

объединенны" ИНGТИТצТ адөрных ияgлвдовании

E2-94-110
R.M.Muradian ${ }^{1 *}$, A.L.Urintsev ${ }^{2}$

DIANA: A MATHEMATICA CODE FOR MAKING DIMENSIONAL ANALYSIS

Submitted to «Mathematica in Education»

[^0]
1 Start Up

Mathematica ${ }^{(1)}{ }^{1}$ is one of the newest and most powerful computer systems for doing symbolic, numerical, graphics, and programming manipulations [1], [2]. With its large capabilities, Mathematica opens new prospects for solving a broad range of problems in physics, engineering and economics.

The Mathematica package Diana was designed and implemented by us for making automatic and quick dimensional analysis for any problem in physics and engineering. The package is based on the fundamental principles of dimensional analysis formulated in the matrix form [3]. Materials from other common textbooks and articles [4]-[12] on dimensional analysis are used. A comprehensive treatment of the modern state of art together with the thorough list of the literature can be found in [12]. The basic principles of dimensional analysis are realized by using capabilities provided by the Mathematica's functions LinearSolve and NullSpace[1].

It is proposed to increase the number of the SI base units by addition of the new fundamental unit of price - dollar $\$$ - for solving financial problems in engineering physics.

A detailed SI Units Reference Table is enclosed at the subsection 4.4 for user's convenience. Table was compiled on the basis of the [13]-[15].

2 User's Guide

This section describes the loading of the package into Matematica and the standard help-mechanism. This information together with the information on SI units collected in subsection 4.4 are sufficient for practical applications of the package in different areas of science.

[^1]
2.1 Getting

The file Diana.m and its documentation are available by electronic mail from the authors.

2.2 Loading

It is assumed that the package is located in the Mathematica-path, e.g. in user's current directory. Then the package is loaded into a. Mathematica session using one of the the commands Needs["Diana'"], Get["Diana'"], <<Diana.m or <<Diana':

In[1]:= <<Diana'

Diana: Version 1.0, March 1994
by R. Muradian (1) \& A. Urintsev (2)
(1) Electronic address: muradian@theor.jinrc.dubna.su
(2) Electronic address: urintsev@sunse.jinr.dubna.su

Type ?Diana'* for all exported symbols and
?Diana, ?DIANA, ?toFU for help on Diana package.

The message shows the version of Diana, the date of creation and contains information on help-mechanism. Our computations used Mathematica 2.2 for MS-Windows.

2.3 Symbols

Using the standard Mathematica syntax it is straightforward lo obtain a complete listing of all exported symbols defined in the Diana by the command Names["Diana'*"] or ?Diana'*:

In [2]: $=$?Diana'*						
$\$$	Diana	Gray	Kilogram	Newton	Siemens	toFU
Ampere	DIANA	Henry	Lumen	Ohm	Sievert	Volt
Becquerel	F	Hertz	Lux	Pascal	Steradian Watt	
Candela	Farad	Joule	Meter	Radian	Tesla	Weber
Coulomb	G	Kelvin	Mole			

More detailed information is available on any of these symbols, e.g.:
In[2]:= ?Diana
Diana[\{\{name1, SIunit1\}, \{name2, SIunit2\}, ...\}] performs dimensional analysis and expresses outcome in the form:
name1 \rightarrow expr $F(K 2, K 3, \ldots, K n)$ Here $K 1, K 2, \ldots$, Kn
(with K1 = name1/expr) represent the complete set of dimensionless parameters and F is undetermined function.

Parameters $\mathrm{K} 2, \ldots, \mathrm{Kn}$ and expr do not depend on name1.
If $n=1$, the result is name1 \rightarrow expr
In[2]:= ?DIANA
DIANA[\{\{name1, SIunit1\}, \{name2, SIunit2\}, ...\}] performs
dimensional analysis and expresses outcome in the form:
$\mathrm{G}(\mathrm{K} 1, \mathrm{~K} 2, \ldots, \mathrm{Kn}) \rightarrow 0$, where Ki represents the complete set
of dimensionless parameters and G is undetermined function
In [2]: = ?toFU
toFU[SIunit] transforms any combination of fundamental and derived SI units into fundamental SI units.
In[2]:= ?Farad
Farad is the derived SI unit of capacitance.
Farad $=$ (Ampere^2*Second ${ }^{\wedge} 4$)/(Kilogram*Meter^2)

3 Illustrative Examples

The following typical examples illustrate how one uses the package and what sorts of problems can be solved with Diana

3.1 Simple Example

Find the volume of the d-dimensional ball:

```
In [2]:= Diana[{{V, Meter'd}, {r, Meter}, {d, 1}}]
    d
Out[2]= V -> r F[d]
```

