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The problem of the quantization of gravity from the beginnings until last time meets 

with the difficulty of definition of physical degrees of freedom-of gravitational field (1]- (10]. 

The procedure of identification of physical variables and their separation from nonphysical 

ones has been called the reduction procedure. There are two ways for the realization of 

.the reduction in the classical and quantum theories: the gaugeless and the gauge-fixing. 

In the former, independent physical variables are constructed by the explicit resolution of 

constraints. To avoid the difficulties with the resolution of very complete constraints in 

gravity commonly used, the latter, gauge -fixing, method~ IS based on the introduction into 

the theory of some new" gauge constraints'' [1], [9]. However, such coordinate fixation 

due to the nonlinear character of gravitation meets with the problem of determination of 

the class of "admissible gauges", which allows us to obtain gauge independent results [11]. 

Recall that the gauge equivalence theorem has been proved only for the a.symptotical fiat 

space time [7]. It seems to us that the last problem of definition of admissible gauges is 

not easier' than the proble~ of resolution of constraints. 

In the present paper we try to follow the gaugeless reduction [12]- [17J of gravity, 

based on explicit resolving of the classical Hamiltonian constraints for nonphysical field 

momenta and the corresponding fields coordinates . 

The application of the gaugeless approach to the relativistic particle model is quite 

simple. The resolving of the mass-shell constraints for relativJstic particle 

1 
H~ 2(-pi+P!+m2

) ~o, (1) 

leads to the notion of particle energy 

p0 = ±w; w = .Jp2 + m 2 , (2) 

and resolution of motion equation of corresponding coordinate gives us the definition 

of observable time. It is very attradive to transfer these clear notions of energy and 
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observable time for a relativistic particle to the case of gravity. We shall deal with this 

analogy and show that the resolution of constraints and corres;ponding equations of general 

gravity leads to the new notion of "spectral energy" £8 of the type of (2) and spectral 

time Ts as a variation of the reduced action with respect to the spectral energy 

T _ aw, 
'- ae · • 

(3) 

The main aim of our paper is to clear up the physical meaning of spectral energy a.nd 

spectral time in gravity . 

The paper is organized as follows. In section 2 we consi4er the method of gaugeless 

reduction for the_ examples of QED and relativistic quantum mechanics. We show that 

after the reduction both the theories contain only the observable-gauge invariant variables 

(two transverse photons and the "'time-reparametrization" i,nva.riant p~ysical coordinates 

and spectral time, correspondingly). Section 3 is devoted to the calculation of the reduced 

action and spectral Hamiltonian for the system of gravitation ~d electromagnetic fields. 

The latter is used as the test of correct reduction. We. investigAte Q.ere the.fia.t space-time 

limit of the reduced action. Section 4 is devoted to the spectra.J~ ~~~o~y- of the quantum 

Universe. 

1 Gaugeless reduction of Abelian gauge theory 

Before considering a rather complicated case of gravity it is worth to illustrate the method 

of "gaugeless reduction " [12]- [17], by the simplest examples of ·free Maxwell field and 

relativistic mechanics. 

Let us consider, first, the action for the Abelian gauge field 

W[A] = - J d"x~F.-F"" = ~ J d"i[(lioA'- a' Ao) 2
- B?], (4) 

where 

Bi = fi3kEJi Ak . 
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There is Lagrangian constraint in the theory ( Gauss law) 

L>Ao ~ ii'(%A,. (5) 

It is easy to check that the electric tension on the constraint-shell (5) becomes functional 

from the gauge field 

E,[A] ~ &0A,- &;Ao[A] ~ &,A[( A], (6) 

where 

Af[A] = (o,;- &;~2 &;) Ai, &,A[( A]= 0. (7) 

The a~tion ( 4) on the constraint-shell has the following form 

W"''[AT] = ~ J d'x[(&0A;')'- (B,(AT)) 2
]. (8) 

As a result we obtain action in terms of the gauge invariant functionals AT[A +a>.] = 

AT[A] and it contains only two observable transverse fields. Then we can pass to the 

Hamiltonian form for our theory by using the conventional Legandre transformation for 

physical coordinates AT[ A]. Thus we get the reduced phase space without exploiting any 

gauge, using the explicit resolving of constraint (5) 

A
0
[A,] = _l:_(&'A;) = _ _!_fd' &'a,A;(y) 

L> 411" y ]x-y] · 
(9) 

The transversality constraint here arises as a result of reducing but not as an additional 

gauge requirement. As regards relativistic covariance, it is not manjfest. It is easy to 

check that the Lorentz transformation of physical variables [15] has the form 

AT[A + oLA]- AT[oLA] = DLAT + iJ,A[ATJ , 

where f!L is the conventional Lorentz transformation with the parameter c", which is 

supplemented by the gauge transformation: 

T k 1 T 
A[A ] = < iJ,Li:(DoA ) . 

