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1. The numerous recent attempts to formulate the theory of gravity 
in the framework of a consistent gauge approach resulted in constructing 
the gauge gravity models for the de Sitter and Poincare groups (for a 
review see, e.g., [1] ). The independent variables are now vielbeins e* = 
e^dx" and Lorentz connection one-form w\ = u\lldx11. These methods 
being appplied in two dimensions, give us an dynamical description of 
2D gravity. It was argued that investigation of simple two-dimensional 
model leads to a better understanding of four-dimensional gravity and its 
quantization [2]. It was shown in [2] that the Lagrangian L = 7 Д2 + /ЗГ2 + 
Л is the most general one quadratic in curvature R and torsion T, and 
containing a cosmological constant Л. The classical equations of motion for 
this type of two-dimensional gravity were analyzed in conformal gauge [3] 
and in light cone gauge [4] and their exact integrability was demonstrated. 
The various aspects of quantization of the model were recently considered 
in [5]. In ref.[6] was shown that the formulation of the model on the 
language of differential forms is very useful. This allows to find exactly 
the solution of vacuum gravitational equations using an appropriate (and 
rather natural) coordinates on the 2D space-time. The resulting metric can 
be written in the Schwarzschild-like form and describes asymptotically de 
Sitter black hole configuration [6]. Using this method in [7] one proves 
the integrability of the general 2D Poincare gauge gravity with Lgrangian 
being an arbitrary (not necessary quadratic) function of curvature and 
torsion and demonstrates that the field equations is again of the black hole 
type. 

The coupling with matter in general case breaks this exact integrability. 
One exceptional case noted in [6,7] is the 2D Yang-Mills field. In this letter 
we consider the coupling the 2D Poincure gauge gravity with 2D massless 
Dirac fermions and show that the resulting field equations are exactly 
integrated by means the method of ref.[6]. 

2. We begin with brief description the Poincare gauge gravity and 
Dirac spinors in two dimensions ' . In this letter we follow notations 

'The exhausted introduction to 2D Dirac spinors one can find in [7] 
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of paper [6]. The 2D gauge gravity is described in terms of zweibeins 
e" = e^dz^^a = 0 ,1 ( the 2D metric on the surface M 2 has the form 
9nv — e^eiVab, Чоь = diag(+l, — 1)) and Lorentz connection one-form ш"ъ = 
шеа

ь, ш = Updz" (еаь = — £fco> £oi = !)• The curvature and torsion two-

forms are: 

R=dw, T° = dea + eVЛ еь (1) 

With respect to the Lorentz connection u> one can define the covariant 
derivative V which acts on the Lorentz vector A" as follows 

VAa :=dA° + e\w Л Аь 

The Dirac matrices 7" , a = 0,1 in two dimensions satisfy the relations: 

7*7 ' = t]ab - гаЬъ (2) 

where 75 = 7°7 1 , (7s)2 = 1. The following identities are also useful: 

7°75 + 7s7° = 0 (3) 

and 

7 ° 7 5 = £ ° 6 7 b (4) 

In further consideration we use explicit realization of 7-niatrices: 

'-(-Ь'-(о-.;ы."'0 m 
The Dirac spinors in two dimensions have two complex components: 

(6) -С) 
and under local Lorentz rotation (on angle Q) transform as follows 

ф _» ф' = 5Ф, Ф - * Ф' = Ф5 - ' (7) 
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where the Dirac conjugated spinor is defined as Ф = Ф+7°. Matrix 5 
realizing the spinor representation of 2D Lorcntz group is given by 

5 = cosh[ | ] - i 5 s inh["] (8) 

One can sec that components ф\ and \1\ transform independently: 

# = efy,, •*«$ = с"**-, (9) 

This means that left(right)-chiral spinors defined as 

7s* = T * (10) 

give us the irreducible representations of the Lorcntz group. 

