
g~ 

9'ff-lz .. 1-£ 
S.~~bniC'ka, V .A.Meshcheryakov 

MODEL-INDEPENDENT RESULT 

t5 3 -1--{ 
E2 - 9399 

FOR IMAGINARY PART OF FORWARD 

1l He 4 SCATTERING AMPLITUDE 

IN UNPHYSICAL REGION 

1975 



I 

l • 
' 

L 

E2 .. 9399 

S.DubniC'ka, • V .A.Meshcheryakov 

MODEL-INDEPENDENT RESULT 

FOR IMAGINARY PART OF FORWARD 

tr He 4 SCATTERING AMPLITUDE 

IN UNPHYSICAL REGION 

Submitted to Czechoslovak Journal 
of Physics B . 

0t"J.e,ibi•i\l:.i~iWI IHCTBTJI' 
diJIRWX fiCCJielODfUIIII 

611&/lhOTEKA I 

• Address from January lst,l976: Institut 
of Physics, Slovak Academy of Sciences, 
89930 Bratislava 1, Czechoslovakia. 



~ 

I 

I 

L 

1. INTRODUCTION 

Generally, there are two families of forward disper­
sion relations of the elastic scattering of two strongly 
interacting particles. They can be classified according 
to the relative position of an elastic threshold w f'f to 
the first inelastic or eventually anomalous threshold w 0 
on the physical sheet of Riemann surface. 

The first family includes the forward dispersion re­
lations without the unphysical cut, i.e., the following ine­
quality w 0 > w ef between the corresponding thresholds 
is fulfilled. In this case the forward dispersion relations 
can be in principle used to relate the real part of forward 
scattering amplitude with experimental data on total 
cross section without any admixture of a model depen­
dence at all energies. In case that an eventual appearance 
of pole terms in unphysical region were misleading (pro­
vided that one does not want to utilize the method of 
determination of corresponding residues based on the 
use of analyticity in cosO plane 111 ) we stress that 
by using symmetric (under crossing) amplitudes the 
noticeable contributions of pole terms is suppressed /2/. 

The forward dispersion relations containing an unphy­
sical cut (the inequality w 0 < w ef holds in this case) 
represent the second family. The low energy behaviour of 
a real part of amplitude evaluated by means of such 
dispersion relations depends to some extent on models 
used for imaginary part in unphysical region. 

There is another characteristic feature being in 
a relationship with the appearance of an unphysical cut 
which is inherent for binary processes belonging to the 
same family. We have in mind the singular nature of 
total cross section in elastic threshold (known in nuclear· 
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physics as 1 I v law ;a; , v is the velocity of an incident 
particle in laboratory system) in the case w 0 < w ef . 
If no unphysical cut is present (i.e., w >wee) the total 
cross section takes nonnegative finite vafue. This feature 
can be simply understood as a direct consequence of the 
optical theorem, the parametrization of partial wave 
amplitudes and their threshold behaviour. Really, for 
all processes belonging to the first family, the imaginary 
part of forward scattering amplitude at the elastic thre­
shold is zero. This will be fulfilled by \aking the limit 
k L .... 0 ( k L---'is an incident laboratory system momentum) 
in the optical theorem for any nonnegative finite value of 
total cross section. On the other hand the imaginary part 
of forward scattering amplitude of processes from the 
second family is equal to the imaginary part of the 
complex s -wave scattering length which is always a 
positive real number. Any finite real positive number will 
be reached by taking the limit k L .... 0 in the optical theorem 
only if atot .... +"" at elastic threshold. 