This form has been interpreted by Heisenberg and Pauli [18] (with reference to the 

unpublished note by von Neumann) as the transition from the Coulomb gauge with respect 
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to the time axis in the rest frame 17~ = (1, 0, 0, 0) to the Coulomb gauge with respect to 

the time axis in the moving frame 

11~ = 11~ + Su1~. 

This fact reflects the Lorentz covariance of the reduced theory, and ~ been proved 

in quantum theory by B.Zumino [19]. 

For gravitational field there are more complicated Lagrangian constraints than (5). 

From this point of view it is useful to rewrite the initial action (4)·in the first order 

formalism 

WI[ A, E] = J d4
x ( E,(&0 A,) + A0&;E;) - ~(( Ei) 2 + (B,) 2

) - &,(A0 Ei)). ( 10) 

In this form the action (10) describes the generalized Hamiltonian system, where E;, A; 

are the canonical conjugate variables, and A0 is Lagrang_e fact~n. Conventionally, io fix 

this factor one uses a gauge constraint F(A) = 0. Instead of this we can repeat the 

described above procedure of the gaugeless reduction. It is dear that the Lagrangian 

constraint (5) can be got from the equation of motion for A0 

ow 
oA

0 
= O = iJ,E, = 0 

and the longitudinal part of the equation of motion for E1 

ow =O 
8E' = E, = (80 A,- 8,A0 ). 

( 11) 

(12) 

For the theory with vanishing the surface term 8;(A0 E;), to remove all nonphysical 

components A0 , 8oA;, 8;E; without gauge fixation it is enough to resolve explicitly only 

secondary constraint (11). 

For two-dimensional Abelian theory it is known how to deal with the nonvanishing 

surface terms. In this case the explicit solutions of the constraint contain zero-modes as 

solutions of the corresponding homogeneous equations [13], [20] 

E(x, t) = E0 (t) + ET(x, t), {JET= 0. ( 13) 
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The existence of these zero-modes is connected with the nontrivial topological invariant 

of the Chern-Simons type. In quantum theory they correspond to the plane wave in 

the functional space of the type of the Coleman electric field [13] unlike the oscillator 

excitations of the transverse photons in QED. 

2 Relativistrc mechanics without gauge fixing 

We have demonstrated the procedure of the gaugeless reduction for the singular theory 

with the Lagrangian constraint by example of free electromagnetic field. Now let us study 

t]lis method for the singular theory without the Lagrangian constraint. The well-known 

example of such a theory is relativistic particle with the action 

T 

W(x] = -m j dr~ 
0 

This action is invariant under reparametrization of time 

T ____, T 1 

x(r) ~ x{r')' 

s( T ), 

x(r) 

(14) 

(15) 

with ds/dr > 0. Therefore, there is an arbitrary function in the solution of equation of 

motion. So, beside fixing ini"tial conditions, it is necessary to eliminate this function from 

the solution. The usual manner is gauge choosing. For example, the proper time fixing 

x 0( T) = T leads to the instant form of dynamics for relativistic particle [4] . However, let us 

act in the spirit of the previous section and try to solve the problem without gauge fixing. 

For our final aim - gaugeless reduction of the Einstein gravity - it ;_s more transparent 

to rewrite action (14) in the following form 

T 

W(x,e] = 1/2 j dr c: +em'). (16) 

0 

The phase space corresponding to the system (16) contains five variables (e, x0 , x~) 

and their five canonical momenta (pe,po,p;). From {16) we obtain the primary constraint 

Pe = 0, (17) 
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and the canonical Hamiltonian H = e}{,where 'His defined from eq. (1). The Poisson 

bracket of this constraint and the Hamiltonian gives the seC9J!dary constraint 

{Po, H} = 'H = 0. 

Thus the initial action {16) is rewritten in the Hamiltonian form 

T 

W(x, e,p] = j dr{po:i:o- p,:i:; - e'H). 

