now we define the Hubert space Hj of square-integrable holomorphic sections: 

Hj={il>eO(R7",u,J): ( ффшп < со}. (4.2) 
Уя»-

The space Hj is the Hilbert space of quantization. In particular, we shall consider H0 = 
Hjo, where J ° is a fixed canonical (see (3.3)) complex structure on R2n. 

In Sec.III we introduced the space L+(R2n) = R2n x S of all positive Kahler struc
tures on Rin and holomorphic and antiholomorphic vector fields on L+(R2n) defining the 
complex structure J on L+{R2n). Denote by L -> L+(R2n) the pull-back of L to L+(R2n). 

Theorem 4.2 : The bundle L is a holomorphic bundle. 
Proof: To prove the assertion denote by V the pull-back of the connection V to L. By 

definition, the pulled back connection V has zero components along fibres: 

V = V + A / ^ , (4.3) 

where we have used J* as coordinates, parametrizing S = Sp(2n, R)/U(n). Remind that 
not all of the components J* ate independent because they satisfy the equations (3.2) 
and J%J* = —6£. Now define a V'0,1 '-operator on sections ф of L —• L+(R7n) by setting 

V<ol>0 = ( v < ° » + dJiPlPSj^j Ф. (4.4) 

So V'0 , 1 ' is the (O,l)-component of V w.r. to the complex structure J on L+(R2a) 
introduced above. The symplectic structure ш on Й2" being compatible with all Kahler 
structures on Й2" has the type (1,1) w.r. to any such structure, hence the curvature 
Fv also has the type (1,1) w.r. to any Kahler structure. According to the definition 
of the complex structure on L+(R2n) it means that the curvature F$ of the pulled-back 
connection V on L has the type (1,1) w.r. to the complex structure on L+(R2n). It follows 
that 

(V*0'1»)2^ = F f 2)ф = 0, 

i.e. L is holomorphic. It can be also shown by direct calculations, using (4.1), (3.4) and 
(4.4). 

Remark: It is essentially Ward's construction from the twistor theory (cf. Ref.16). 
Denote by H the space of square-integrable holomorphic with respect to J sections 

of the bundle L -* L+(R2"): 

H = {Ф € C2{L*(R2n), L) : ^(1 + iJ)VA* = 0, V vector field X on 1+('Я2")} = 
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= { Ф е £ 2 ( / . + ( « 2 " ) . / , ) : / ^ V . v * = " - ' ' . ' jJTT* = °- / ' • " • - = 1 2"} (4-5) 

Each space (ft2n,w../) is section of the bundle 1.*{R2") -» ft2" and we obtain the Hilbert 
space of quantization llj as subspacc in // if fix an argument J of holomorphic with 
respect to J functions ty[x.J) 6 // . 

Now we have the Kahler spare / ,+(/f-"). the prequantization bundle L —» L+[R2") 
over L+(R2") with connection V. the space £ 2 (£ + ( f t 2 n ) , L) of prequantization and the 
space H of quantization associated to L+(R2"). Connection (4.3) is flat along the fibre 
5 in the bundle L+(R2n) —> ft2". I.cl us add to the connection dj^-gj? along 5 a term 
В dj£u"s P", РУr4-, which is a one-form on >' with values in the algebra of differential 
operators on ft2", i.e. we introduce the differential operator 

where В is some constant. Then the opt <ator 

V(tf) = </.!•" V„+flJZir 

if В ф 0 can not be interpreted as a connection in the bundle L —> /„+(ft2") because it 
is quadratic in derivatives. But it is correctly defined differential operator acting in the 
space £ 2 ( i + ( f t 2 " ) , i ) . 

By virtue of properties of dJ'J, which have been discussed in Sec.Ill, the operator "Dv 

has only the following nonzero components (hulumorphic and antiholomorphic): 

Let us calculate the commutators of I lie operators pl ,H> jj and pt 0 ' 1 ' ^ with the oper
ators V i ' and fl'0'1'^ defining the (0. I)-components of connection V in /.. Because of 
p(°.')') coincides with the (0. I (-components of V along >' then 

[X>,o-";:.Pl"-l,:,'] = 0. (I.7.i) 

It is not difficult to verify that 

[x>i<ub, pyt)] = ^:ir;!v.,. (i.7M 

i.e. Dt°'')4 preserve the holomorphic structure in the bundle /. —> I.+(R2") in accordance 
with the Theorem 1.2. 

For the operator p( , J )ljj we have 

[T*mi,pgv„] = ^ ; ' / ' ; v„ - /'«/,,;,/,;v„ +;«-•""-.•,,,,/*'/*v„. 

Therefore 
[p(u,). /*V„] = [././;• P"'0 ' ;!. />/,'v,,] = 
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= l- {dj$(\ - 2В)Р2Р; + 20 dr^^PtPZ } V, = i r f j 'd - AB)P2P'fVa> (4.8) 

where we have used the property dj^" = dj^u'"' of dJ%. Thus, the right hand side of 
(4.8) becomes zero if В — 1/4. Later we shall choose this value of the parameter B. 

Finally, the commutator [I>(,0),I)f01>] is equal to 

(1)<1.0,,)5(0.„f] = [ p ^ + ^ Ц р п у ^ p A ^ _ ] = 

-g -№ (4-9b) 
We see that the commutator is equal to the sum of two terms, where the first term (4.9a) 
preserves the holomorphic structure in the bundle L —» L+(Rln) and the second term 
(4.9b) does not preserve and does not contain the differential operators and depends only 
on J € 5 = Sp(2n, R)/U(n). 