In this paper we shall be interested in the forward 
11 4 He scattering which belongs to the second family. The 

corresponding forward dispersion relation will contain 
the contribution from an unphysical cut because there 
is open the following channel 114He .... TN ( T means 
3 He or 3 H and N represents the nucleon) which is res-

ponsible for the lowest of all existing branch points in 
11 

4 He scattering process. 
The correct evaluation of 11

4 He forward dispersion re­
lation and a comparison of obtained results with experimen­
tal data, strictly speaking, can be carried out only if expe­
rimental data on atot and Ref(w) for both,positive and 
negative pions at the same energies and in a sufficiently 
wide energy interval will be available. At present we 
have the situation when the aforementioned quantities 
were measured at only very few points for both charged 
pions simultaneously and the remainder of experimental 
data exists either for positive or negative pions only. 
Despite of this it seems to us that some interesting re­
sults can be obtained also under the present experimental 
situation. In recent past it was already confirmed 12 •4 •51 . 
to some extent. 
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The first results on real part of forward 11 
4 He scat­

tering amplitude by a dispersion method were obtained 
by Ericson and Locher 121. At that time only four experi­
mental points on real part were available and nothing could 
be said about the agreement between experimental and 
theoretical results. 

The authors of paper 161 were discussing the incon­
sistency of the dispersion relation prediction 121 with 
new experimental data. This incited one of us (S.D.) to 
analyze in detail the calculation of the real part 141 and 
to look for the most probable cause why it was impossible 
to get the consistency between the experimental data 
on real part and total cross section through forward 
dispersion relation. 

The result of paper 141 resides in the following. To 
get a better agreement of a calculated real part with 
experiment, one has to shift the maximum of total cross 
section in resonant region to lower energies and to 
higher values. This prediction was later confirmed experi­
mentally by Wilkin et al. 171 and by inclusion of the 
last data the agreement with experimental values of real 
part was improved 151. 

Recently again new experimental data (four points) 
on real part have appeared IBI and three of them at higher 
energies seem to be inconsistent also with the newest 
dispersion predictions IS/ . 

The aim of the present paper is to investigate to 
what extent one can expect that the imaginary part of 
forward 11

4 He scattering amplitude in unphysical region 
can improve the situation. Because, as it will be seen 
later, neither physical (here we have experimental data 
on total cross section) nor asymptotical regions can 
be responsible for such changed behaviour of real part. 

2. EVALUATION OF DISPERSION INTEGRALS 

The once-subtracted forward dispersion relation for 
symmetric elastic 11 

4He scattering amplitude in labo­
ratory system takes the form / 2 ,4,S/ 
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where units h = c = p. = 1 are used, p. is the mass of pion, 
Ref(cu 8 ) is a subtraction constant andcuTN"'0.143[1L] 

It will be seen in section 3 that one has to choose the 
subtraction c6nstant at the value cu

8 
from the physical 

region unlike the papers /2,4,5/. Assuming that Ref (cu) 
near the elastic threshold will change its behaviour 
slowly we shall choose w 8 = 1.007 [p.] (this corresponds 
to the shift of 1 MeV into the physical region) and the 
value of real part will be kept equal to Re f(w 

8
) = 

= -0.087 ± 0.002 [p-I] as it was determined by analysis 
of "- 4 He mesic atom data 151 . 

The integrals in (1), which we denote by J
1 

(erJ) ,J
2 

(cu), 
h (cu) are contributions to Re f(cu) from the unphysical, 

physical and asymptotical regions, respectively. Such a 
decomposition is appropriate since the main sourse of 
our information about the behaviour of Re f(cu) is in the 
total cross section and this is known only for 1 <w ~ 
<,;,.17.14 [p.]. At present time, there are no experimental 

data on a tot for w > 17.14 [p.] and no information on 
Im f(erJ) can be obtained from direct measurements in 
unphysical region. 

To evaluate the integral 

2 ( 2 2) I 7 .14 , I f( , ) J (w)= w -CUs I w ~ dw' 
2 17 I ( ,2 2 )( -:,2--:::2-) (2) w -(1)8 (t) -(t) 

one must choose a suitable function (dependeing on a few 
free parameters) for Im f ( w) by means of which one gets 
a good fit of existing experimental data. 

The authors of paper 12 ,51 did not show it explicitly 
and they confine themselves to mentioning only that 
a smooth polynomial fit through the imaginary part has 
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been carried out. We have tried to repeat the fitting pro­
cedure with the polynomial 

lm f ( w) = I A n w n 
n 

(3) 

but without any success. The minimum was reached at 
the value -/- ""84 on 14 degrees of freedom what is clearly 
unsatisfactor~ result. 