The dimensionless factor $\mathrm{F}[\mathrm{d}]$ cannot be attained by the dimensional analysis method. Its exact form is known from more detailed solution as $(\pi)^{d / 2} / \Gamma(1+d / 2)$. DIANA gives another form for the solution:
$\operatorname{In}[3]:=\operatorname{DIANA}\left[\left\{\left\{\mathrm{V}\right.\right.\right.$, Meter $\left.{ }^{\wedge} \mathrm{d}\right\},\{r$, Meter $\left.\left.\}\right\}\right]$
Out $[3]=\mathrm{G}[-\cdots] \rightarrow 0$
1/d
V

3.2 Vibration of a Star [3]

The following quantitics:

1. frequency of vibration (f), 2. mass dersity (ρ), 3. radius (r), 4 . gravitational constant (G)
characterize the system. The solution first obtained by Lord Raylcigh is straightforward:
```
In[4]:= Diana[{{f, Hertz}, {rho, Kilogram/Meter^3}, {r, Meter},
    {G, Newton Meter^2 Kilogram^-2}}]
Out[4]= f -> Sqrt[G] Sqrt[rho]
```

Dimensional analysis shows that the radius is redundant.

3.3 Ship Propeller [3]

The following quantities characterize the system:

1. thrust force of the propeller (f), 2. radius of the propeller (r), 3 . density of water $(\rho), 4$ speed of the ship (V),5. acceleration due to gravity (g), 6. viscosity of the water $(\nu), 7$. rotational speed of the propeller (ω).

In [5]:= Diana[\{\{f, Newton\}, \{r, Meter\},\{rho, Kilogram/Meter-3\},
$\{\mathrm{V}$, Meter/Second\}, \{g, Meter/Second^2\},
\{nu, Meter^2/Second\}, \{omega, Radian/Second\}\}]

```
Dut [5] = \(f\)-> r rho \(V\) F[---, ---
r V 2 V
V
```

The famous dimensionless combinations, the Froude number $\mathbf{F r}=\mathrm{V}^{2} / \mathrm{gr}$ and Reynolds number $\mathbf{R e}=\mathrm{Vr} / \nu$, are obtained automatically.

3.4 Airplane Flying Through Rainstorm [3]

Input data:

1. number of raindrops striking the windshield per second (n) , 2. characteristic length of the airplane (L), 3. diameter of a raindrop (d), 4. speed of airplane (V), 5. number density of raindrops $\left(\mathrm{N}_{r}\right)$, 6. mass density of water $\left(\rho_{W}\right), 7$. mass density of air $\left(\rho_{A}\right), 8$. surface tension of water $(\sigma), 9$. viscosity of air $\left(\mu_{a}\right), 10$. acceleration due to gravity (g).

Outcome for the number of raindrops:

```
In[6]:= Diana[{{n, 1/Second}, {V, Meter/Second}, {N, Meter^-3},
```

 \{L, Meter\},\{rhoW, Kilogram/Meter^3\},
 \{rhoA, Kilogram/Meter-3\}, \{sigma, Newton/Meter\}, \{g, Meter/Second $\left.{ }^{2} 2\right\},\{d$, Meter\}, \{mu, Pascal Second\}\}] $1 / 3 \quad 1 / 3$

The function DIANA gives another set of dimensionless combinations:

```
In[7]:= DIANA[{{n, 1/Second}, {V, Meter/Second}, {N, Meter^-3},
            {L,Meter}, {rhoW, Kilogram/Meter^3},
            {rhoA, Kilogram/Meter`3},{sigma, Newton/Meter},
    {g, Meter/Second^2}, {d, Meter}, {mu, Pascal Second}}]
            3
            NV g rhoA n sigma mu n d n L n
Out[7] = G[----, ---, ----, -------, -------, ---, ---] -> 0
    3 n V rhow 3 v l l v
    n rhow V rhow V
```


3.5 Atomic Explosion [5], [6]

A large amount of energy is suddenly released in infinitely confined space. The motion of the surrounding air is characterized by:

1. radius of a spherical shock front (r), 2. time since the explosion
started (1), 3. the atmospheric density (p), 4, the released cnergy (e).
The solution for r can be found:
In [8]:= Diana[\{\{r, Meter\}, \{e, Joule\}, \{rho, Kilogram/Meter^3\},

$$
\{t, \text { Second }\}\}]
$$

```
1/5 2/5
    e t
```



```
Out \([8]=\) r -> ----------
\(1 / 5\)
rho
```

The solution for the specd of the shock front (c) is the following:

```
In[9]:= Diana[{{c, Meter/Second}, {e, Joule},
            {rho, Kilogram/Meter`}3\mathrm{ 3}, {t, Second}}]
                1/5
            e
Out[9]=c -> ------------
    1/5 3/5
    rho t
```

It is easy to check that $r=c t$.

