


The problem of the quantization of gravity from the beginnings until last time meets
with the difficulty of definition of physical degrees of freedom of gravitational field [1]- [10].
The procedure of identification of physical variables and their separation from nonphysical
ones Has been called the reduction procedure. There are two ways for the realization of

-the reduction in the classical and quantum theories: the gaugeless and the gauge—fizing.

In the former, independent physical variables are constructed by the explicit resolution of
constraints. To avoid the difficulties with the resolution of very complete constraints in
gravity commonly used, the latter, gauge —fixing, method' isbased on the inroduction  into
the theory of some new " gauge constraints™ (1], [9]. However, such coordinate fixation
due to the nenlinear character of gravitation meets with the problem of determination of
the class of "admissible gauges”, which allows us to obtain gauge independent results {11},
Recall that the gauge equivalence theorem has been proved only for the asymptatical flat
space time [7]. It seems to us that the last problem of definition of admissible gauges is
not easier than the prob]er;l of resolution of constraints.

In the present paper we try to follow the gaugeless reduction [!2]- [17] of gravity,
based on explicit resolving of the classical Hamiltonian constraints for nenphysical field
momenta and the corresponding fields coordinates .

The application of the gaugeless approach te the relativistic particle model is quite
simple. The resolving of the mass-shell constraints for relativistic particle

1
He=gl=pi+pi+m?) =0, ()

leads to the notion of particle energy

po=Hw; w=+p'+m?, (2)

and resolution of motion equation of corresponding coordinate gives us the definition

of ohservable time. It is very attraclive to (ransfer these clear notions of energy and

observable time for a relativistic particle to the case of gravity. We shall deal with this
analogy and show that the resolution of constraints and corresponding equations of general
gravity leads to the new notion of "spectral energy” £, of the type of (2} and spectral
time T, as a variation of the reduced action with respect to the spectral energy

aw,

5, (3)

T, =

The main aim of our paper is to clear up the physical meaning of spectral energj( and
spectral time in gravity .

The paper is organized as follows. In section 2 we consid'g the method of gaugeless
r.eduction for the examples of QED and relativistic quantum thecha.nics. We show that
after the reduction both the theories contain only the observable -gatge invariant variables
(two transverse photons and the "time-reparametrization” inva:,timt ph}ysical coordinates
and spectral time, correspondingly). Section 3 is devoted to the calculation of the reduced
action and spectral Hamiltonian for the system of gravitation an]d electromagnetic fields.
The latter is used as the test of correct rednction. We investigate here the.flat space-time
limit of the reduced action. Section 4 is devoted to the spectt&l;'l}égto;y: of the quanium

Universe.

1 Gaugeless reduction of Abelian gauge theory

Before considering a rather complicated case of gravity it is worth to illustrate the method
of "gaugeless reduction " [12]- [17], by the simplest examples of free Maxwell field and

relativistic mechanics.

Let us consider, first, the action for the Abelian gauge field

W[A] = — f #zi—Fn,F“” = % ] d*Z{(BA’ — 8 Ao)® - B}, (4)
where
B,' = e‘-J,‘B"A" -
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There is Lagrangian constraint in the theory ( Gauss law)
An = 3 BoA,. (5)

It is easy to check that the electric tension on the constraint—shell (3) becomes functional
from the gauge field
- EilA] = &Ai — 8:A0[A] = AT[A4], (6}

where
ATiA] = ( 4 aﬁa) 8,AT[A] = 0. o

The action (4) on the constraint-shell has the following form

) 1
WrAT) = 3 [ dBAT - (BT (®)
As a result we obtain action in terms of the gauge invariant functionats AT[A + 3A] =
AT[A] and it contains only two observable transverse fields. Then we can pass to the
Hamiltonian form for our theory by using the conventional Legandre transformation for
physical coordinates AT[A]. Thus we get the reduced phase space without exploiting any
gauge, using the explicit resolving of constraint (
1 3 Bo
A A,‘ = - E _— 9
olA] = (04 ,22Al, 9)
The transversality constraint here arises as a result of reducing but not as an additional

gauge requirement. As regards relativistic covariance, it is not manjfest. It is easy to

check that the Lorentz transformation of physical variables [15] has the form
AT[A + bp.A) — AT[6,4] = §.AT + BA[AT],

whete &7, is the conventional Lotentz transformation with the parameter £*, which is

supplemented by the gauge transformation:
1
A{ATI = Ekaka(auAT) .