. Term (4.9b) may be compensated if one will consider the bundle L ® K1'2 -* L+(R2n) 
instead of L -> 1+(Я2п), where К1/г -> L+(R2n)is the square root of the bundle K. which 
has the fibre Kj = /\nF' at (x,J) € £+(Я2я). Here F' = {P»dx", A»,... = l,...,2n}. 
By definition l3,s, a metaplectic structure on symplectic manifold (M,w) is a line bundle 
S —> L+M such that S2 = K. In our case the restriction of A'1'2 = 6 to 5 is simply the 
square root of the canonical bundle of S. Let R2n = (R2n,w,J) be an arbitrary section 
of the bundle L+(R2n) -> R2n. The pull-back of K1'2 to Rf will be the trivial bundle, 
because R2n is the flat Kahler manifold. Transition from the bundle L —» L+(M) to 
the bundle L ® A*1'2 —> L+(Af) corresponds to the metaplectic correction and to the 
introduction of the half-forms developed in the approach of geometric quantization.,3,s 

Notice that Berry's phase (see Ref.17) may be expressed through the curvature of the 
bundle K1/2 —» S after the embedding of the space of external parameters of the quantum 
system into S.s 

So, let us calculate Fv = ^{ТУ^ТУ^Ц Л dJ*. Using formulae (4.7a) and (4.9), we 
obtain 

Fv = —PIPldJZ Л dJi = -fis, (4.10) 

where (1$ is given by (3.10). It is well known (see, e.g., Ref.5), that the curvature of the 
bundle A'1/' —> 5 is equal to — |fls- Therefore, if we add to the operator Z>£ a connection 
in the bundle A'1'2 —» S which depends only on J£, then the modified operator V£ will 
preserve the holomorphic structure of the bundle L ® K1/2 —> L+{R2n). The explicit form 
of this connection in terms of TI and тг from (3.3) is well-known (see, e.g , Refs.18 and 
5). But it is unknown in terms of J£, that is why we shall consider below in all formulae 
the operators 2?£. Our consideration will be true for the "corrected operators" V^, too. 

Notice, that because (4.9b) depends only on J^ the corresponding to (4.9b) global 
transformations will multiply all functions Ф from H by exp(i<p(J)). Thus, we have the 
following result. 

Theorem 4.3 : The operator V = dJ^V^ preserves the projective space P(H) of 
holomorphic sections of the bundle L —» L+{R2n). 
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Following Hitchin19, we may make all further considerations for the space P{H). 
In virtue of translation invariance of complex structures J on Ft2", the bundle L+{R2n) —» 

R2n is trivial: £+( Д2п) = Я2" х 5 . That is why we may define a projection p: L+(R2n) -> 
5 , p{x,J) = J. Because of this, in the space H of holomorphic sections of the bundle 
L —* L*(R2n) and in the projective space P{H) there exists the structure of a complex 
vector bundle over S: 

H=[JHj-*S (4.11a) 
Jes 

P(H) = (J pWA -» S (4116) 
Jes 

with the fibres Hj in points J € S for Я and the fibres P(Hj) in points J € 5 for 
P(H). Operator V = dJ^V^ was interpreted as the projectively flat connection in the 
bundle (4.11a) or as the flat connection in the bundle (4.11b).19"21 It is beautiful and 
correct interpretation, because T> contains the derivatives of the first order on coordinates 
of the base S of the bundles (4.11), and the terms P°P2V„Vy, which are the part of 
the generators of the symplectic group 5p(2n, R) acting in the space of sections Г(5, H) 
and T(S,P(H)) of the bundles (4.11). Therefore Fv in (4.10) is the curvature of this 
connection. 

Having the flat connection T>, we can introduce a space T of covariantly constant 
sections of the bundle (4.11a): 

T = {Ф £ Г(5, Н): РФ = О}. (4.12) 

This space is isomorphic to the space Ho of quantization and may be used as definition 
of the space of quantization in the case when there is not a single natural choice of the 
complex structure, but a preferred family S. Analogously, with the help of connection 
V (without the metaplectic correction) we can introduce a space P(F) of covariantly 
constant sections of the bundle (4.11b): 

Я ( Л = {Ф 6 Г(5, Р(Щ) : 2?Ф = 0}. (4.13) 

This space is isomorphic to the projective space P(H0) of quantization (rays in the Hilbert 
space Ho). 

V. M A R S D E N - W E I N S T E I N R E D U C T I O N 
A N D G-INVARIANT POLARIZATIONS 

On a symplectic manifold M with a 2-form ш for two arbitrary functions / and h one 
can define a Poisson bracket {/, h] = w(Xj, Xh)- Here a vector field X/ is defined by the 
formula Xf\w = —df, where Х\ш denotes the contraction of X with u>. A correspondence 
f —* X/ maps a Lie algebra C°°(M) of functions on M (with the Poisson bracket) to the 
Lie algebra of the Hamiltonian vector fields on M (with the ordinary commutator). 

Let G be a connected Lie group embedded into the group of the symplectomorphisms 
of M. Let Q be the Lie algebra of G. Then to each element £ 6 Q one may correspond a 
symplectic vector field X( on M. The action of G on M is called a Hamiltonian action if 
to each vector field X$ ({ G Q) there corresponds a function v?j € C°°(M), such that 
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Х^ш = -dVi (5.1) 

Let 9" be a space dual to Q. Using functions щ on M one may define an AdG-
equivariant momentum map ip: M —» 9" by the formula 

< ¥>(*)>i >=¥>{(*)> 

where ( 6 6 , <?(*) e 9'-
Let us consider a constraint set Mo = ^ _ 1 (0 ) = {x € M : t?t = 0, V{ e 9}- We 

suppose that G acts freely on Mo. In such a situation the reduced phase space Ma is 
obtained as the quotient22 

MG = M0/G. (5.2) 

For the description of quantization of MG and conditions under which M c will be a man
ifold, see Refs.6,23,24. It may be shown22,23 that there is a natural symplectic structure 
uiG on the space MQ. 