0 

(18) 

(19) 

In accordance with the ca.se of electromagnetic field let us express one of the momenta 

(p0 , P•) in terms of the others 

Po = 'fw{p); w(p) = ,}P1 + m2; (20) 

we shall call this quantity the "spectral energy", to distinguish it from (18) (in the Einstein 

theory of gravity {18) corresponds to the "energy density"). Note ~hat the resolution of 

constraint with respect to p0 corresponds to choice of the -instant form of dynamics. In 

the present paper, we shall restrict ourselves only to this form .of dynamics. As a. result 

we get the following reduced action 

xo{T) 

WR"'(x;,p;j = j dxo ( 'fw(p) 

xo{O) 

dx;{xo)) . 
- p1 dxo (21) 

The reduced phase space contains only Xi, Pi as dynamical functions of x0 . The initial 

action (19), which is the functional from x0 (r), transformed into the action (21) as the 

function from the boundary values x 0 (0), x 0 (T). To elucidate this dependence, we can 

exploit the following equations of motion 

ow&• 
h;r;, = 0 = 

d 
dxoPi = 0. 

The reduced action (21) on classical equations (22) is the function 

Wf(X,p) = 'fw(p)Xo + p;X; 
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of the global reparametrization invariants 

X, = x,(T) - x,(O). (24) 

From the point of view of the Hamilton- Jacobi theory just these invariants represent 

the observable time and coordinates. In the following we shall call them the spectral time 

and coordinates. 

Now we can immediately write down the spectral representation for the wave function 

for our reduced system 

J d
3p { we we} ,P(X,,X,) = ffw al+l(p)e' 1+1 + aH(p)e' H . 

(2~)3/' 2w 
(25) 

Note that in the initial theory (14) there is a geometrical invariant of the proper time 

dTp = medr; (Tp(r') = Tp(r)), (26) 

which coincides with the spectral one for the lowest values of the spectral energy w = m. 

We would like to emphasize that the spectral time (unlike the mathematical one ) has the 

absolute origin. 

3 Gaugeless red_uction of Einstein gravity 

3.1 The Hamiltonian form 

The previous examples give hope to fulfil the gaugeless reduction of gravitation theory 

without gauge fixation. 

We start with the conventional scalar curvature action including the electromagnetic 

field to control the reduction procedure 

W[g, A]=-J d4 XF9 (
_1_141 R(g) + ~F F""). 2x: 2 4 1).1/ 

It is well known that the Einstein equations 

8W =O 
Ogo,_,. 
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(27) 

are the Lagrange constraints. In the Hamiltoriian approach they correspond to the sec­

ondary constraints, and the reduction consists in their explicit resolving with respect to 

the definite momentum and coordinate. 

The Hamiltonian approach with the instant form of dynamics enforces us to assume 

that the space time manifold M can be repreSented as M =.··.'R.x E, where E is three~ 

dimensional surface. The space time foliation is realized by introducing the so-called 

embedding variables X(x, t) [21] which are maps from a pol~t X of th~ surface E to a space 

Lime point X of the manifold M, and t labels the leaves of the foliation. This foliation 

leads to the well-known Dirac-Arnowitt--Deser-Misner ( Dirac-ADM) metric [1], [4] 

ds' = N 2(dt)'- a2 h;k(dx' + N'dx0 )(dx' + N'dx"), (28) 

where N is the lapse function, N' is the shift vector , a the "scale-space" component of 

metric, htk is the "graviton component" with determinant equal to unity: 

F9 = Na3
, det(h,k) = 1, a= exp#. (29) 

The Einstein -Hilbert action (27) in terms of this metric possesseS 'the m·aniJest sym­

metry under the following group of transformations [22]: 

~ t'=t'(t), 
(30) 

xi ---t xi
1 = x;J(t,x1 ,.r. 2,x3 ) 

Let us rewrite the action (27) in terms of the embeddings. The scalar.curvature can be 

decomposed in three terms: a "kinetic" K, the three-dimensional curvature (a) R, and 

"surface" E: 

141 R = -K + 131 R + 2E, (31) 

0'2 0 2 

jl h 
K = - 6 N' + 4N2 ' (32) 

(
3
)R:= : 2 [h!.: 1 \7 1 8~.:Jt+ ~a~-~~a~.:Jt] + a12 R(h), (33) 

1 k 3a k 0 . a Jt [ [ 3 l '0] E = N a' fh aa N + N N . I' - :l8o( N' ) (34) 
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where 
8 . 1 3 k 
M = ~-

303
iJ,(a N ), 

0 

h~ ., (• 2 ·) h' hk,- V',Nk- '\hNt + 3hk18;N' , 

R(h) = ~a,h',(iih',- 2D'h'k) + a,a,h". 