It is useful to define the covariant spinor derivative V as differential 
operator acting on the field Ф considered as zero-form with values in two-
dimensional complex spinor space: 

V * := </* + ^и/75Ф, V* := </Ф - ^ * 7 5 (11) 

This definition means that operator V acts on spinor biliniear combi
nations, such as • * , •7аФ, Ф71"7ь1ф, as usual covariant derivative on 
Lorentz scalar, vector and bivector correspondingly. One can see from 
(11) that spinor covariant derivative V acts on components of spinor field 
(6) as follows 

V^i = etyj - -u>i/'i ; Vtf»2 = dtf'2 + -w</-2 

S. The dynamics of 2D gravitational (е",ш) and fermion (Ф) variables 
is determined by the action: 

S = S,r + 5 ,„ , (12) 

where 

^ = / ^ Л Г + | * Й Л Й - ^ л / Л е ь (13) 
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is standard action of 2D Poincare gauge gravity quadratic in curvature and 
torsion; * is the Hodge dualization and a , A are arbitrary constants. 

The action for 2D Dirac fermions in terms of differential forms can be 
written as follows: 

5/ег = У^аЬеаЛ(Ф-,ьУФ-УФ7( 
* ) (14) 

Notice that in this letter we consider only the massless ferinions. One 
can see that due to identity (3) the Lorentz connection u; is dropped out 
from expression (14) and really one can use the usual external derivative 
d instead of V in (14). 

Instead the curvature R and torsion T" two-forms let us consider the 
dual zero-forms p = *R, q" = *T". 

The variation of (12) with respect to the Lorentz connection u> and 
zweibeins ea gives the following equations 

dP = -aqa£ahc
1' (15) 

Vqa = -^*{p,q2)e\eb + J \ (16) 

where q2 = qaqbrfab- In (16) the following notation was introduced: Ф(</2, р) = 
p2 + aq2 — A. The mat ter one-form J" takes the form: 

Ja = _ I e » 6 ( * 7 * V 4 r - V * 7 4 ) (17) 

It should be noted that J" — J^dx11 is related with matter energy-momentum 
tensor: T^ = \{e£Ja

atl + e„°JJeJ) . 

Variation of action (12) with respect to fermion field Ф gives equation: 

( е в £ « Ь 7 Ь ) Л ( У Ф ) = ^ Г а
£ о б 7

6 Ф (18) 

From (1) we obtain tha t 

w = w - ( / a e a (19) 
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where ш is torsionless part of the Lorentz connection: 

dea + е\ш Л еь = 0 (20) 

Using (19) and identity (4) the equation (18) can be rewritten as follows 

(еа£аь76)Л(<Л1' + ^ 7 5 Ф ) = 0 (21) 

i.e. the torsion is dropped in the Dirac equation. Taking the Hodge dual-
ization of (21) one can transform (21) to more standard form of the Dirac 
equation: 

Г(д, + ^ 7 в ) Ф = О 

where 7" = e£7°. 

Using the Dirac equation (21) one can show that one-forms Ja satisfy 

following identities: 

Л Л е с = 0, eabJa Л e6 = 0 (22) 

Really (23) are consequences of invariance action (14) under local Lorentz 
and conformal transformations correspondingly [8]. 

The components of the spinor field (6) can be written as V,- = ex ', 
i — 1,2, where \i = /? + tv, \ 2 = 7 + lu a r e complex fields. Then the 
one-forms Ja (17) take the form 

J° = [e^du - e20dv), J 1 = [e^du + e2f)dv), (23) 

while the Dirac equation (18) reads 

(e° - e1) Л (idu + df + ^ e 1 = i (T° - Г1)е'т 

(e° + e1) Л (idu + d-r - lW )e" = ^(T° + Tl)e0 (24) 

4. Assume that the orthonormal basis {ea} takes the conformal-Lorentz 
form: 

ea = e'(n'dr - e\nbdx) (25) 
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where na,a = 0,1 is unite Lorentz vector, n2 = nana — ± 1 . By means 
of diffeomorphism transformations in two dimensions arbitrary basis {e°} 
always can be transformed to the form (26). 

The corresponding metric ds2 = Tjabe^eldx^dx" takes the conformally 
flat form: 

ds2 = n2e2a(dT2 - dx2) 

By means the identity 

Al\ea = е\еьА(*А). (26) 

where A is arbitrary one-form, we get for differential of (26): 

dea = e\(~ * (da) + nacaedne) Л с'1. (27) 

Inserting (29) into (20) we obtain for й: 

u> = *(da) - naenhdnb. (28) 

Assuming for definitness that n2 = 1, components n" can be written as 
n° = cosh в, n1 = sinh6. So we have that na£ai,dn'' = dO. Under local 

Lorentz rotation on angle П variable 0 transforms as 0 —» 0 — ft. So the 
last term in (30) is pure gauge part of the Lorentz connection. 