There is a canonical representation of the Lie algebra 9 on smooth sections of L given 
by the operators: 

* Ы = V ^ + t V t , (5.3) 

where щ e C°°(M) and A^ correspond to £ € 9 (see (5.1)). We suppose that there exists 
a global action of G on L such that the induced action of 9 is given by (5.3). 

Consider the submanifolds Mo = V"'(0) a l K ' MG = Mo/G in M. Let ,\: M0 —» Ma 
be the projection map and n: Mo —* M be the inclusion map. 

Theorem 5.1 : There is unique line bundle {LG,^G) with connection V G on MG 
such that 

X'LG = n'L and \ ' "V C = i/*V. 

ТЛе curt)0<ure of the connection V G is £Ле symplectic form Ш&-. 
For proof see Ref.6. 
Since the Hermitian inner product <, > is G-invariant, there is a unique Hermitian 

inner product < , > G on La such that \* < , > c = n" < , >. Thus LG, V G and < , >& 
are prequantum data on Ma-

Let F be a polarization of M. It is clear that we may associate with F a polarization 
Fa of the reduced space MG if and only if the polarization F is invariant with respect 
to the action of the group G.6 -12 In particular, in Ref.6 the following theorem has been 
proved: 

Theorem 5.2 : Let G be a connected compact Lie group, M a Hamiltonian G-space 
and F a G-invariant, positive definite KSMer polarization of M. Then there is canonically 
associated with F a positive definite polarisation FQ of the reduced space MG-

Having polarizations F and FG, one may introduce the following spaces 

H<? = {ф € HF : з(ъ)ф = 0, У£ € 9} 

HFG = {<J>£/?(MG,LG): A ' J V G ^ = 0 , VA'£ r ( M c , F G ) } 

In Refs.6-12, it has been proved that these spaces are isomorphic as vector spaces: Hp = 
HpG. We shall not discuss here the more difficult questions connected with the introduction 
of an inner product on Hp and Hpa (see Refs. 5-12). 
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Note that the interesting example of the combination of ideas from Sec.IV and the 
Marsden-Weinstein reduction is given l«y ('heru-Simous theory in (1+2) dimensions. l9 -2 ! 

In this theory the initial space .U is llie space of all gauge fields in principal bundle (with 
structure group A') over a Hiciiiaiiiau surface of genus </. Complex structureon the infinite 
dimensional space of connect ions is induced from (he complex slructureon the Riemannian 
surface parametrized by (tig —6) dimensional Tcichinilllcr space Ta when g > 1. Symmetry 
group G of the theory is the infinite dimensional group of gauge transformations. This 
group preserves the complex struct lire on the space of all connections, and after the 
Marsden-Weiiistein reduction the theory is described by the finite dimensional Kahler 
manifold Л/с;, on which the family of complex structures, parametrized by the space Tg. 
are defined. There is no preferable point in I'.,. I hercfore we should introduce the bundle of 
the I'ork spaces over Tg with the (project ively) flat connection, permitting one to identify 
all Fock spaces corresponding to diircrent choices of complex structure. 

Generally speaking, it is difficult lo properly correlate the quantization of the phase 
space M and the reduced phase space .1/,,-. In Hefs.ti 12. it was accomplished by requir
ing that the auxiliary structures on (.l/.u.') necessary for epiantization (in particular 
polarization F) be (7-iuvari:inl. Then they can be projected lo compatible epiantization 
structures on {Л/<;.и.у;). Hut the condition of (7-iiivariatiee of polarization /•' does not 
always take place and we shall consider the possibility of its weakening. 

VI. QUANTIZATION OF T H E SPACE (/f2".-.) WITH Q U A D R A T I C 
FIRST-CLASS C O N S T R A I N T S 

As an exatnple of the -b'sdcn-Wchistciii reduction, we shall consider the reduction 
of the space (R2",u;). This example is very imporl.au! because it is known2'' thai every 
symplectic manifold (A/,ft) with Q of finite integral rank can be realized as a reduction 
of some (R2n,ui). Thus, (r?2".u.') is universal for symplectir geometry insofar as reduction 
is concerned. 

Let G be an arbitrary connected subgroup of Lie group .S';i(2n. /?), which acts on 
(Л2",и>). Denote by Ta = (7'„JJ) the constant matrices of the generators of representation 
of the Lie group G in the space If": 

[r„, П] = /.;,./:. <=> r,/{T,yr,,'{ r„ l = /;,, /;.;;. 
where f£b are the structure constants of C. I/./J = 1 m — JhiiG. Let us also define 
the realization of the Lie algebra Q of I lie Lie group (•' as a stihalgchra with I lie generators 
А'а in the Lie algebra of llamiitonian vector fields on (!{-".*:)• 

•Va = - ' / : , : : .r-0,. = > [A„..Vft] = /,;,,.V... (li.l) 

It is easy to see tha! 

C.V..U.',,,, = \au!vt, Н-и-'М/Л,,,,, + uJn\-V,.I. = (I 

because Ta С -sp(2n, Д), and therefore '/!„,„ = 7^,,~'\,. = I'„\^>\„ = '!'„„„. 
Let us correspond functions ^>„ to the llamiltoiiiaii vector fiehls ,V„ by formula ('>.I). 