The canonical momenta conjugated to J.t, h, and A are the following 

ar. 
E, = iJA' 

8£ 6a3 1f2 
0 

PI"J = ap. = - ---;,;-M, 

iJ£. 
P(tl' = ah~ 

a3K2 0 

= 4N h7, 

a ( · 1 ) N A, - iJ,A0 - N F,. 
a o 
NA,. 

Here 8ihk 1 = hki()ih;1 , Nt = h1;Ni and V'1 is a covariant derivative in metric h;k. 

In terms of these variables the action (27) has the following form 

(35) 

(36) 

(37) 

(38) 

(39) 

(40) 

W = j d'xdt [pi"JP. + PI~Jii.l + E' A,+ A,&,E' - N1t + N'P, - j>~l - o,S' l 
(41) 

with the surface action term 

k ak k 1 1~.: k 
S = +--,o N + 2PihJIN - -N P1"1 + A,E . 

K 6 
( 42) 

In (41) 'His the Einstein energy density: 

1t = a3 _!::___j!i + __ (_h)+-+ T 0o(E) ; 
[ 

' P
2 

4<
2
P

2 
i'IR l 

2 · 6 a6 2a6 2~~: 2 
(43) 

and Pis the momentum density: 

a
3 (p(")) 1 1 Pk = 3 ak ~ + 2V',P(h)lr- E F,k; (44) 

']"'00 (E) is the electromagnetic energy density 

T' (E)=~ ( E;E' F,iF'i). 
o 2 a4 + 2a4 ( 45) 
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Now it is clear that the action (41) describes the generalized Hamiltonian dynamics 

for (11, hkl, Ak) and P(11-}l P(h}k!, Ek with Lagrange factors A 0, Nk, N, and the constraints 

1t = 0 , P, = 0 , &,E' = 0 . (46) 

Note that the action (41) differs from the ADM action by the surface terms, as will 

be seen later, they will be important for the definition of the spectral energy. 

3.2 Reduction of phase space 

We shall act in the direct analogy with the. relativistic particle c·ase and QED. As we 

verified, the resolution of constraints leads to the construction of gauge ·inVariant vari­

ables (QED) and to the observable time as the global invariant of the reparametrization 

group (relativistic particle). This program for gravity has been realized in the framework 

of the cosmological perturbation theory on the level of the classical equations, with the 

choice of the conformal time (23]. Here we discuss the dynamical aspect of this program 

connected with the construction of " spectral Hamiltonian " ~nd "spectral time". The 

main point is the resolution of the "energy" constraint 'H = .0 against the space scale 

momentum 

p(IJ.)± = =F w; ]

1/2 

a
3yi6 [4•'Pi~l ('IR +2T0o · 

w = -- 6 + ,.;,2 

" a 
(47) 

The explicit resolution of constraints ( 46) generally allows one to express P(~) and 11- as 

functionals from the physical variables cp = (A,h),P(il') = (E,Ph) within the zero mode 

sector (compare with eq. (13)) 

M = Mo(t) + ~L[<i>, PtoJ]. (48) 

The explicit time dependence of 11- is not defined in the same way as for the particle case, 

where the x 0 dependence remains unknown. Recall that the notion of observable time 

appears only after the resolving Hamiltonian constraints and motion equations. 

On the constraints ( 46) the initial action ( 40) has the following reduced form 

Wf'' = J d3 x lT dt [P(o)<i> 'f (fl.w- i)- IJ,S'J. ( 49) 
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This expression is the basis for construction of the Harriiltonian scheme in terms of gauge 

invariant variables P{ifl)• 411 

J 1
T,(T) 

Wfed = d3x dTs 
T.(o) 

[
P' a~' , ] <•Jar, 'F1i,[P <•l·~'l. (50) 

For the zero mode sector (in the homogeneous approximation) the global observable time 

can be introduced from ~he following condition 

aH, 
ar, 0. (51) 

The representation for the wave function of the reduced homogeneous system in terms 

of eigenfunctions of the spectral Hamiltonian 

'Hs\[fs £sWs 

IS 

'II(~')= L (A\+1 exp(-ie,T,(~o))'ll,(~') + A\-1 exp(ie,T,(~o))w',(~')). (52) 

Here T~(,uo) describes the evolution of the quantum Universe with the absolute begin­

ning of time T3 (~-Lo). Below we consider the simplest examples of this -evolution. 
0 

Before we would like to note that the surface term (34) (time derivative) and ,up(t>) on 

the constraints give us the following part of tlle spectral Hamiltonian 

0 
0 1 6a

6
!1 [4K2 

P
2 l ~p(t>l-2~ = -,- ~+Tg. 