3.6 Financial Scaling

Lord Kelvin was interested in the following problem: what cross section must have the conductor to minimize the cost of electric line? The smaller cross section is advantageous from the point of riew of the cost of the conductor, but not for the energy lost. The conomic optimum can be reached by a balance between these rival tendencies. To solve this problem by the method of dimensional analysis, let us use extended Sl mits, supplemented by the fundamental unit of price --- dollar $\$$. The new SI_{s} mits have the following set of the eight fundamental units:
\{Meter, Kilogram, Second, Ampere, Kelvin, Mole, Candela, \$\}

The list of essential variables in Kelvin's problem is:

1. cross section of the wire (S). 2. the price of the wire (a), 3. the price of energy (b), 4. clectric current (i), 5. period of exploitation (t$), 6$. conductivity (ρ),

Then:

```
In[10]:= Diana[{{S, Meter^2}, {a, $/Meter}, {b,$/Joule},
    {i, Ampere}, {t, Second}, {rho, Ohm Meter}}]
        2
    b i rho t
```

Out[10]= S -> ----------
a

The solution exhibits an interesting property: it is invariant under scale transformation of the price unit $\$ \rightarrow \lambda \$$. In other words, the rate of inflation does not affect the optimal cross section of the conductor. The phenomenon of scaling is well known from different branches of physics [8], [9]. Its generalization for the problems in economics will be quite useful.

3.7 Schrödinger Equation [10]

Consider the quantum-mechanical problem of determining the energy levels in the potential $V(x)=g r^{k}$. The relevant physical quantities are :

> 1. energy (e), 2. coupling constant $(\mathrm{g}), 3$. Planck constant $(\mathrm{h}), 4$. mass of a particle $(\mathrm{m}), 5$. exponent (k).

The dimension of g can be obtained from the condition that $g r^{k}$ is energy. Dimensional analysis gives the following factor for the energy:

In $[11]:=$ Diana $[\{\{e$, Joule $\},\{h$, Joule Second $\},\{g$, Joule/Meter^k $\}$, $\{m$, Kilogram $\},\{k, 1\}]$

```
    2/(2+k) (2k)/(2+k)
    g
        h
        F[k]
Out[11]= e -> -----------------------------------
    k/(2 + k)
    m
```

Since the quantum number n appears only in combination $n h$, we can obtain quantum-number dependence of energy by substitution $h \rightarrow n h$:
$e_{n} \rightarrow n^{2 k /(k+2)}$.

3.8 Classical Electron Radius [14]

The following quantities determine the problem:

1. classical electron radius (r), 2. elementary charge (e), 3. permittivity of free space $(\epsilon), 4$. speed of light (c),5. electron mass (m).

The solution is:
In [12]:= Diana[\{\{r, Meter\}, \{e, Coulomb\}, \{eps, Farad/Meter\}, \{m, Kilogram\}, \{c, Meter/Second\}\}] 2
e
Out[12]= r -> --------
2
c eps m

3.9 Stefan Constant [14]

Input data:

1. Stefan constant (σ), 2. Boltzmann constant (k), 3. Planck constant (h), 4. speed of light (c).

Outcome:

```
In[13]:= Diana[{{sigma, Watt Meter^-2 Kelvin^-4},
    {k, Joule/Kelvin}.,{h, Joule Second},
    {c, Meter/Second}}]
            4
            k
Out[13]= sigma -> -----
    2 3
    c h
```


3.10 Clapeyron Equation [14]

Input data:

1. molar volume (V), 2. molar gas constant (R), 3. lemperature (T), 4. pressure (p)

Outcome:

R T

Out[14]= V -> ---

P

3.11 Exposure Rate [15]

Input data:

1. exposure-rate (ExposureRate), 2. activity (A), 3. distance from
a radioactive source (L), 4. exposure rate constant. ([).

Outcome:

In [15]: = Diana[\{\{ExposureRate, Coulomb/(Kilogram Second) $\}$, \{A, Becquerel\}, \{Gamma, Becquerel^-1 Meter² Coulomb Kilogram-1 Second-1\}, \{L, Meter\}\}]

A Gamma
Out [15]= ExposureRate -> \qquad

L

3.12 Checking Equations

The toFU function can be used for checking correctness of the physical equations. For example, in the presence of magnetic field the commutator of the momentum operators obeys the following 'Landau quantization' rule:

$$
\left[p_{1} \cdot p_{2}\right]=\text { ic } B_{3} h
$$

Application of the toFU function to cach side proves the dimensional correctness of this equation:

```
In[16]:= toFU[(Newton Second) 2]
            2 2
    Kilogram Meter
Out[16]= ------------------
    2
        Second
An[17]:= toFU[Coulomb Tesla Joule Second]
    Kilogram Meter
Out[17]= -------------------
            2
    Second
```


4 Basics

Dimeusional analysis consists of two steps:

1. choice of relevant variables, 2 . construction of a complete set of dimensionless combinations from these variables.