We have 
V, = -7:„„.'".r". («.21 
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{*,, *>»} = А ' в Л = •S'dtf&vb = / a
c^c (6.3) 

and m = dirnG < n constraints *fn = 0 . « = 1 m. define the submanifold ^"'(O) in 
R2n (constraint set). In virtue of (6.3). the Ilamillonian vector fields Xa are tangential to 
¥?_1(0)- Assuming that for all x € r>~'(0) the stabilizer group of л; (a 'discrete subgroup 
of G) is trivial, from the description in Sec.V we obtain the reduced phase manifold of 
G-invariant states of the system as the quotient 

д£ = *-'(0)/с. 
Now, on R2n let us choose some complex structure J from S = Sp(2n, R)jU(n). 

Calculate the Lie derivative Cx. °f J'u'-

cXtJi = XZJ% + r„xi, - -кк« = TUI - J:TL = m, At. (6.4) 
It is important that although the Lie group G does not preserve the fixed complex 
structure J, but it preserve the family S of the complex structures on (R2n,u) because 
G С Sp(2n, R). 

It turns out that for ipa from (6.2) the operators s(tpa) = V.v„ + iipa (acting in the 
space C2(R2n,L)) coincide with the vector fields A'„: «(^„J = A'„. Therefore we should 
define the lift Xa —* Xa of the vector fields Xa on the space (R2",ui) to the vector 
fields Xa on the space. L+(R2n) described in Sec.III. This lift will be defined from the 
condition of preserving by the lifted vector fields Xa of the antiholomorphic part V'0 ,1 ' 
of the connection V in the bundle L —• L+{R2") which have been introduced in Sec.IV. 
In this case the lifted group G will transform a holomorphic section Ф of the bundle 
L —* L*(R2") into the holomorphic sections. Thus, the explicit form of the generators 
Xa is defined from the conditions 

[-Y.,P;V,]« = [ U ; / * ^ I « = O, 

where Ф is any holomorphic section of the bundle L —* L+(R2") (for definition see (4.5)). 
Proposition 6.1: Vector fields Xa = X„ + [J, T„]p^s on L+(R2n) are infinitesimal au

tomorphisms of the complex structure J on / , + (й 2 " ) . Fields Xa preserve the holomorphic 
structure in the bundle L —> L+{R2n). 

Proof: It is relatively easy to check that 

cimj; s X.J; + J;XI, - rvx^ = o, (6.5a) 

LtjZ = X.J* + JS-щХ.l- <ПьщХ.I = 0, (6.56) 

[X., P^A = Г. 'аР?Чь = Г. ^V'0 '1); (6.6a) 

&«Нщ\ = Т'№щ - ТЛ^Щ = Ъ ^ ' * - ^ A ^ ' i - (6-66) 

Formulae (6.5) mean that CXmJ — 0. From (6.6) it is obvious that the lifted vector fields 
X, preserve the space H of holomorphic sections of the bundle L —» L+(R2") . 
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Remark: Notice that if [J, T„] = 0 for some fixed complex structure J, then T, € uj(n). 
But from this it does not follow that [J', Ta] = 0, where J' is another complex structure 
from S = Sp(2n,R)/U(n). 

Now we know the action of the group G in the space H of holomorphic sections of the 
bundle L —» L+(R3n), therefore we can define a G-invariant subspace Ha in the space H. 
By definition 

Ha = {Ф € Я : А'„Ф = 0, a = 1, ...,ro = dimG}. (6.7) 

This space is not the space of quantization which may be corresponded to the reduced 
phase space Яд" = ^>-,(0)/G, because functions Ф € HG depend on extra variable J € S. 
But because of the translational invariance of the complex structures J on (R?n,u) the 
space L+(R2n) for (R2n,w) has a structure of double fibration: 

L+(R2n) - £ - 5 
«r I (6.8) 

Д2п 

That is why in the space H there exists the structure of the bundle H —» 5, which 
has been described in Sec.IV. In this bundle the projectively flat connection T> has been 
introduced. If the action of the group G in / / preserves this connection (or, in other 
words, [-Уа,!^] ~ ^д) then this action can be pushed down to the action in the space 
P(T) of covariantly constant with respect to V sections of the bundle P(H) —» S. 

Preposition 6.2: The action of the group G preserves the connection V in the bundle 
p(ii)->s. 

Proof: Let us calculate the commutator [-X^UJ]. It is not hard to verify that 

[x.,og = r.J©;-r.xi)J. (6.9) 
From (6.9) it is easy to see that [Xa,T>$V = 0 on the functions Ф from the space P(F) 
(see (4.5) and (4.13)). 

Thus, the action of the group G with the generators Xa transforms the covariantly 
constant with respect to V sections of the bundle P(H) —• S to the covariantly constant 
ones. Therefore we can introduce the G-invariant subspace P(T)e in the space P(T): 

P(?f = ^ ( Л Л £a = {* € P{H): V9 = 0, Я.Ф = 0, а = 1,...,dimG}. (6.10) 

The space P{F)a will be the projective space of quantization associated with the reduced 
phase space R\? = <p~l(Q)/G. We shall not discuss here the introduction of a Hermitian 
inner product in P(T)a, which may be induced from the Hermitian inner product in H 
in a natural way. 