In paper 4/ for that reason the physical region inter­
val 1 < w < 17.14 [IL] was decomposed into three parts 
each of which has been interpolated by means of different 
function for atot . The singular nature of total cross 
section at the elastic threshold was not taken into account 
because the analytic continuation of zero-effective-range 
amplitude consisting of two first partial waves has been 
used to calculate theimaginarypartfor 1 < w < 1.16 [ILL 

In the present paper we succeeded in finding the 
following formula 

a 
tot 

A1 w P5 (w) 
+ ----

( w - A 2) 2 + A3 y'-;,-2::Y 
(4) 

for total cross section where ~'i (cu) means a polynom~l 
of the fifth order in energy. Expression ( 4) possesses 
all the desired properties: 

a) it is one smooth function for all known experimental 
region, 

b) it diverges at the elastic threshold, 
c) by means of it one gets an excellent fit of existing 

experimental data. 
The fitting procedure was carried out through the 

optical theorem 

Im f ( w ) = V w2 - 1 --a 
4 1T tot 

(5) 

and the result for X 2 
"" 10 on 14 degrees of freedom is 

graphically shown in fig. 1. The shape of the imaginary 
part of forward scattering amplitude following from (5) 
and its comparison with experimental data is pictured 
in fig. 2. 
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Fig. 1. The result of the fit of experimental data on 
a tot by (4). 
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Fig. 2. The shape of lm f ( w) in unphysical region found 
through optical theorem (5) and eq. (4). 
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Now, combining eq. (5) with (4) and replacing the 
imaginary part of the amplitude under the integral in 
relation (2) one can calculate the physical region contri­
bution into the real part of the forward scattering ampli­
tude which is graphically presented in fig. 3 by dashed 
line 2. 
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Fig. 3. The comparison of the recalculated behaviours of 
I2 (w) and J 30(w) with e~erimental data on Re f(w). 

Tne new experzmental data 81 are denoted by crosses. 

The contribution from the asymptotical region w > 
> 17.14 [fL] ( in which we have no information on a

101 
) 

is represented by the following integral 

2(if-w~) oo w, Imf(w ') dw,. 
J (w) = f ( , 2 2) ( .2 w2 ) 

3 11 17.14 w -ws w -
(6) 
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To find some approximate behaviour of a tot in 
this energy region one can proceed, for instance, from 
the following considerations. It is known 121 that the 
symmetrical total cross section of light nuclei in physical 
region can be empirically obtained from the slmmetrical 
rr N total cross section by a scaling factor A with n "" 

"" 0.83, where A means a number of nucleons in the nu­
cleus. One can expect that this experimental similarity 
in shape will extend the validity also to higher energies. 
Then, taking into account the behaviour of total cross 
section, rr 4 He total cross section is expecting to decrease 
nearly up to' energy w"' 286 [ 11l and then will start to 
grow, most probably, logarithmically. 

Here we shall be a little more conservative and fpr 
17.14 < w < 286 [I!] we take the constant value of total 
cross section equal to the last experimental point at 
w = 17 .14ll!l· Then the contribution 

---
( w 2 -w 2) 286 ' V '2 -1 

J (w)= 8 5.24 f w w dw' (7) 
30 2rr 2 17.14 (w' 2 -w~)(w'2-w2) 

can be evaluated explicitly and takes the following form 

J (w) = -.i...2L I y w 2 -1 - V w 2 -11 x 
30 2 TT 2 S 

x fnl (t 8 +tJ}(t 8 -t2)(tb-tl)(tb+t2) I, 
( t a-t I )( t a+ t 2 )( t b + t I)( t b - t 2) 

where 

t
8 

= 17.14 + V (17.14) 2 .-..1 t b =286 + '1/(286)2 -1 

and 

tl =W + 'l/w 2 -1 t2=w-'l/w2-1. 
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(8) 

One can see from fig. 3 (dashed line 3) that expression 
(8) at those energies at which we have now an experimen­
tal information on Ref(w) gives a small contribution. 