The first step requires a deep physical insight into essence of the problem and is beyond the soope of ability of the computers. The second step caut be made by means of high-level symbolic computer algebra systems, and our Malhematica's code Diana provides a possible solution.

The choice of the SI units for manipulation does not restrict by no meaus the generality of the method.

4.1 SI Units: a Reminder

The International System of units (SI) is based on the seven fundamental units of length, mass, time, electric current, (thermodynamic) temperature, amount of substance, and luminous intensity. The derived dimensions are introduced for the sake of efficiency.

The important property of SI Urits, which make these convenient for use in dimensional analysis method, is their coherence. The system of units is said to be coherent when derived units are expressed in terms of the fundamental units with numerical factors equal to unity. The second advantage of SI Units is their adoption throughout the world. Information on SI Units necessary for our purposes is collected in subsection 4.4.

Certain Mathemalica's standard packages : Miscellaneous'SIUnits', Miscellancous'Cnits" and Miscellaneons‘PhysicalConstants' [2] operates on the same physical quantities as Diana. The acquaintance with these packages would be desirable but not compulsory.

$4.2 \quad \mathrm{SI}_{8}$ Units

The method of dimensional analysis can be extended upon inclusion into a set of fundamental SI units the unit of price -- dollar \$. These extended units are defined in the following way: meter. kilogram; second, Ampere, Kelvin, mole, candela,dollar. In Mathematica they are: Meter, Kilogram, Second,

Ampere, Kelvin, Mole, Candela, \$. This approach enables one to apply the power of dimensional analysis method to the solution of the engineering conomic problems. The Example 5.6 demonstrate this possibility. Other applications can be found in designing large-scale engineering systems. It seems appropriate to use the symbol $\mathrm{SI}_{\$}$ for this extended system of units.

4.3 Buckingham-Riabouchinsky Theorem

or

$$
K_{2}=F_{2}\left(K_{1}, K_{3}^{\prime}, \ldots, K_{n}\right)
$$

ctc. If $n=1$, then $K_{1}=$ const.
The explicit form of the functions G and $F_{i}(i=1, \ldots, n)$ remains undetermined in the framework of the dimensional analysis. This is the major limitation of the method. The second one is the "foresight" required to choose the right complete set of variables and dimensional constants characterizing correctly the problem.

[^2]
4.4 SI Units Reference Table

Warning 1. Do not use protected symbol I as a name in input data.
Warning 2. Diana makes use of the system protected symbol Second.

Name of Quantity	SI units for Physics	SI Units for Mathematica
length ($\mathrm{r}, \mathrm{d}, \mathrm{l}$)	m	Meter
mass (m)	kg	Kilogram
time (t)	s	Second
electric current (i)	A	Ampere
temperature (T)	K	Kelvin
amount of substance (n)	mol	Mole
luminous intensity (I_{v})	cd	Candela
price in dollars(Pr)	\$	\$
plane angle ($\alpha, \beta, \gamma, \theta, \phi$)	$\mathrm{rad}=\mathrm{m} / \mathrm{m}$	Radian
solid angle (Ω, ω)	$\mathrm{sr}=\mathrm{m}^{2} / \mathrm{m}^{2}$	Steradian
frequency (f, ν)	$\mathrm{Hz}=\mathrm{s}^{-1}$	Hertz
force (F)	$\mathrm{N}=\mathrm{mkg} \mathrm{s}{ }^{-2}$	Newton
pressure (p)	$\mathrm{Pa}=\mathrm{N} / \mathrm{m}^{2}$	Pascal
energy (E, W)	$\mathrm{J}=\mathrm{Nm}$	Joule
power (P)	$\mathrm{W}=\mathrm{J} / \mathrm{s}$	Watt
speed (v,c)	$\mathrm{m} \mathrm{s}^{-1}$	Meter/Second
accelcration (a, g)	$\mathrm{m} \mathrm{s}^{-2}$	Meter Second--2
momentum (p)	N s	Newton Second
angular momentum (L, J)	J s	Joule Second
dynamic viscosity (μ)	Pas	Pascal Second
kinematic viscosity (ν)	$\mathrm{m}^{2} \mathrm{~s}^{-1}$	Meter ${ }^{\text {2/Second }}$
surface tension (σ)	$\mathrm{N} \mathrm{m}^{-1}$	Newton/Meter
modulus of elasticity (Y, E)	$\mathrm{N} \mathrm{m} \mathrm{m}^{-2}$	Newton Meter^-2