Note that the vector fields Xa, corresponding to the constraints <pt, contain the deriva
tives with respect to J*. Components of J£ may be interpreted as additional "times" and 
the described above approach is connected with the "multitempor&T approach, developed 
in Ref.26. Our approach also generalizes the approach to quantization of systems with 
quadratic first-class constraints, developed in Ref.27, on the case when the symmetry 
group G does not preserve a polarization. 
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VII. O N QUANTIZATION OF G E N E R A L M A N I F O L D S {М,ш) 

Now we shall discuss the generalization of the quantization scheme of the space 
(Я2",ыо) described in Sec.Vl on arbitrary symplectic manifolds (M,u>). As before, we 
shall consider the positive Kahler polarizations of Af and the bundle IT : L+(M) —» M of 
the (almost) complex structures over A/ (see Sec.II). Let L —» M be the prequantization 
bundle over M with connection V having the curvature equal to u. We have to define 
the pull-back bundle L = *"L —* L+{M) and provide it with the complex structure J. 
Using it, we are able to introduce the space H of holomorphic with respect to J sections 
of the bundle L -* L+(M). 

As in the Riemannian case, taking a symplectic connection D on M, we can always 
provide L+(Af) with a natural almost complex structure J.m~32 Unfortunately, this al
most complex structure is almost never integrable (it is integrable <=*• M is conformally 
symplectic flat23,29,31). It is therefore appropriate to seek subbundles of L+{M) picked 
out by the geometry of M in the hope that some of these are complex manifolds. One 
way to do this is to restrict the holonomy of A/ and consider those elements of L+(M) 
that are compatible with the holonomy of A/.28,29*1 

So let our 2n-dimensional sympleciic manifold (Af,u>) admit a connection D with 
holonomy group К С Sp(2n, R). Let V(M,K) —» M denote the holonomy bundle, 
i.e. the reduction of symplectic frame bundle 1ЦМ,Sp(2n, R)). The typical fibre S = 
Sp(2n, R)/U(n) of L+(M) decomposes into a disjoint union of A'-orbits and L+(M) de
composes into a disjoint union of subbundles, each one associated to V with such an 
orbit as typical fibre. We choose а К -invariant symmetric submanifold Q of S, with a 
/^-invariant complex structure JQ. We denote by Z = V x/, Q the associated bundle with 
fibre Q. Thus we define the symplectic twistor bundle of M with the holonomy group К 
as the subbundle 

TT-.Z^M 

in L + (M) with complex fibres Q. 
Conditions of the integrability of the almost complex structure on Z are more weak 

than on L+{M), and in Refs. '28-31 one may find a number of examples of the manifolds 
M which are not conformally flat and to which the twistor spaces Z with the integrable 
complex structure J correspond. Namely, in Ref.28 it has been shown that the almost 
complex structure 3 on Z is integrable if the curvature Я " and the torsion TD of the 
connection D on M satisfy the equations 

Pjf(PxX,PxY) = u, (7.1a) 

PXRS( PrX, PXY)PX = 0, (7.16) 

for all Jx € Qx = T~l(x) and X, Y € TXM. Here P and P are the associated projectors 
onto ± t eigenspaces of J. For examples of the manifolds, connection D on which satisfies 
condition (7.1), see Refs. 29-31. 

Suppose that a manifold (М,ш) is such that the almost complex structure J on the 
associated with it twistor bundle Z is integrable. Thus we can define the space 

i / = { * e r ( Z , Z , ) : i ( l + i . 7 ) V * = 0}, (7.2) 
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of the holomorphic with respect to J sections of the bundle L —> Z. In (7.2) we denote 
by V = TT'V the pull-back of the connection V to L. Now we have to define the bundle 
/ / —» Q with the (projectively) flat connection. Globally it is possible only if on (M,ui) 
there exists a family of covariantly constant with respect to symplectic connection D 
complex structures J parametrized by the space Q. This imposes strong restrictions on 
the geometry of the manifold (M.UJ). But such manifolds exist and we shall call them the 
self-dual manifolds. Now we shall describe an important class of such manifolds considered 
in Refs. 33 ,34 ,31 . 

VIII. MANIFOLDS W I T H T H E G R A S S M A N N - S P I N O R S T R U C T U R E 

Let our 2n-dimensional symplertic manifold M admits a connection with a holonomy 
group Gj x Gj С Sp{2n, R), i.e. the holonoinv group splits into a product of two normal 
subgroups G'i and G%. Let V{M,C'i x G'2) —» M denote the holonomy bundle, i.e. the 
reduction of the symplectic frame bundle 1Z.(.\I, Sp{2n, R)). Thus G\ x G2 is a connected 
linear group of transformations of the space I ' = R2" and V —> M is a Gi x Gj-structure.35 

Let the vector space Vе = C2" may be represented as a tensor product Vе — E0G No, 
where Eo and Wo are some complex representation space of Gi and G'2 respectively. In 
addition, group G\ acts trivially on the vector space JV0 while group G2 acts trivially on 
the vector space Eo- The G\ x GVmodule V is identified with the set of fixed poitits of 
some antilinear involution a : a2 = \ (iral structure10). 

Now one may introduce the following associated with V vector bundles: 

E = V x a, xa, A'o, Л' = V x G, *c2 Лг„ (8.1) 

with fibres Ex ~ Eg and Nx ^ Л'ц at each point x 6 Л/. From condition Tx M ~ Ex Э Л"г 

it follows that we have the isomorphism of the complexified tangent bundle Tc M over A/ 
and of the tensor product E © N of the bundles E and Л': 

7""Л/~/?:•) .V. (S.2) 

Such manifolds have been considered in Kcfs.33,31,31 and called the manifolds with 
grassmann-spinor structure (GS-manifolds in short). Quaternionic Kahler manifolds M 
with Gi = Sp(l) and G2 = Sp(m) (dimA/ = 2» = 4m) give the simplest example of such 
manifolds.37,38 

Definition?* A connected linear Lie group G| С GL(EU) is railed a group of twister 
type if its Lie algebra Q\ has an clement J\ with S\ = — I. 