K K W K a 
(53) 

In the flat space time limit from (53) we get the conventional action for electromagnetic 

field (8) in contrast with the ADM approach, where the full time derivative is neglected. 

4 Spectral energy density and time 

4.1 The Misner anisotropic Universe 

In the limit of the small space scale factor a , (47) transforms to 

w(P1hJ) = 2V6P(hi'· (54) 
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From (50) we conclude that 

[, = w(P1, 1) and T, = I' (55) 

and the small earlier Universe is described by the action 

W/!'i = j dx' [ Pl'l; ( h1 k(T, x) - h[ (0. x)) 'F w(PI'I )(~(T, x) - ~(0, x))] . (56) 

The constraint P~o in this limit reduces to the condition of homogeneity 

'iltP/h)k - 0. 

So, we get the Misner anisotropic model [24] -[2,5] with the following spectral repre­

sentation for the wave function 

,P(,u, hlk) =I ds(P(\)t) [Ai;/e;w!~·~d + Ai;/e;w/:e/) (57) 

The spectral time coincides with-the logarithm of space scale 

(
a(T)) 

T., = log a(O) ' 

and has absolute beginning. The positive sign of time corresponds to the expansion of 

the Universe, and negative sign to the contraction of (anti) Universe. The "Observer" is 

seeing that the small Universe is created with finite volume and density and undergoes 

the inflation with respect to the ''spectral time'". 

The inflation lasts till the size becomes so large that the next radiation term dominates. 

4.2 Radiation dominance 

At the radiation dominance stage 

p(h)/.;1 = 0 

the Universe is described -by the following reduced action 

1' 

W/i,'i' = J d3
x J dt [ E' A, E'+B'·] =F 2 Ts, (58) 

0 
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where the spectral energy density coincides with the conventional Hamiltonian electro­

magnetic density, and spectral time Ts in the homogeneous limit 

{3)R = k 
(k = ±1,0) ;8,a = 0, 

a 2 r~ 

is the conformal one 17 

t, 6aa 
,.._2w = roi} (59) 

within the factor of the size of the Universe [16], [17]. 

In the flat space limit t = 1 and the spectral Hamiltonian 

H3 = J d3x £2 ~ sz (60) 

represents the generator of evolution Recall that this Hamiltonian is obtained from 

w(l. - '*in the reduced action (49). The latter term is omitted in the ADM scheme. This 

is the reason why the flat limit for radiation cannot be reproduced in ADM approach. 

4.3 The dust dominance 

Finally, at the classical dust dominance stage 

Ml<l 
0 - ---3 

T(d)0 - V,(r
0
)a 

it is ea.sy to see [16],[17] that the reduced action (49) has the following form 

w± Red = 'F M(d) TF(a) 
2 . 

Here the spectral time 

Tp(a) [T dt 6a'a 
Jo ;;.2w 

{61) 

(62) 

coincides with the Friedmann (proper) time for any type of the Universe k = 0, ±1, as 

in the case of relativistic particle. Due to considering only the localizable part of the 

spectral energy in the representation (58) we got only one half the mass of the Universe 

in accordance with Tolman's result of 1930 [26]. In the quantum theory (52) the spectral 

energy £3 = l/2M(d) is a conserved quantity and represents the relict of the age of creation 
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of the Universe. It is naturally to suppose that at this moment t~e- Universe had the size 

of its Compton length M(d) -
1, which defined the minimal scale a(O) = (KM1, 1)-1 ""10-60 

in eq.(58). 

5 Discussion 

In the present paper, we have tried to fulfil the ga~geless re4uction of the phase space 

of gravity. The main peculiarity of this reduction is the appearance of the concepts of 

the spectral energy and spectral time. These quantities have been obtained from all the 

surface terms of the initial Einstein action (including the total time derivative). In the 

quantum theory they correspond to the nonzero phMes of the wave function. Just from 

these phases an " Observer" fotms the spectral energy and spectral time. 