gravitational constant. (Ci.v)	$N \mathrm{NH}^{2} \mathrm{~kg}^{-2}$	Newton Meter^2 Kilogram ${ }^{-2}$
electric charge (e.q)	$\mathrm{C}=\mathrm{A}$ s	Coulomb
clectric potential ($\left.\phi, \mathrm{V}^{\prime}, V\right)$	$\mathrm{V}=\mathrm{W} / \mathrm{A}$	Volt
capacitance (C)	$\mathrm{F}=\mathrm{C} / \mathrm{V}$	Farad
resistance (R)	$\Omega=\mathrm{V} / \mathrm{A}$	Ohm
conductance (G)	$S=A / V=\Omega^{-1}$	Siemens
resistivity (ρ)	$\Omega \mathrm{m}$	Ohm Meter
conductivity (σ)	S / m	Siemens/Meter
self-inductance (L)	$\mathrm{H}=\mathrm{Wb} / \mathrm{s}$	Henry
magnetic llux (Φ)	$\mathrm{wh}_{\mathrm{h}}=\mathrm{V}$ s	Weber
electric flux (Ψ_{D})	$C=A s$	Coulomb
permittivity (c)	$\mathrm{F} / \mathrm{m}=\mathrm{N}^{-2}$	Farad/Meter
permeability (μ)	$\mathrm{I} / \mathrm{m} / \mathrm{I}=\mathrm{NA}^{-2}$	Henry/Meter
magnetic induction (\mathbf{B})	$\mathrm{T}=\mathrm{Wb} / \mathrm{m}^{2}$	Tesla
magnetic ficld (H)	A/m	Ampere/Meter
clectric field (E)	$\mathrm{V} / \mathrm{m}=\mathrm{N} / \mathrm{C}$	Volt/Meter
clectric displacement. (D)	$\mathrm{Cl}^{\text {m }}$ -	Coulomb Meter -
clectric current density (J)	$\Lambda \mathrm{m}^{-2}$	Ampere Meter ${ }^{-}-2$
magnetic vector potential (A)	T m	Tesla Meter
Pointing vector (S)	$\mathrm{Jm}^{-2} \mathrm{~s}^{-1}$	Joule Meter ${ }^{-2}$
		Second"-1
nagnetic dipole momeut (m, μ)	J $\mathrm{T}^{-1}=\mathrm{A} \mathrm{m}^{2}$	Joule/Tesla
dectric dipole moment ($\mathrm{p}_{e}, \mathrm{~d}$)	Cm	Coulomb Meter
cutropy (S)	J K^{-1}	Joule/Kelvin
I 3 lumann constani (k)	. K^{-1}	Joule/Kelvin
Stefan constand (σ)	$W \mathrm{~m}^{-2} \mathrm{~K}^{-4}$	Watt Meter ${ }^{-2}$
		Kelvin^-4
Arogadro constaul (N_{1})	mot ${ }^{-1}$	1/Mole
Loschmidt constant (n_{0})	II^{-3}	Meter-3
molar mass (M)	$\mathrm{kg} \mathrm{mol}^{-1}$	Kilogram/Mole

molar volume ($\mathrm{V}_{n_{c}}$)	$\mathrm{m}^{3} \mathrm{~mol}^{-1}$	Meter ${ }^{\text {/ } / \text { Mole }}$
Faraday constant (F)	C mol^{-1}	Coulomb/Mole
molar gas constant (R)	$\mathrm{J} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$	Joule/(Mole Kelvin)
luminous flux (Φ_{v})	$\mathrm{lm}=\mathrm{cd} \mathrm{sr}$	Lumen
illuminance (E_{v})	$\mathrm{lx}=1 \mathrm{~m} / \mathrm{m}^{2}$	Lux
activity (A)	$\mathrm{Bq}=\mathrm{s}^{-1}$	Becquerel
absorbed dose (D)	$\mathrm{Gy}=\mathrm{J} / \mathrm{kg}=\mathrm{m}^{2} \mathrm{~s}^{-2}$	Gray
absorbed dose rate ($\dot{\mathrm{D}}$)	Gy s ${ }^{-1}$	Gray/Second
dose equivalent (H)	$\mathrm{Sv}=\mathrm{J} / \mathrm{kg}=\mathrm{m}^{2} \mathrm{~s}^{-2}$	Sievert
dose equivalent rate ($\dot{\mathrm{H}}$)	Sv s ${ }^{-1}$	Sievert/Second
exposure (X)	$\mathrm{C} \mathrm{kg}{ }^{-1}$	Coulomb/Kilogram
exposure rate ($(\dot{\mathrm{X}}$)	C $\mathrm{kg}^{-1} \mathrm{~s}^{-1}$	Coulomb Kilogram-1 Second^-1
exposure rate constant (Γ)	$\mathrm{Bq}^{-1} \mathrm{~m}^{2}$	Becquerel^-1 Meter^2
	C kg ${ }^{-1} \mathrm{~s}^{-1}$	Coulomb Kilogram^-1
		Second ${ }^{-1}$
fluence (Φ)	m^{-2}	Meter ${ }^{-2}$
fluence rate ($\dot{\Phi}$)	$\mathrm{m}^{-2} \mathrm{~s}^{-1}$	Meter ${ }^{\wedge}-2$ Second^-1
radiation chemical yield (G)	mol J^{-1}	Mole/Joule