Remark: In other words, J\ is a complex structure in the vector space Eo that is 
considered as a real manifold with dimnE0 = 2dimcE0. 

We fix such an element J\ and denote by A. 1 (by Qt) the subspace of elements .V 6 Q\ 
that commute (anticommute) with J,. Then Q, = [Ji,Gi] and 

G, = A.!, .|. Й1 (8.3) 
is a symmetric decomposition of the Lie algebra G\- The left multiplication by Jt defines 
an adAJ|-invariant complex structure Jg, in Qt: 

JQ, : Л' - J,.Y, .V e Q, 
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The symmetric decomposition (8.3) corresponds to the affine symmetric space 

Q = ( . * W < V I ) . / I = G I / A ' I . 

where A'i = ZG,(J\) is the centralizer of Ji in the group G\. The operator Jg, defines an 
invariant complex structure Jq on Q. We say that Q = Gl/I\I is the complex symmetric 
space associated with a group G\ of twistor type and a complex structure J\ <ZG\- Many 
examples of such groups one may find in Refs.30,31, but the classification of all semi simple 
linear groups of twistor type is an open problem. 

The Lie algebra of G\ X G2 can be represented in the form G\ 0 1 ф 1 © Gi — G\ Ф Gt 
and the complex structure J\ in E0 defines the complex structure operator 

J = ./, 0 1 (8.4) 

in the space V = j ( l + a)(E0 0 ,V0). 
The group Gi acts on Q = GI /A'I = G'i x G2/A'i x G2 by the left translations and 

G2 has trivial action on Q. We introduce the twistor bundle of Л/ as the bundle Z —> M 
associated with the principle bundle P(M.G\ x G2): 

i r : Z = P x f , . „ ( ; i Q - t J W . 

Sections of the bundle Z —* M are identified with almost complex structures on M. 
Choose a connection form 0: TV —» (Gi Ф G2) in the G\ x G2-structure V -+ M. 

We denote by D the connection (associated with 9) on TM, TD and ftD its torsion 
and curvature. Because T° M = E Co N, the connection D may be represented as a 
tensor product D = Dt 0 1 ф 1 0 £>2 of the connection / ^ in the bundle E —> Af 
and of the connection D2 in the bundle /V —» M. Moreover, we have3* A2T'CM = 
S2E' 0 A2N' ф Л2£" 0 SJyV" = Л5.Г"СА/ -Ь AiT'cM. In particular, for the curvature 
tensor we have RD = ft£ ф Д£, where ft? £ Л»7"СМ and ft? € Л1Г*СА/. 

The Gi x G2-connection D generates the splitting of the tangent bundle TZ into the 
direct sum 

TZ = H Ф V (8.5) 

of horizontal and vertical subbundles of TZ. The space V; (the vertical subspace) in 
2 e Z is tangent to the fibre я-~'(я-(г)) of Z —» M and W, (the horizontal subspace) is 
some supplementary subspace (characterizing by 0). Recall that the fibres of Z —» M are 
identified with Q = Gi/A', ~ Qx (ж = it{z)) and ir. induces an isomorphism from Нг to 

By definition, points г € Z are pairs с = {x,Jx), where x = JT(Z) € M and Jx is 
an almost complex structure on TXM. Tor each x 6 M the operator J* belongs to Lie 
algebra (Gi ®Gi)x and has the form Jx = J,{x) 0 1 e 5 i ( i ) 0 1 . The isomorphism x. lifts 
the almost complex structure Jx to an almost complex structure j£ on "Hz. So we obtain 
an almost complex structure Jh on horizontal subbundle "H. There also exists a natural 
complex structure J" on the vertical subbundle V which equals to the complex structure 
JQ on fibre Q =; <?*(*)• Hence we can define an almost complex structure J on Z using 
the decomposition (8.5) by setting 

J = Jh Ф Г (8.6) 
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We have the bundle Z —> M of almost Kahler structures on M and suppose that they 
are positive. The space Z has a natural almost complex structure J described above. 
We consider now the conditions (on Gt x G ; , ? and 0) under which this almost complex 
structure J is integrable. For the GS-manifolds under consideration the following theorem 
has been proved in Ref.31: 

Theorem 8.1: LetGixG2 С GL(Eo®N0) be a group of twistor type and let J = Ji®l 
be a complex structure on V that belong to the ideal Q\ ® 1 of the Lie algebra Q\ ф ffj. 
Let Z be the twistor space ofG\ x Gi-structurc with torsionless connection D, associated 
with J. Assume that dimN0 > 2 or dimN0 = 2 and the second prolongation of the algebra 
Q\ С gl{Eo) is equal to zero. Then the almost complex structure 3 on the twistor space 
Z is integrable. 

Recall that the Jbth prolongation r(fc* of a linear subspace г С gl(W) is defined as the 
intersection 

rw = (r ® SkW") П (W ® S*+1W). 
The almost complex structure J on Z depends on the choice of the connection form 

0 28.29,31 Qiven another G\ x G2-connection with covariant derivative D'x, we shall intro
duce the tensor 

A(X,Y) = D'XY - DXY 
Theorem 8.2: The G\ x Gj-connections D and D' give the same almost complex 

structure 3 on Z if and only if A satisfies 

PrA(PrX,PTY) = 0 (8.7) 

for each x in M, vectors X, Y in TXM and Jx in Qz. 
For proof see Refs.28, 29, 31. i 
As a corollary, the integrability conditions (7.1) depend only on the class of Gj x Gj-

connections according to the equivalence relations that the tensor A satisfies condition 
(8.7). We point out the important result that has been proved by Alekseevsky.39 It has 
been shown that if the first prolongation (Q\ ® 1 + 1 ® Gi)^ of the Lie algebra of the 
holonomy group Gi x Gi is equal to zero then in the bundle ЩМ, G\ x Gj) —» M over M 
the unique canonical connection D exists, finding of coefficients for which is reduced to 
the solving of linear equations. For many semisimple Lie groups GY and G2 (in particular, 
if Gv С Sp(Eo), Gt e Sp(N0)) the condition (Si ® 1 + 1 ® Qt)m = 0 is satisfied and on 
such manifolds a unique canonical connection D exists. Later we shall consider only such 
symplectic GS-manifolds M which are provided with the unique canonical connection. For 
more detailed description of the connection between J and the choice of the connection 
form в see Rets. 28, 29, 31. 