This form has been interpreted by Heisenberg and Pauli [18] (with reference to the

unpublished note by von Neumann) as the transitior from the Coulomb gauge with respect

to the time axis in the rest frame 33 = (1,0,0,0) to the Coulomb gauge with respect to

the time axis in the moving frame

ne =70 + 8Ly

This fact reflects the Lorentz covariance of the reduced theory, and has been proved
in quantum theory by B.Zumino [19].

For gravitational field there are more complicated Lagrangian constraints than (5).
From this point of view it is useful to rewrite the initial action (4} in the first order

formalism
WilA, E} = /d"a: (E;(BaAg) + AgdiE) — %((E;)” + (B — a.-(AuE.-)). (10}

In this form the action (10) describes the generalized Hamiltonian system, where E;, A;
are the canonical conjugate variables, and Ag is Lagrange factor. Conventionally, to fix
this factor one uses a gauge constraint F{A) = 0. Instead of this we can repeat the
described above procedure of the gaugeless reduction. It is clear that the Lagrangian
constraint {(5) can be got from the equation of motion for Ag

W ) :
E—O — &E;. =0 (11)
and the longitudinal part of the equation of moltion for E;

% =0 = £ =(0A - 8&A). (12)
For the theory with vanishing the surface term 9;(AoE;), to remove all nonphysical
components Ag, &A;, &FE; without gauge fixation it is enough to resolve explicitly only
secondary constraint (11).
For two-dimensional Abelian theory it is known how to deal with the nonvanishing

surface terms. In this case the explicit solutions of the constraint contain zero-modes as

solutions of the corresponding homogenecus equations [13], [20]

E(z,t) = E;(t) + ET(x,t), 8ET=0. (13



The existence of these zero-modes is connected with the nontrivial topological invariant
of the Chern—Simons type. In quantum theory they correspond to the plane wave in
the functional space of the type of the Coleman electric field [13] unlike the oscillator

excitations of the transverse photons in QED.

2 Relativistic mechanics without gauge fixing

We have demonstrated the procedure of the gaugeless reduction for the singular theory
with the Lagrangian constraint by example of free electromagnetic field. Now let us study
this method for the singular theory without the Lagrangian constraint. The well-known

example of such a theory is relativistic particle with the action

T
Wiz} = -mfdr\/éé. (14)

This action is invariant under reparametrization of time

T— 7 = sr),
() = (') = =(7) (15)

with ds/dr > 0. Therefore, there is an arbitrary function in the solution of equation of
motion. So, beside fixing initial conditions, it is necessary to eliminate this function from
the solution. The usual manner is gauge choosing. For example, the proper time fixing
zo{7) = 7 leads to the instant form of dynamics for relativistic particle [4] . However, let us
act in the spirit of the previous section and try to sclve the problem without gauge fixing.

For our final aim — gaugeless reduction of the Einstein gravity — it s more transparent

to rewrite action (14) in the following form

Wiesd =172 far (5 t) a0

The phase space corresponding to the system {16) contains five variables (e, zo, %)

and their five canonical momenta (p., po, ;). From {16) we obtain the primary constraint

p.=10, (17)

and the canonical Hamiltonian H = eH,where H is defined from eq. (1). The Poisson

bracket of this constraint and the Hamiltonian gives the secondary constraint
{pe HY = H =0, (18)

Thus the initial action (16) is rewritten in the Hamiltonian form

T
Wiz,e,p] = [dT(Poio — piti —~ eH). - . . (19)

a
In accordance with the case of electromagnetic field let us express one of the momenta

{po, p:) in terms of the others

po = Fw(p); wlp)=+/p} +m% ' (20)

we shall call this quantity the "spectral energy”, to distinguish it from (18) ( in the Einstein
theory of gravity (18) corresponds to the "energy density”). Note that the resolution of
constraint with respect to py corresponds to choice of the instant form of dynamics-. In
the present paper, we shall restrict ourselves only to this form of dynamics. As a result

we get the following reduced action

zo(T)
d H : . . '
Wilaip] = [ doo (ulp) - p AR, (21
zo {0} %o .