5 Implementation

(* :Title: Diana *)
(* : Authors: Rudolf Muradian \& Alexander Urintsev,
Joint Institute for Nuclear Research, RU - 141 980, Dubna, Moscow Region, Russia. *)
(* :Summary: The Diana package is intended for making dimensional analysis with Mathematica. *)
(* :Context: Diana' *)
(* : Package Version: 1.0 *)
(* : Keywords: Dimensional analysis *)
(* :Source: H. Langhaar, Dimensional Analysis and Theory of Models, Wiley, New York, 1951. *)
(* :Mathematica Version: 2.2 for MS-Windows *)
(* :Warning: Makes use of system symbol Second. *)
(* :Limitation: Do not use the system symbol I as a name in input data for the Diana package. *)

BeginPackage["Diana'"]

Print["\n Diana: Version 1.0, March 1994 \n by R. Muradian (1) \& A. Urintsev (2) \n
(1) Electronic address: muradian@theor.jinrc.dubna.su \n
(2) Electronic address: urintsev@sunse.jinr.dubna.su \n Type ?Diana'* for all exported symbols and \ln ?Diana, ?DIANA, ?toFU for help on the package.", " "]

解
Diana: :"usage" =
"Diana[\{\{name1, SIunit1\}, \{name2, SIunit2\}, ...\}] performs \n dimensional analysis and expresses outcome in the form: In name1 \rightarrow expr $F(K 2, K 3, \ldots, K n)$. Here $K 1, K 2, \ldots, K n \backslash n$ (with $\mathrm{K} 1=$ namei/expr) represent the complete set of ln
dimensionless parameters and F is undetermined function. In Parameters $K 2, \ldots, K n$ and expr do not depend on name1. In If $n=1$, the result is name1 $->$ expr."

DIANA: :"usage" =
"DIANA [\{\{name1, SIunit1\}, \{name2, SIunit2\}, ...\}] performs \ln dimensional analysis and expresses outcome in the form: \n $G(K 1, K 2, \ldots, K n) \rightarrow 0$, where $K i$ represents the complete set $\backslash n$ of dimensionless parameters and G is undetermined function."

toFU::"usage" =

"toFU[SIunit] transforms any combination of fundamental and $1 n$ derived SI units into fundamental SI units."

F::"usage" =
" F is undetermined function of $n-1$ dimensionless variables."
G: :"usage" =
" G is undetermined function of n dimensionless variables ."

```
(****************************** toFU *****************************)
toFU[Diana'Private'x_] := (Diana'Private'x /.
    {Radian -> 1,
    Steradian -> 1,
    Newton -> (Meter Kilogram)/Second 2,
    Pascal -> Kilogram/(Meter Second^2),
    Joule -> (Meter^2 Kilogram)/Second 2 2,
    Watt -> (Meter^2 Kilogram)/Second^3,
    Coulomb -> Ampere Second,
    Volt -> (Meter^2 Kilogram)/(Second^3 Ampere),
    Farad -> (Second^4 Ampere^2)/(Meter^2 Kilogram),
    Dhm -> (Meter^2 Kilogram)/(Second^3 Ampere^2),
```

```
Siemens -> (Second^3 Ampere-2)/(Meter^2 Kilogram),
Weber -> (Meter^2 Kilogram)/(Second`2 Ampere),
Tesla -> Kilogram/(Second"2 Ampere),
Henry -> (Meter^2 Kilogram)/(Second-2 Ampere-2),
Lumen -> Candela Steradian,
Lux -> (Candela Steradian)/Meter^2,
Hertz -> 1/Second,
Becquerel -> 1/Second,
Gray -> Meter^2/Second^2,
Sievert -> Meter-2/Second-2}) //.
{(Diana'Private'a_^Diana'Private'p_)^Diana'Private'q_ :>
Diana'Private'a^(Diana'Private'p Diana'Private'q),
(Diana'Private'c_ Diana'Private'd_)`Diana'Private'r_ :>
Diana'Private'c`Diana'Private'r *
Diana'Private'd`Diana'Private'r}
(****************** fundamental SI units usage ****************)
Map[(Evaluate[First[#]]: :"usage" =
    StringJoin[ToString[ First[#] ],
                                    " is the fundamental SI unit of ",
                                    ToString[ Last[#]]
    ]
    ) &,
    {{Meter, "length."},{Kilogram, "mass."},{Second, "time."},
        {Ampere, "electric current."},
        {Kelvin, "thermodynamic temperature."},
        {Mole, "amount of substance."},
        {Candela, "luminous intensity."},
        {$, "price (dollar), according \n
to the proposed extension of the SI units."}
```