Substituting the expression (30) into the Dirac equation (21) and using 
identities (4) and (28) we get 

( e < W ) Л (d + l-dcr - l-dOl5)Ф (29) 

or in spinor components (6): 

(e° + e1) Л (<f + \dai>x + 1-40)ф, = О 

(e° - e1) Л (d + IAT0! - {-d0)4^ = 0 (30) 

For basis (26) we have 

(eQ*el) = el'*e){dT±dx) 
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Taking this into account, the equations (3*2) are easily solved and we 
obtain for the spinor field: 

*= e - f f c 7 f 7; , / ' ( j : ) > l (3D 
У e2e'"<J + >/(.r+) ) 

where v,p and u,f are arbitrary functions of the light-cone coordinates 
x~ — т — x and x+ = т + x correspondingly. 

Thus the Dirac equation (18),(21), taken separately, is exactly solved in 
the conformal-Lorentz gauge (26) and general solution takes the form (34). 
However, now one must put the (34) in the gravitational eqs.(15),(16) and 
find the joint solutions of the coupled gravitaty-Dirac system. 

5. As in vacuum case [6], there are two types of solutions of eqs.(15)-
(18). The first one is characterized by that the torsion squared is zero on 
two-dimensional space-time, q2 = 0. One can see from eqs.( 15)-(1S) that it 
is possible only in the case when torsion is ident ically zero: </" = 0 . a — 0 , 1 , 
the space-time has constant curvature l : pl = A. and the one-forms (17) 
vanishe: Ja = 0, a = 0 , 1 . 

If zweibeins are taken in the form (26) the constant curvature condition: 
*(du>) = p = const, gives us the equation for conformal factor a: *d*(dcr) = 
p = const, which is equivalent to the Liouville equation: 

2д.д+а = ^e2\ (32) 

where p = ± v A - The general solution of the Liouville equation is well-
known. By means the coordinate changing it can be transformed to the 
form: 

2 f f = - l n ( l - ^ + a - - ) 2 . 
4 

Correspondingly, we have for metric 

, 2 dx+dx~ 
* =(.-f. ,-b-p 

2Note that only if A > 0 there exists the constant curvature solution. 
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and for Lorentz connection (30): 

w = •*——(x+dx- - x~dx+) - d0 
1 — ^x+x~ 

The one possible solution for the Dirac field is trivial. Ф = 0. (t"1 = 
e13 = 0). The non-trivial Ф with vanishing forms J"(24) is given by (34) 
where u and i> are constant functions: 

4 у e.ic'uf(x+) J 

6. Let us now assume that q2 ф 0 identically on 2D space-lime. We 
begin the analysis with the case when J" — 0. a = 0.1. Then the grav
itational field equations (15), (16) completely decouples from the Dirac 
equation (18). One sees from (24) that J" vanish if r.\ t'1 are zero or/end 
the imaginary part of \it u a n d v, are constant functions. The gravita
tional equations reduce to the vacuum case. The general vacuum solution 
was obtained in [6] (for more accurate definitions see [9]). It is essential 
that one uses the variable p as one of the space-time coordinates. Introduc
ing ф as additional, orthogonal to p, coordinate, we can write the vacuum 
solution for the zweibeins: 

e" = tferU<b - \£\qbdp (34) 

and for the Lorentz connection: 

« = -~qaeabdqb - ^{4%e-$d<}>, (35) 

where q2 is known function of p: 

,>(,) = _ 1 ( р + а ) 3 + Л +ее* , (36) 
а 

where Л = А/а — а, е is integrating constant. 
The corresponding metric 

ds2 = fe^dtf - -L-df? (37) 
a'q* 
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was shown to describe the asymptotically de Sitter black hole configuration 
with ADM mass proportional to c. The zeros of q2 are points of the horizons 
[6]. 

It is worth observing that (40) takes the form (26) if we identify: n" = 

£ , e° = qe~o, т = ф, x = J" ^§£p\dp'. For definitness we assume that 

ql > 0, then q = yftf. 

Indeed, in coordinates (ф, x) the metric (41) is conformally flat: 

ds2 = g2( /»)e-2«(^2 - dx2) (38) 

where p can be, in principle, expressed as function of x. Note again that 
the first term in (41) is pure gauge: ^qaeabdqb = dO. 