We described the GS-manifolds, groups of twistor type and twistor spaces Z. We 
suppose that conditions of the Theorem 8.1 are satisfied and hence the almost complex 
structure 3 on Z is integrable. Grassmann-spinor manifold is called self-dual if the bundle 
E —• M is flat.34 Remind that the complexified tangent bundle of GS-manifold M has 
the form TCM = E ® ЛГ and the curvature tensor splits: RD = Я?1 ф Я ? . Self-duality 
is equivalent to the condition Я+1 = 0, i.e. connection along the Bubspaces Ez С TfM is 
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flat. The hyper-Kahler manifolds M4m (?i = 2m) give tlie simplest example of self-dual 
GS-manifolds.3738-31 

Let us consider the subbundle V\(M,G\) —» Л7 in the bundle P(M,G\ x Gj) and the 
bundle 

P\ x s , G'i —> M, (8.8) 

associated with the principal bundle V\, where G\ acts on the left on P\. Condition of 
self-duality also means that connection in the bundle (8.8) is flat. In the twistor fibre 
bundle Z, which may be considered as associated with the principal Gi-bundle P\\ 

Z = P1*allGi/K1)->M, (8.9) 

the flat connection is induced. So the bundle (8.9) has the global parallel (w.r. to D, and 
£) = D i ® l f f i l ® D2) sections (complex structures J = J\(x) © 1). Therefore the twistor 
space Z of self-dual GS-manifold M is the product manifold M x Q, where Q = G ' I / A ' I . 

IX. QUANTIZATION OF R E D U C E D SELF-DUAL 
G R A S S M A N N - S P I N O R MANIFOLDS 

The D-parallel complex structures J on Л7 under consideration are parametrized by 
the space Q. That is why we may define a projection 

P-.Z^Q 

by corresponding a point (0, Jx~o) of the manifold Q = Gi/A'] to each point [x, Jx) of 
the manifold Z, transfering Jx D-parallel to the origin x = 0, where all non-equivalent 
complex structures are parametrized by the manifold Q. We shall denote a point J e Q 
and the corresponding complex structure on M by the same letter J. The fibre p~'{J) in 
a point J 6 Q can be identified with the complex manifold Mj = (M, J ) , i.e. M provided 
with the complex structure corresponding to ./ € Q. 

Thus, we have a double fibratiou 

Z -Z+ Q 
* i (9.1) 

M 

which is crucial for our considerations. Double fibration similar to (9.1) arises naturally 
in different problems of the twistor theory. In particular, Hitchin has defined40 a double 
fibration of the type (9.1) where M is substituted by a 4m-dimensional hyper-Kahler 
manifold and Gi/A'i = SU(2)/U(\) - CP1. In this case Z appears to be a (2m + 1)-
dimensional complex manifold and points of Л7 are identified with real holomorphic sec
tions of Z —> CP1. The main difference between these constructions and our diagram 
(9.1) is that the twistor spaces, considered in Ref.40, consist of complex structures com
patible with a Riemannian metric while ours consist of complex structures compatible 
with a symplectic form. 

Let us describe the definition of the complex structure on Z by the use of the struc
ture of the double fibration (9.1). Consider the bundles тг_,(7'М) and p~l(TQ) over Z 

18 



which are the pull-backs of the tangent bundles of Л/ and Q = G\jK\ respectively. The 
projections т and p generate the natural bundle homomorphisms 

jr. :Г2-»1г- ' (7'Л/) . p.:TZ^p-\TQ). 
We call the kernel of ir. the vertical subbundle V of TZ and the kernel of p. the 

horizontal subbundle H of TZ. Note that the fibre V, in a point z € Z is identified 
by p, with the tangent space TjQ in the point J = p(z) e Q and so has the complex 
structure JQ defined on Q. Let Jh be a complex structure equal at a point z € Z to 
the complex structure J* on W- w T.izy\l given by the point г = (x,Jr). Now we can 
define a complex structure J on Z by formula (8.6). Note that this complex structure 
J is constructed with the help of canonical symplectic connection D on M and that is 
why it is unique. The projection p: Z —» Q will become a holomorphic map w.r. to this 
complex structure 3'• 

Self-dual GS-manifold M is the Kahler manifold with the positive complex structure J 
(parametrized by the space Q) and the unique canonical connection D. For complexified 
cotangent bundle we have T"°M = Xj 4* Tj . In each point i € Jlf we consider 
a one-dimensional space A'j(x) = Д" Tj\l) • Now let us introduce the canonical bundle 
A'j = /\nTj ' , sections of which are Kj^. The existence of the metaplectic structure 
on (M, ш) is equivalent3-5 to the existence of a line bundle Sj over Л/ such that ( i j ) 2 = A'j 
and we denote Aj := 6j. 