 \}
]
 \$NewMessage[Second, "usage"]
Second::"usage" = StringJoin[Second: :"usage",
" It is also used as the fundamental SI unit of time."]
(********************* derived SI units usage ****************)
Radian::"usage" =
"Radian is a dimensionless measure of plane angle."
Steradian::"usage" =
"Steradian is a dimensionless measure of solid angle."

```
Map[(Evaluate[First[#]]::"usage" =
    StringJoin[" ", ToString[ First[#] ],
            " is the derived SI unit of "
            ToString[ Last[#]],
            "\n ", ToString[ First[#] ], " = ",
            ToString[ InputForm[Evaluate[toFU[First[#]]]]]
            ]
    ) &,
        {{Newton, "force."}, {Pascal, "pressure."},
        {Joule, "energy."}, {Watt, "power."},
        {Coulomb, "electric charge."},
        {Volt, "electric potential difference."},
        {Farad, "capacitance."}, {0hm, "electric resistance."},
        {Siemens, "electric conductance."},
        {Weber, "magnetic flux."},
        {Tesla, "magnetic flux density (induction)."},
        {Henry, "inductance."},
        {Lumen, "luminous flux."},
        {Lux, "illuminance (illumination)."},
        {Hertz, "frequency."}, {Becquerel, "radioactivity."},
        {Gray, "absorbed dose of radiation."},
```

]

Begin["Diana'Private'"]

($* *$ fundamental SI units $* * * * * * * * * * * * * * * * * *) ~$
FUnits $=$ \{Meter, Kilogram, Second, Ampere, Kelvin, Mole,
Candela, \$\}

SIunits $=\{\$$, Ampere, Becquerel, Candela, Coulomb, Farad, Gray, Henry, Hertz, Joule, Kelvin, Kilogram, Lumen, Lux, Meter, Mole, Newton, Ohm, Pascal, Radian, Second, Siemens, Sievert, Steradian, Tesla, Volt, Watt, Weberf

checkUnits[n_, expr_] := Module[\{i, wd = False $\}$,
Do[If[UnsameQ[Complement [Variables[expr[[i, 2]]], SIunits], \{\}], wd = True; Break[]], \{i, n\}]; wd]

(********************** warning messages
 \qquad

Diana: :"forbidden name" = "Symbol I is forbidden for use." Diana::"wrong data" =
"Problem cannot be solved. Check input for Diana." Diana::"wrong units" = "Input units for Diana are not SI units." DIANA: :"forbidden name" = "Symbol I is forbidden for use." DIANA: :"wrong data" =
"Problem cannot be solved. Check input for DIANA." DIANA: :"wrong units" = "Input units for DIANA are not SI units."

```
(************************** exponent
exponent[expr_, x_] :=
    If[FreeQ[expr, x], 0, expr /. .. x^d_. :> Rationalize[d]]
```


Diana[expr: $\left.\left.\left\{\left\{_{-}, \ldots\right\},\left\{_{-},\right\}_{-}\right\} \ldots\right\}\right]:=$
Module[\{a, b, i, j, k, m\}, If[Not[FreeQ[expr, I]],
Return[Message[Diana::"forbidden name"]]]
$k=$ Length[expr]; If[checkUnits[k, expr],
Return[Message[Diana::"wrong units"]]];
$\mathrm{m}=$ Length[FUnits];
$\mathrm{a}=$ Table[exponent[toFU[expr[[i, 2]]], FUnits[[j]]],
$\{j, m\},\{i, k\}] ;$
$b=a[[\operatorname{Range}[m], \operatorname{Range}[2, k]]] ;$
Check[a = Together[LinearSolve[b, Map[\#[[1]]\&, a]]],
Return[Message[Diana::"wrong data"]]];
$\mathrm{b}=$ NullSpace[b]; m=k-1;
$\operatorname{expr}[[1,1]] \rightarrow \operatorname{Product}[\operatorname{expr}[[j+1,1]]$ a[[j]], \{j, m\}] *
If [SameQ[b, \{\}], 1,
F ©Q Table[Product[expr[[j + 1, 1]]^b[[i, j]],
$\{j, m\}],\{i$, Length $[b]\}]]$
]