The reduced phase space contains only x:,p; as dynamical functions of 5. The initial
action (19), which is the functional from zy(7), transformed into the action {21) as the
function from the boundary values zy(0), zo(T). To elucidate this dependence, we can
exploit the following equations of motion

swi d
6:3“ = ] ap' = 0. (22)

The reduced action {21} on classical equations (22) is the function

WE(X,p) = Fw(p)Xo + p: X; (23)
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of the global reparametrization invariants
X =2,(T) - z,(0). (24)

From the point of view of the Hamilton - Jacobi theory just these invariants represent
the observable time and coordinates. In the following we shall call them the spectral time
and coordinates. -

Now we can immediately write down the spectral representation for the wave function

for our reduced system

WX, Xo) = '/(2”_)5/_5‘—\/‘2; {a(ﬂ(p)eiw(cﬂ + a(_)(p}e'w(c-)} ; (25)

Note that in the initial theory (14) there is a geometrical invariant of the proper time

dly = medr ; (Te(r') = Te(7)}, (26)

which coincides with the spectral one for the lowest values of the spectral energy w = m.
We would like to emphasize that the spectral time (unlike the mathematical one ) has the

absolute origin.

3 Gaugeless reduction of Einstein gravity

3.1 The Hamiltonian form

The previous examples give hope to fulfil the gaugeless reduction of gravitation theory
without gauge fixation.
We start with the conventional scalar curvature action including the electromagnetic

field to control the reduction procedure

1
Wig Al = = [ %077 (35980 + F.P). (1)
It is well known that the Einstein equations
W
=0
Egﬂ,u
8

are the Lagrange constraints. In the Hamiltonian approach they correspond to the sec-
ondary constraints, and the reduction consists in their explicit resolving with respect to
the definite momenturn and coordinate.

The Hamiltonian approach with the instant form of dynamics enforces us to assume
that the space time manifold M can be represented as M = RxE, where X is three-
dimensional surface. The space time foliation is realized by introducing the so-called
embedding variables X (x,¢) [21] which are maps from a point X of the surface T to a space
Lime point X of the manifold A, and ¢ labels the leaves of the foliation. This foliation
leads to the well-known Dirac-Arnowitt-Deser-Misner { Dirac-ADM) metric (1], [4]

ds* = N*(dt)? — a*hy(dz’ + N'dz®){dz* + N*dz), (28)

where NV is the lapse function, N' is the shift vector , e the "scale-space” component of

metric, Ay is the "graviton component” with determinant equal to unity:
V=g=Na®, det(hyi)=1, a=expp. C(29)

The Finstein -Hilbert action (27) in terras of this metric possesses thie m'an.i_fest sym-

metry under the {ollowing group of transformations [22]:
(30)

Let us rewrite the action {27) in terms of the embeddings. The scalar.curvature can be

decomposed in three terms: a "kinetic” X, the three-dimensional curvature R, and

"surlace” 3
WR=_K 4+ ®R42%, (31)
@t o2
[ L 32)
TN T 4NY 32
4 : l . 1
PR = p [h“v,nﬂk;a + 58;4:8",;] + a_z'R(h)’ (33)
1 " ot o ol i
Y = Nod O [aa N + WN fﬁ] - Sao(F) , (34)
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where

g ; 1 3 pik
H= ,u—?‘,?ﬁk(a N ],

ol L/ : .
hl = pA (hH — VN, — VN, + ghma{N')’

1 , .
R(R) = Za,-h“;(a'h‘k—za’h*,‘.) + B.8hF.