Since the solution of the Dirac equation (18), (21) for zweibeins taken 
in the form (26) is already known (34), we obtain the following expression 
for the fermion field: 

* = q-^e£(e1e'Vp{X~]) (39) 

where и and v are constants, and xT = ф ̂  x. We see that Ф (42) di
vergences at points where q2 has zeros. Remember that these points are 
regular horizons of the vacuum metric (43). Neverless, nothing singular 
happens at these points since the energy-momentum tensor for the spinor 
configuration (45) is identically zero. The fermion field Ф also divergences 
at the point e~» = 0 , where the black hole singularity is located (see [6]), 
while it tends to zero, Ф —» 0, if e~° —» oo. 

7. Let us assume that q2 ф 0 identically on 2D space-time. The 
fermion action (14) is invariant under (global) chiral (75) transformations: 
Ф —» Ф' = еа:р[^75]Ф. Therefore for simplicity we may restrict ourselves 
by consideration only the fermions of fixed chirality: 

75Ф = Ф. 

In this case the fermion field has only one non-zero component: ф\ = 
0, ^2 = ex, where \ = 7 + ги 1S complex field. 
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Then only the first of equations (25) is non-trivial. It gives us, in 
particuiar, that du ~ (e° — e1). In Lorentz invariant form it can be written 
as follows: 

qaea - qaeabeb = Bdu, (40) 

where В is still unknown scalar function. As it is seen from (9). only 
the real part of \ transforms under Lorentz group: i —» -) — ̂ . So the 
imaginary part, u, is Lorentz invariant. 

One can see from (15) and (46) that variables p and и can be naturally 
chosen as coordinates on 2D space-time. Then basis of one-forms e° is 
expressed in terms of (dp, du): 

e = t(-^t + Bdu)-—2e\qbdp (41) 
q* a <xqi 

The metric ds2 = T)a\)ea
lle.budxlidx1' correspondingly takes the form: 

ds2 = l ( A f o - ^ ) 2 - - i jd /»* (42) 
q2 a a2q2 

In terms of the field x = f+ги the one-form J" (24) has the components: 

J° = J1 = e*»du 

It is convenient to introduce the one-form 

J = —l—e^du 
q° + ql 

Assuming for definiteness that q2 > 0 let us introduce variable в: q° = 
q cosh в, q1 — q sinh в, q = y/ij2. Then we have for J: 

J = -e*~edu 
Я 

Under local Lorentz rotation on angle fi variable 0 transforms as: 0 —* 
в — ft. So the combination (27 — 0) is really Lorentz invariant. 
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Multiplying eq.(16) on qa and qb£ba separately we obtain equations: 

dq2 = ^dp + q2J (43) 
or 

u> + dO = - — — qac° + -J (44) 
2aq* 2 

where we used that \qasabdqb = dO. The Lorentz connection uj with 

respect to Lorentz rotations transforms as л —» и; + dil. So that (.*> + dO) 
is again Lorentz invariant. The eq.(5'2) gives us qi as function of p and и. 
while (53) is equation on Lorentz connection u.\ The (52) is i quivalent to 

drf* = ^(p.q2). ()„q2=-2q<2--U (15) 

It follows from the first eq. (54) that q2 as function of p lias the same form 
as in vacuum case [6] (see eq.(42)). However, the с now is is function of 
u, с = f(w), which is found from the second eq.(54). Taking into account 
that duq2 = duee^a we get 

dut - 2qe-plae*-e (46) 

Since the left hand side of eq.(56) is function of only variable и we obtain 
that (2-> — 0) must have the following form: 

2i -0= - l n < 7 + - + 2hi f(u). (17) 
о 

where f(u) is an function of variable м related with c(u) by means of 
equation: 

c>„e=2/ 2 ( . ' ) . (18) 

Acting now by external differential (/ on both sides of eq.(46) we obtain: 

13'dp Adu = ( q2)V + J„ Л ea - e,lhJtt Л rb (49) 

From (47) we have dp/\du= %q2V. Then using (23) and (54) the eq.(59) 
gives us the equation on function B: 

~i = 7м - о (50) 
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From this we finally find: 

B = A,(u)f/2c-« (51) 

where B0 is an arbitrary function of u. Now inserting (61) into eq.(53) we 
obtain the expression for Lorentz connection. 