We calculate these quantities for the set of simplest examples. 

• In the limit of a small space scale component a of the m~tric~the."Observer" is 

observing that the creating Universe expands from the-finite volume and density and 

it is filled with only the Misner anisotropic gravitons [24]:. This. Uni~~rse undergoes 

the inflation under the spectral time. The inflation corresponds to the energy density 

1/ a6
, but not the de Sitter one. 

• In the radiation stage, the reduced action has two correct limits. At the laige 

cosmological scale limit the spectral time coincides with the conformal one. For the 

small scale (in the flat space time limit) the spectral energy is nothing else as the 

energy of transverse photons, in contrast with ADM scheme. 

• In the stage of dust filled Universe, the "Observer" discovers that his spectral time, 

as the phase of the wave function, transforms to the classical Friedmann time, as the 

invariant interval (like the observable time for relativistic particle at rest transforms 

to the proper one). 

The "Observer" sees the changes of the character of spectral time T8 in th~ process of 
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the evolution of the Universe. Who is the "Observer ", whose conclusions strongly differ 

from the conclusions of a modern scientist [27]? 
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H 3BOJIIO:UHR BceJieHHOH 

E2-94-163 

«<lH3H'!eCKOe <jJa30BOe npoCTpaHCTBO Teopw< rpa!IIIT- 3Jbmrre:HHa 
c MeTpHKo:H )J,npaKa - ApHOBHTTa - )],113epa - MH3Hepa crponTCSI 
6ea npHBJie'!eHHS! .!IOIIMHHTeJibHhlx xanoopooo'IHh!X yOIOo>Iii nyreM HaHoro 
paapemeHIHI CB<~3e:H ,!IJI!1 He<jJH3H'!ecKnx IIOJreil, B. peay.11bTaTe 3TOiii: 6ea­
KaJIH6poBO'!Ho:H pe,!lyK~HH ,!leHCTBHe Bhlpru&aeTC<I B T~.pMHHaX KHHe­
MeTpH'IeCKH HHBapHaHTHblx .!IHHaMH'IecKHx nepeMeBHh!X. P~poBaHHoe 
,l:{eHCTBHe II03BOJISleT BBeCTH ITOHSITHR JIOKaJIH3yeM.Oi «CCIeKTI)aJIIJHOii: 3HeprHH» 

H «CITeKTp31IbHOro B peMeHH» B rrpSIMOii a.HaJIOJ'HH C 3Hepnre:i H Ba6.n:IO~eMhiM 

B peMeHeM ,!IJI<I peJI<ITHBHCTCKOH qacrH~. 06cyl!GiaJOTCH npe,~~en IIJIOCKoro npo­
cTpaHCTBa opeMeHH H «CIIeKTpaJibHaH HCTOPIDI» 9BMIO~ KBaHTOBoli Bce.rreH­
Holi OT HH<jJJI<I~HH ,!10 KJiaCCH'!eCKOH CTa,!IHH «<lpHJ1MaHa. 

Pa6oTa BbiiiOJIHeHa B Jia6opaTOpHH TeopeTH'IecKOii <jJHmKH HM. H.H.Boro­
mo6ooa 0 115!11. 

IIpenpwHT O&be.D:HHeHHOro HHCTHT}'Ta smepHhlX HCCJie~OBaHHA. ,Zzy:6HO., 1994 

Khvedelidze A.M., Papoyan V.V., Pervushin V.N. 
Gaugeless Reduction of Gravity 
and Evolution of Universe 

E2-94-163 

The physical phase space of the Einstein gravity with the Dirac -
Arnowitt -Oeser- Misner metric is constructed without using a gauge-fixing 
condztion by the explicit resolving of the constraints for nonphysical fields. As 
a result of this gaugeless reduction, the Einstein action is expressed in terms 
of independent kinemetric invariant dynamical variables. The reduced action 
allows us to introduce the notions of the localizable «Spectral energy» 
and «spectral time» in direct analogy with the energy and observable time for 
a relativistic particle. We discuss the flat space-time limit and the «spectral 
history>> of the evolution of the quantum Universe from inflation until the 
classical Friedmann stage. 

The investigation has been performed at the Bogoliubov Laboratory of 
Theoretical Physics, JINR. 
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