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Existence of a new gas phase of nuclear matter and second-
order phase transition that manifested themselves in high energy 
nuclear multifragmentation are considered in high energy physics 
starting from papers [1, 2] where it was found that mass spectra of 
light nuclear fragments obey a power law A, . This law follows 
from Fisher's theory [3] of a gas condensation at the critical 
point, and it seems reasonable to think that nuclear matter obeys 
such a law.To obtain the law in the nuclear theory some attempts 
took place [4-8). The perspective one was made in the percolation 
model of the nuclear multifragraentation [9, 10] (see additional 
Refs. in [11, 12]). Now the criterions of the phase transition 
proposed in this approach [13] are used at experimental studies 
[14-17]. In this paper we show that there may be another simple 
criterion- the shape of the fragment multiplicity distribution .is .1 
function of mass of fragmenting system. 

It is obvious that large system can fragment in larger number 
of fragments than the smaller one and the same is true for 
corresponding fluctuations. So for comparison of fragmentation cf 
different systems the corresponding multiplicity distributions must 
be scaled. It was first proposed by Koba, Nielsen and oleson 
in paper [18] at study of multiplicity distributions of prciucr.-j 
particles in hadron-nucleon interactions (KNO-scaling). They 
supposed that scaled multiplicity distributions had not any 
dependence on enerqy of colliding hadrons. Now this scaling in 
well established by experimental data. An analogous scaling war. 
observed for He-fragment multiplicity distributions in the 
fragmentation of light nuclei [19-J2J. We will try to unjprst.in ! 
the nature of this scaling in framework of percolation model. 
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In a simple approach in the percolation theory we have points 
connected with each other via bonds or links. Two neighboring 
points are connected if there is a bond or link between them. A 
subset of the points is called cluster if there is a way through 
connected points that linked two arbitrary points of the cluster. An 
isolated point is called cluster too. In an initial state it is 
assumed that all points belong to the one linked cluster. Very 
often the state is represented by network or lattice. 

The bonds are then broken with probability p b (bond 
percolation), or the points are ejected with probability 1- p 
(site percolation). This leads to a destruction of the lattice into 
many clusters. In infinite lattice (for infinite cluster) there is 
a critical probability p such that at p (p.) greater than p the 
infinite cluster cannot exist. The change of the cluster structure 
of the lattice at p я р has very sharp character like phase 
transition. So, we can say that there are two phases. One, when 
infinite cluster exists and (for example) electrical current in a 
metallic network can percolate from one end of the net to the 
other, and second, when there are many small clusters and the 
electrical current cannot percolate. 

The number of points in a cluster is called cluster size - S. 
Above critical point of percolation parameter p the cluster size 
distribution obeys power law S~T, where x depends on dimension of 
the lattice space. 

As one can see the percolation theory deals with set of objects 
very like on the set observed in nuclear fragmentation reactions, 
and it seems reasonable to use the percolation theory to fit the 
experimental data. It was first proposed in papers [9, 10]. 
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How we have three variants of the percolation model of nuclear 
multifragroentation. First - the bond percolation model [9, 12, 13, 
,18] where it is assumed that in an initial state the nucleons 
occupied the site of a finite cubic lattice. Each nucleon has б 
neighbors and 6 bonds. Due to interaction the bonds are broken with 
probability pb, which depends on impact parameter [23]. In this 
approach the nuclear fragmentation is simulated by thermal 
destruction of a solid state. The second one is the site 
percolation model (see Refs. in [11]). Here one assumes that in an 
initial state the nucleons occupied the site of the lattice. Due to 
interaction some nucleons are ejected and vacancies appear in the 
lattice and destruct it. The ratio of the ejected nucleon number to 
the lattice size gives the probability l-p_, which must depend on 
impact parameter [11]. The third one is the aggregation model [10, 
24-29]. Here one assumes that the nucleons after fast cascade stage 
of interaction have randomly space positions in any volume. If two 
nucleons are at the distance lower than any r they are considered 
as connected nucleons. It is natural that first stage is described 
in some dynamical approaches ( in cascade evaporation model [26, 
29] or in a time - dependent Thomas Fermi approach [27] and so on). 