The canonical momenta conjugated to p, £, and A are the following

ac 6a’slo

Py = FrER e
ar a®g? 8

. k &
PU‘){ ahl 4N hi’
or a /. ) a o
E, = A E(Ak_akAD_Nﬂk) = NAk'
Here th*; = h’“"ajh“ , N;=hyN'and V; is a covariant derivative in metric hj.

In terms of these variables the action {27) has the following form

W= fdaxdt

with the surface action term

1
§¢ = +S8N +2P5N' - sV Py + AoE",

In (41) H 1s the Einstein energy density:

2 p? 42 P2 (3)
H=d [_L(_“)+ (h)+l+TDU(E)

1

2-6 a° 2a8 22

and P is the momentum density:

ad P
Ph= 70 (%) + 2V, Plyge — B Fy

T%(E) is the electromagnetic energy density

1 Mot ot
TUU(E)=—(E‘E -+ F.”F )

2\ o 2at
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, . . 2
Pyt + Plhgihiy + E* Ay + AdB* — NH + N*P, — 2 — 8,.5*

(35}

(36)

(37)

(44)

(45)

Now it is clear that the action {41} describes the generalized Hamiltonian dynamics

for (g, hit, Ar) and Py, Payu, Er with Lagrange factors Ag, N, N, and the constraints
H =0, P.=20, E =0. (46)

Nate that the action (41) differs from the ADM action by the surface terms, as will

be seen later, they will be impertant for the definition of the spectral energy.

3.2 Reduction of phase space

We shall act in the direct analogy with the relativistic particle case and QED. As we
verified,  tlie resolution of constraints leads to the construction of gauge invariant vari-
ables (QED) and to the observable time as the global invariant of the reparametrization
group (relativistic particle). This program for gravity has been realized in the framework
of the cosmological perturbation theory on the level of the classical equations, with the
choice of the conformal time [23]. Here we discuss the dynamical aspect of this program

»

connected with the construction of ” spectral Hamiltonian ” and "spectral time”. The

main point is the resolution of the "energy” constraint H = 0 against the space scale
momenturm ‘
2 :
3./g [42P2.  G)R !
P = Fws we S0 PR opeg| (47

The explicit resolution of constraints {46) generally allows one to express Py, and u as
functionals from the physical variables ® = (A, k), Plsy = (E, Py) within the zero mode

sector {compare with eq. (13})
po= polt) + ucl® Pyl - (48)

The explicit time dependence of 4 is not defined in the same way as for the particle case,
where the 1o dependence remains umknown. Recall that the notion of observable time
appears only after the resolving Hamiltonian constraints and motion equations.

On the constraints [46) the initial action (40) has the following reduced form

. _
wiet = [ & [ at 1o ¥ (iow - )~ 5" (49)

1



This expression is the basis for construction of the Hamiltonian scheme in terms of gauge

invariant variables P(Q),(IJI

Red _ 3 T’(T) pl !
Wi = | o Ploy gy F Hal Py, 971 (50)

For the zero mode sector (in the homogeneous approximation) the global observable time

can be introduced from the following condition
OH,
a7,

The representation for the wave function of the reduced homogeneous system in terms

(51)

of eigenfunctions of the spectral Hamiltonian

HY, = £,

W@ = D (AL exp (—i&,T3(po))Wa(®') + AL exp GETL (o)) ¥7,(01)),  (52)

Here T.{ta) describes the evolution of the quantum Universe with the absolute begin-
ning of time Ty(uo). Below we consider the simplest examples of this evolution.
. . . . ©
Before we would like to note that the surface term (34) (time derivative) and £F,) on

the constraints give us the following part of the spectral Hamiltonian

O]
nuP(u) - FE - 520'6

(53)

Kiw

O]
1 Balit [4&2Ph2 T:].

In the flat space time limit from (53) we get the conventional action for electromagnetic

field (8) in contrast with the ADM approach, where the full time derivative is neglected.

4 Spectral energy density and time

4.1 The Misner anisotropic Universe

In the limit of the small space scale factor a , (47) transforms to

W(P(h)) = Q\IGP{MZ, (54)
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From (50) we conclude that
£ = w(Py) and T, = p (55)
and the small earlier Universe is described by the action
Wiy = /dﬂfs [Pk (BT, z) = hy(0, 1)) F w( P (#(T, 2) — (0, z))] - (56)
The constraint 7 in this limit reduces to the condition of homogeneity
ViPlyr = 0.