и + dO = --dpq2e~«B0{u)dn + ^~zc)pq2dp + -re°/(u)eru. 
I lql q* 

Taking into account eq.(58) we finally obtain 

w + dO = ™0рЧ?е-*Я„(и)</« + -rf(ln q2) (52) 

It should be noted that modulo exact forms this expression for u> takes the 
same form as in vacuum case [6]. 

Now it is easy to check the self-consistency condition: *(du>) — p. 
Really this procedure is the same as in vacuum case. 

Let us again consider the Dirac equation (25). It is easy to see from 
(47) that 

e° - e1 = B0qe~^e'9du 

Inserting this and eq.(63) into the first equation (25) we obtain 

B0e-Zdu Л (d7 - \d0 + ^-d„qdp) = -\\' (53) 

Using the obtained expressions for 7 (57) and eq.(58) we obtain that (64) 
holds identically. 

This completes the proof of exact integrability of equations (15)-(18). 
The complete solution is given by expression 

e- = £.(-*£. + Bdu) - -^e\qhdp 
q' a aql 

for zweibeins; expression (62) for the Lorentz connection ш and 

ф = q-Weh& f ° J (54) 
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for the chiral fermion field. The q2 in known function of p and u: 

42{p) = (P + о)2 + Л + e(u)e«, 
a 

where 

e(u) = 2 Г f(u')du' 

Note that up to this moment everything was Lorentz invariant. As 
result, the general solution depends on arbitrary field в that is reflection 
of underlying Lorentz symmetry. Now one can fix the gauge, say 0 = 0 
(see [9]). 

The solution also depends on arbitrary function /(и) which is not de
termined from the field equations and is found from initial conditions for 
fermion field. 

In the case when fermions of both chiralities present the eqs.(15)-(18) 
can be integrated in the same manner but solution takes more complicated 
form. 

8. The sense of found solution becomes more transparent if we consider 
6-like impulse of fermion matter: 

/ 2 W = f *(« - "о), Е > 0 (55) 

Then equation (53) is easily solved: 

e(u) = ta + E0(u - w0) (56) 

where в(х) is step function. In regions и < щ and и > и0 taken separately 
e(u) is constant and one can consider here new variable v: 

Г 2e£ , . 
v = u- -^nzdpl (57) 

Then in coordinates (u,w) the metric (26) takes the vacuum conformally 
fiat form (44): 

ds2 = q2e ~» dudv (58) 
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For u < UQ we have vacuum black hole solution (40)-(44) with mass с = e0. 
The fermion impulse with energy E falls into this space-time along the line 
u = Uo- In result, for u > uo we again obtain vacuum black hole solution 
but with mass e = e0 + E. 

It was shown in [6] that the sapce-time structure of the vacuum solution 
(40)-(44) critically depends on value of the constant e. The falling fermion 
matter leads to re-construction of initial vacuum accordingly to new value 
of e. It should be noted that in this aspect the found solution is similar 
to that of the 2D dilaton gravity coupled with scalar (conformal) matter 
[10]. However, there are some essential differences. Tito flat space-time 
is one of solutions in 2D dilaton gravity. The falling of the scalar matter 
into the flat space-time leads to formation of the black hole. In the case 
under consideration there is no such a solution describing the black hole 
formation from regular space-time (in our case it is the de Sitter one) due to 
fermion matter. The "bare" vacuum black hole configuration is necessary. 
The reason is that the vacuum constant curvature solution is not obtained 
from the black hole one (40)-(44) for an value of integrating constant e, 
i.e. these solutions are not parametrically connected 3 . Insteed, in 2D 
dilaton gravity [12] the flat space-time is obtained as zero mass black hole 
solution. 

9. In conclusion, we studied the 2D Poincare gauge gravity coupled 
with 2D massless Dirac fermions and showed that the classical equations 
are exactly integrated. As in vacuum case, there are two types of solutions. 
The solution of the first type is space-time of constant curvature (p2 = A) 
and zero torsion, q* = 0, a = 0,1. The corresponding fermion field can 
take trivial ( 9 = 0) and non-trivial configurations. The solution of second 
type is characterized by that torsion is not identically zero. The space-
time is of the vacuum black hole type with mass dependent on in-coming 
fermion matter energy. 

'Really this situation is typical for 2D gravity described by action polynomial in 
curvature [11]. 
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