All percolation models reproduce the mass yield curve of 
nuclear fragment. Some of them [11, 12, 26, 29] can describe 
fragment momentum distribution. But a question about a scaling of 
the fragment multiplicity distribution was not considered until 
now. The main characteristics of the fragment multiplicity 
distributions below, near and above critical point were studied in 
percolation model in papers [23,24]. It was shown that at critical 
point the fluctuations of the multiplicity became large. 
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To study the fragment multiplicity distribution more carefully 
we choose bond / site percolation models for finite flat square 
lattice. He were varying p from 0.05 to 1 with step 0.05. The 
lattice was destructed with the help of Monte Carlo method. 10,000 
samples were collected for each lattice size and each value of p. 

Fragment multiplicity distributions were studied in many 
experimental papers ( see for example [19-22, 30]). Host of them 
were performed using nuclear photoemulsion. In photoemulsion one 
can determine the charge of spectator fragments of projectile 
nuclei measuring ionization of secondary tracks and find the number 
of charged fragments - N.. The frequency distribution of events 
with given N. is called multiplicity distribution - P.(N-). 
P«(N-)«N„ „ /N. . , here N„. „ is the number of events with N, г r ev. ,N.' tot ev.,N, r 
fragments and N . t is the total number of events. 

The average number of fragments is determined as 
ш 

<N-> « £ n Pf (n). 
n«0 

The second and third normalized moments are 

C2 - £ n
2 Pf(n)/<Nf>

2, C3 - £ n
3 Pf(n)/<Nf>

3. 

П-0 n»0 
KNO scaling means that C,, С-....etc. have not any dependence on 
energy and the same is true for corresponding scaled multiplicity 
distributions - f(N-/<Nf>)«<Nf>Pf(Nf/<Hf>). But these scaled 
functions can/cannot depend on mass number of fragmenting 
nucleus. The last possibility seems to us more competitive. 
Independence of ф from energy is quite natural at high energy -
nucleon-nucleon cross sections are independent of energy (E > 4-5 
GeV) and so-called limiting fragmentation of nuclei takes place. 
Below we try to answer the question - Do the fragment multiplicity 
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distributions obey any kind of KNO scaling? 

Before going to calculation results let us make simple 

estimation of the behavior of <N-> as function of percolation 

parameter -p. It is obvious that at large values of p for site 

percolation model we have mainly one big fragment,so 

pf(0)-=0, pf(l)-l-pf(2), pf(2), Pf(3)«pf(4)« =o, 
2 

where pf(n) is the probability to have n-fragment and pf(2)=(l-p) 

for two dimensional square lattice. In this case 

<Mf>=l+pf(2), C2=a+pf(2), c3*l+4Pf(2). 

In the other limiting case p—>0 we have 

pf(0)=l-pf(l), pf(l)*l-p, Pf(2)=pf(3)= =0, 

<Nf>=pf(i)=i-p, c2=a/Pf(i)=a/(i-p), c3=ti/p|(i)ai/(i-p)
2. 

If p is determined as a ratio of the number of occupied sites to 

the total number of sites (we used this model) , C_, C, —» 1 at 

p—»0. It follows that <N_> (C_ and C,) increases with increasing 

p to reach maximum value and then falling down to zero (unity). 

In bond percolation model analogous relations are 

P-» 0, pf(0)=0, pf(l)=l-pf(2), pf(2)*p
2, pf(3)=pf(4) = =0, 

<Nf>=l+pf(2)=l+p
2, C2*l+p

2, C3=l+4p
2 , 

p-> 1, pf(0)=0, pf(l)=0, pf(4)= =0, ..., pf(Ns-l)=l-p, 

Pf(Ns)=l-Pf(Ns-l), 

<Nf>=Ns-pf(Ns-l)=Ns-l+p, C2-l+p£(Ns-l)/N
2, C3=a+3p£(Ns-l)/N

2, 

where N_ is the total number of sites. 
s 

In Fig. 1 the mean number of all fragments is represented as 

function of percolation parameter p for different lattice sizes. As 

one can see the behavior of the curves is the same as we were 

expected. It is observed that the number of fragments is very 
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restricted in site percolation approach. However, in the bond 

percolation model the number of fragments can reach maximum value 

N . 