So, we get the Misner anisotropic model [24] ~[25] with the following spectral repre-

sentation for the wave function
r.d
1}”(,‘—"1 h!k) — fds(P(*h]f) I:A{:] f“lr("ild + A[ } !W ] , (57)
The spectral time coincides with the logarithm of space scale

_ a(T)
T, = log (a(o}) !

and has absolute beginmng. The positive sign of time corresponds to the expansion of

the Universe,and negative sign to the contraction of (anti) Universe. The "Observer” is
secing that the small Universe is created with finite volume and density and undergoes
the inflation with respect to the “spectral time”.

The inflation lasts till the size becomes so large that the next radiation term dominates.

4.2 Radiation dominance

At the radiation dominance stage
P(h)k; =0

the Universe is described by the following reduced action

7v B
*). B‘Z
Wiy = / ] dt [E'A ;—*—Jr T, (58}
Q
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where the spectral energy density coincides with the conventional Hamiltonian electro-

magnetic density, and spectral time T, in the homogeneous limit

Bp - _

k
s (k==%1,0) 18 = 0,

2
ET'D

is the conformal one 5
baa

. =

- mtw

within the factor of the size of the Universe [16], [17].

= rojj {59)

In the flat space imit 7, = 1 and the spectral Hamiltonian

3 E2+BZ
H, = B 7
/d:c 5 (60)

represents the generator of evolution . Recall that this Hamiltonian is obtained from
wi — 3 in the reduced action (49). The latter term is omitted in the ADM scheme. This

is the reason why the flat limit for radiation cannot be reproduced in ADM approach.

4.3 The dust dominance

Finally, at the classical dust dominance stage

it is easy to see [16],[17] that the reduced action (49) has the following form

M,
Red _ ()
Here the spectral time
Tr(a) — Td Bala
r(a) = A t.ﬁs?w (62)

coincides with the Friedmann (proper) time for any type of the Universe k = 0, £1, as
in the case of relativistic particle. Due to considering only the localizable part of the
spectral energy in the representation (58) we got only one half the mass of the Universe
in accordance with Tolman’s result of 1930 [26]. In the quantum theory {52) the spectral

energy £, = 1/2M4) is a conserved quantity and represents the relict of the age of creation

14

of the Universe. It is naturally to suppose that at this moment the Universe bad the size
of its Comnpton length Mgy ™", which defined the minimal scale a(0) = (kM) ™" = 107
in eq.(58).

5 Discussion

In the present paper, we have tried to fulfil the gapge}ess reduction of the phase space
of gravity. The main peculiarity of this reduction is the appearance of the concepts of
the spectral energy and spectral time. These quantities havé been obtained from all the
surface terms of the initial Einstein action (including the total time derivative). In the
quantum theory they correspond to the nonzero phases of the wave function. Just from
these phases an " Observer” forms the spectral energy and spectral time.

We calculate these quantities for the set of simplest examples.

e In the limit of a small space scale component a of the metric,the.”Observer” is
observing that the creating Universe expands from the finite volume and density and
it is filled with only the Misner anisotropic gravitons [24] This Universe undergoes
the inflation under the spectral time. The inflation corresponds to the energy density
1/a%, but not the de Sitter one.

e In the radiation stage, the reduced action has two correct limits. At the large
cosmological scale limit the spectral time coincides with the conformal one. For the

small scale (in the flat space time limit) the spectral energy is nothing else as the

energy of transverse photons, in contrast with ADM scheme.

e In the stage of dust filled Universe, the "Observer” discovers that his spectral time,
as the phase of the wave function, transforms to the classical Friedmann time, as the

invariant interval (like the observable time for relativistic particle at rest transforms

to the proper one).

The " Observer” sees the changes of the character of spectral time T, in the process of

16



the evolution of the Universe. Who is the "Observer ”, whose conclusions strongly differ

from the conclusions of a modern scientist [27]?
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