We have the bundle Z —> Л/ of positive Kahler structures on Л/. Let us introduce the 
complex line bundle (cf. Ref.l3.5) 

l<m — Z (9.2) 

over Z, which has fibre A'/,» at (x, J{x)) € Z. The bundle (9.2) defines a metaplectic 
structure on M. The restriction of A'1'* to the fibre of Z over each x e Л/ is the half-form 

1/2 
bundle AV over the space Qx ~ G\jK\. Moreover,- this bundle is the restriction of 
standard half-form bundle over the space SpT{'2n, R)/Ur{n) discussed in Sec.IV (see Refs. 
13, 5). The pull-back of A' , / s to a section M.i = {M,J) of the bundle Z is the half-form 
bundle Kj . The bundle A'1'2 may be called, following the physical tradition, the ghost 
bundle of Z (or the restricted half-forms bundle). 

Let L —> M be the prequanlization line bundle over M with the connection V. Denote 
by L —» Z the pull-back of L to Z. Then L is a holomorphic bundle. Proof repeats word 
by word the proof of Theorem 4.2 from Sec.IV. 

We denote by V the pull-back of the connection V to L and define a V'0,1'-operator 
on section ф of L —» Z by setting 

V ( o - , » 0 = 5 ( l + i J ) W ' . 

The symplectic structure w on M being compatible with all Kahler structures on Л/ has 
the type (1,1) w.r. to any such structure, hence the curvature F? also has the type (1,1) 
w.r. to any Kahler structure. According to the definition of the complex structure on Z 
it means that the curvature Fq of the pulled-back connection V on L has the type (1,1) 
w.r. to the complex structure of Z. It follows that 

(V<0-»)2,/' = Ff 2 V- = 0, 
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i.e. L is holomorphic. Finally, we introduce the product of the bundles L and A'1 '2: 

L ••:. A ' / 2 — г 

Bundles L 0 А'У2 and I © A'1 '2 are holomorpliic. '-5 

Denote by V a connection in the bundle A l / 2 - t 7-. Then V' = V © 1 + 1 0 V will be 
a connection in the bundle L Q A'1'2. We iulroduce the space // of holomorphic sections 
of the bundle I ® A'1 '2: 

H ~ {Ф 6 r ( Z , L 0 A'1/2) : i ( l + (J)V'A .* = 0, V A' e r(Z,TZ)}. (9.3) 

Since there exists the projection p : Z —> Q ( see (9.1)), in the space II there is the 
structure of a complex vector bundle over Q: 

II - Q (9,1) 

with the fibres Hj in J £ O/. Here / / j is the space of holoniorphic with respect to J 
sections of the bundle L 0 К J —» A/. 

Now, let we have a Hamiltoniau action of a connected Lie group G on the self-dual 
GS-manifold A/ and this group may be embedded as a subgroup into the group Gi-
Denote by Q the Lie algebra of the Lie group G and by A'{ the Hamiltonian vector 
fields corresponding to (, 6 Q. Generally speaking, these vector fields do not preserve 
the fixed complex structure J on A/, but they preserve the family of complex structures 
on M parametrized by the space Q. Since A/ is a self-dual GS-manifold, vector fields 
Xf preserve not only the symplectic structure u> (£.y{w = 0), but also the canonical 
connection D on M. It is well-known."' that, in this case the unique lift X( —» Aj of the 
vector fields A'j on M to the vector fields A( on the twistor space Z exists, and the lifted 
vector fields A'( preserve-the complex structure J o n Z. On Q = G\jl\\ the canonical 
Gi-invariant symplectic structure HQ exists36,31 and therefore we have the symplectic 
structure ttz = ш ® 1 + 1 0 OQ on Z = M x Q as on the direct product of manifolds. It 
is obvious that C% ilz = 0. Now, to the vector fields Aj one may correspond functions 
ф( 6 C°°(Z) (see Sec.V) and operators -s(<^) = V'j. + ji^{, acting in the space H of 

sections of the bundle L 0 A'1 '2 —* Z. 
Because A'{ preserve the complex strurturc J on Z, the operators s{(pi) will preserve 

the holomorphic structure of the bundle L •-_:< A'1'2 —» Z. Hence, s(p() preserve the space 
H of holomorphic sections of this bundle, and we can define a G-invariant subspace Ha 

in the space H: 

Я с = { Ф е / 7 : л(&)Ф = 0, Щ£Я} (9.5) 

In other words, the operators s{tpt) act in the space of sections of the bundle H —> Q and 
pick out in it the G-invariant subspace IIе'. 

Now we should define a flat connection V in the bundle H —» Q and introduce the 
space of covariantly constant sections of the bundle H —» Q: 

T= { Ф е Г ( 5 , Я ) : О Ф = 0}. (9.6) 
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Detailed description of this connection for arbitrary syrnplectic manifolds (М,ш), on which 
a family of complex structures locally exists, are given in the paper of Hitchin.19 The 
connection exists and because we have introduced the mctaplectic correction (we used 
L ® A'1 '1 instead of L), it will be flat. For self-dual GS-manifolds the explicit form of 
this connection is simplified, but nevetherless its description is rather complicated and 
we shall not give it here. We hope to simplify the description of T> and to give it in a 
separate paper. It will be also shown that the operators s ( i^) preserve the connection 
t> and therefore for self-dual GS-manifolds M we can introduce the G-invariant subspace 
T° in the space T: 

J* = {Ф € Г(5, H) : Z>* = О, 5 ( ^ ) Ф = 0, Vf € G]. (9.7) 

The space T° will be the physical Fock space of quantization associated with the reduced 
phase space Ma for the case when M is the self-dual GS-manifold. 
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