0.0 0.2 0.4 0.6 0.8 1.0 
P 

0.0 0.2 0.4 0.6 0.8 1.0 
P 

Fig. 1. Mean number of all fragments as function of 

percolation parameter p calculated for 5x5 ( ), 9x9 

(...) and 15x15 ( ) lattice sizes using site (left) 

and bond (right) percolation models 

In Fig. 2 the second and third moments of total fragment 

multiplicity distribution as function of percolation parameter in 

the site and bond percolation models are shown. As one can see in 

site percolation model C. and C. have different dependence on 

lattice size above and below critical value of p (p =0.593). Below 

critical value normalized moments decrease with increasing lattice 

size at given p, and inverse situation we have at p > p . At P=0.7 

there can be KNO scaling because at this point C, and C3 for 

different lattices are nearly the same. 

In bond percolation model all moments must decrease with 
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increasing lattice size, except in the region of p* 0.1. At p=0.l 

KNO scaling exists. Because mass yield curves were described at 

critical value of percolation paraaeter, we predict that moments 

will decrease with increasing mass number of fragmenting nuclei. 
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Fig. 2. Second and third moments as a function of p 

for different lattice sizes (notations are the same as 

on fig, 1) calculated using site and bond percolation 

models 
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Summing up, it is clear that a study of Multiplicity 
distributions of all charged fragments can give information about a 
state of fragmenting system. He think that this can be tested using 
existing experimental data. 

Let us go to the scaling of a-particle multiplicity 
distributions. The corresponding experimental data were obtained 
and reported in papers [19-22] (see Fig.3). 
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Fig. 3. Experimental second (left) and third (right) 
normalized moments of a-particles multiplicity 
distributions [21] as function of projectile mass 
number 

The authors of these papers have used the following determination 
of average multiplicity and normalized moments 

CO Ю 

"a"1 

In order to compare our calculations with experimental data these 

9 



determination* were used and fragments with length from 4 to б were 
considered as "«"-fragments. The reason for this is that we did not 
take into account the charge of nucleons and other nuclear binding 
effect. 

In Pig. 4 the average multiplicity of "«"-fragments as a 
function of percolation parameter is given. According to 
experimental data of Jain et al. [21] for light nuclei 
fragmentation <N >"1.7. This value is reached in the site 
percolation approach only at p-0.55. But at the same time 
experimental value for Kr fragmentation into a-particles cannot be 
reached. So, the site percolation model cannot be applied. The 
same conclusion holds if one looks at normalized moments presented 
in Fig.5. 

Fig. 4. Mean number of "«"-fragments as a function of 
p for site and bond percolation models 

The experimental values for the average number of a-particles 
can be reached in the bond percolation model at p=0.6 and 0.5 for 
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light and Kr nuclei respectively (see Fig. 5). In the former case 

the corresponding value for C,„=1.2 which is just near experimental 

values for light nuclei [21]. However, for Kr C, reaches only 

1.25 which is lower than the experimental value [19]. In the case 

of third moments we have 1.75 and 1.82 for light and Kr nuclei, 

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 
P P 

0.0 0.2 0.4 0.6 0.8 1.0 
P 

0.0 0.2 0.4 0.6 0.8 1.0 
P 

Fig. 5. Second and third moments of "«"-fragments 

multiplicity distributions as a function of p for site 

(s) and bond (b) percolation models 
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respectively. Although these values of second and third Moments do 

not agree exactly with the experimental data, it has the tendency 

to increase slightly with increasing lattice size just as the 

experimental tendency of the data- cf. Figs. 3 and 5. Dote that, 

moments become lower for larger lattices. It seems to us that the 

new experimental data about Au fragmentation will be very useful in 

this situation. According to our calculations for Au fragmentation, 

we predict that the values of C_ and C. will be lower than those 

of Kr, as shown on fig 5, and <H > will be nearly 4-6 (see Fig. 

4) . These predictions can be tested in Au + Em interactions at 

Brookhaven energy. He think that the usage of more refined 

percolation models will not change our results drastically. 

SUMMARY 

The Scaling property of the fragment multiplicity 

distributions is studied in the framework of two-dimensional 

percolation models. It was shown that: 

1- In site percolation model the multiplicity distributions of all 

fragments have something like KNO scaling at p-0.7. Below critical 

value normalized moments decrease with increasing lattice size at a 

given p and vice versa in the cat. s p> p . In bond percolation model 

all moments must decrease with increasing lattice size. 

2- <N > cannot be described in site percolation model. 

3-In bond-percolation model, the second and third moments of 

a-particles produced from light and Kr nuclei have the tendency to 

increase slightly with increasing lattice size as the 

experimental data have. However, in the case of heavier nuclei 

(e. g. Au) we expect that the second and third moments will be 

lower than Kr nucleus. 
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