DIANA[expr:\{\{_, _\}, \{_, _\} ...\}] :=
Module[\{a, i, j, k\},
If [Not[FreeQ[expr, I]],
Return[Message[DIANA::"forbidden name"]]];
$\mathrm{k}=$ Length $[\mathrm{expr}]$;
If [checkUnits[k, expr],
Return[Message[DIANA::"wrong units"]]];
$a=N u l l S p a c e[T a b l e[\operatorname{exponent}[t o F U[\operatorname{expr}[[i, 2]]]$,

FUnits[[j]]], \{j, Length[FUnits]\}, \{i, k\}]]; If [SameQ[a, \{\}], Return[Message[DIANA::"wrong data"]]];
G @O Table[Product [expr[[j, 1]]^a[[i, j]], \{j, k\}], $\{i$, Length $[a]\}] \rightarrow 0$

End[] (* Diana'Private' *)
EndPackage[] (* Diana *)

6 Finish

Computer experimentation in the area of dimensional analysis can help for better understanding of the old problems and give impact into deeper philosophic insight into new research fields. Diana can assist researchers in a broad ficld of physics, physical chemistry, engineering and perhaps economics. We hope that Diana will help you to open the door into marvelous world of the Mathematica ${ }^{®_{1}}$ Physics.

The file Diana.ma in Mathematica Notebook format is in preparation.

References

[1] S. Wolfram: Mathematica: A System for Doing Mathematics by Computer, 2nd edition, Addison-Wesley, Redwood City, C $\Lambda, 1991$.

2] P. Boyland et al.: Guide to Standard Mathematica Packagrs. Technical Report, Wolfram Rescarch, 1991.
[3] II. Langhaar: Dimensional Analysis and Theory of Models, Wilcy, New York, 1951.
[1] C. Focken: Dimensional Mchods and Thrir Apphications, E. Arnold, London, 1953.
[5] L. Sedov: Similarity and Dimensional Methods in Mechanics, Academic Press, New York, 1959.
[6] G. Taylor: The formation of a Blast Wave by a Very Intense Explosion, Proceedings of the Royal Society, A 201, 159, 1950.
[7] W. Remillard: Applying Dimensional Analysis, Am. J. Phys. 51, 137, 1983.
[8] V. Matveev, R. Muradian and A. Tavkhelidze: Automodellism in the Large- Angle Elastic Scattering and Structure of Hadrons, Letters Nuovo Cimento, 7, 719, 1973.
[9] G. West: Scale and Dimension From Animals to Quarks, Los Alamos Science 11, 2, 1984.
[10] Z. Rácz: Examples of Unconventional Dimensional Analysis, Acta Physica Hungarica 72, 249, 1992.
[11] M.S. Quaraishi and T.Z. Fahidy: A Simplified Procedure For Dimensional Analysis Employing SI Units, The Canadian Journal of Chemical Engineering, 59, 563, 1981.
[12] T.Z. Fahidy and M.S. Quaraishi: Principles of Dimensional Analysis , In: Encyclopedia of Fluid Mechanics, Chapter 12, p. 400. Gulf Publishing Company, Houston, TX, 1986.
[13] E. Cohen and P. Giacomo: Symbols, Units, Nomenclature and Fundamenlal Constanls in Physics, Physica A 146, I, 1987.
[14] E. Cohen and B. Taylor: The 1986 Adjustment of the Fundamental Physical Constants, Rev. Morl. Phys. 59, 1121, 1987.
[15] SI Units in Radiation Protection and Measurements, National Council on Radiation Protection and Measurements, report No 82, Bethesda, MD, 1985.

> Received by Publishing Department on March $30,1994$.

[^0]: ${ }^{1}$ Electronic address: muradian@theor.jinrc.dubna.su.
 *Permanent address: Byurakan Astrophysical Observatory, Armenia.
 ${ }^{2}$ Electronic address: urintsev@sunse.jinr.dubna.su.

[^1]: ${ }^{1}$ Mathematica is a registered trademark of Wolfram Rescarch, Inc.

[^2]: ${ }^{2}$ Russian scientist D.P.Riabouchinsky is well known as a author of the famous RayleighRiabouchinsky paradox. Buckingham himself gives the credit for general theorem of the dimensional analysis to Riabouchinsky [4, page 42]. The name π-theorem also is adopted instead of Buckingham-Riabouchinsky theorem.