The remainder of the integral (6) is on the whole 
negligible in low energy region despite of the fact that 
the total cross section was assumed to rise logarithmi­
cally for 286[1!] <w <oo. 

Now, one can see immediately from fig.3 that the sum 
of physical and asymptotical region contributions are 
unable to describe the new experimental data 18 1 on Re f ( ul) 
(denoted by crosses in fig.3) and for an eventual disagree­
ment only Im f ( u)) in unphysical region can be responsible. 

3. IMAGINARY PART IN UNPHYSICAL REGION 

In this section we shall investigate the question to 
what extent one can expect that the imaginary part of 
forward rr 4He scattering amplitude in unphysical region 
really has a behaviour such that the contribution of un­
physical cut 

2(w 
2 -w~) I w 'Imf(w ') dw' 

J1 (w)= f ( -2 2)( -2 w2) 
TT wTN w -ws w -

(9) 

will secure the agreement between the dispersion pre­
diction for Ref(w) and its new experimental data !iJ I 

In papers 12,51 the imaginary part in unphysical re­
gion was evaluated (see dashed line fig. 4) simply by 
using a scattering length expansion 

Imf(w) =lmA0 -2 ReA0 ImA01ki-3ImA1 lkl2, (10) 

where Ao and A 1 are s and p -wave complex scattering 
lengths. 

In paper 141 more complicated form for imaginary 
part in unphysical region was used (the behaviour of it 
is shown in fig. 4 by full line) which has been found by 
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Fig. 4. The model-dependent behaviours of Imf(w) in un­
Physical region following from (10) (dashed line) and 
from the analytic continuation of (11) (full line). 

analytic continuation of the zero-effective-range amplitude 

Ao A 1k 2 
) f (w) .::: ---- + 3-----. (11 

1 - i A 0k 1- i A 
1 
k 3 

keeping only two first terms in it. 
Both parametrizations were derived upder the assump­

tion that the expansion of the function k 2 +lcotgo e ( 0 e is 
a complex 17 

4 He phase shift) into the Taylor series 
2f +I 1 2 

k cotgoe = -:;Ce + Bek + ... (12) 

is convergent up to the branch point w0 . This must not 
be the case because any nearest threshold or zero of a 
partial wave amplitude (this generates the pole in function 
(12)) to wee plays the role of the first singularity to 
which expansion (12) is only convergent. 
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So, there are indications that the unphysical region 
parametrizations for Imf (w) used in papers 12 ,4,S/ may 
be doubtful. 

To get a model-independent information about the 
behaviour of Im f{w) in unphysical region we shall 
start with confidence in experimental data on Re f(w) 
and the utilization (to the integral (9)) of the generalized 
mean value theorem which says: 

Let 
1. f(x ), g( x) are integrable in [a, b] 
2. f(x) is bounded in [a, b] 

then 
3. g{x) does not change the sign in [a, b] 

b b 

a 
Jf(x)g(x)dx = f(Xi )Jg(x)dx, where 

a 
xi~[a,b]. 

In the case of integral (9) we shall identify 
, 

f(x)--> lm f(w'), Ci) ---( ) ... -----2 2) g x, w , 2 2 )(w' -w (w -ws 

where w takes the physical region values. 
Then all conditions of the generalized mean value 

theorem are fulfilled and we can write for averaged 
value of lm f( w) in unphysical region the following 
equation 

lm f(X i ) = 
Re f (w ) - Re f (w s) - J 2( w ) - J 3o( w ) 

2(w 2 -w 2 ) I w 
____ s_ J -dw, 

17 wTN (w'2-w2 )(w'2-w2) 
s 

(13) 

The denominator of (13) can be calculated explicitly 
and the last relation takes the form 

lm f ( X . ) = Ref ( w ) - Re f ( w s) - 12 ( w) - ho( w ) 

' 1 (w2-1)(w2 -w2 ) 

17 
&t I s TN 

( W 
2 - W 

2 ) ( W- 2 -1 ) 
TN s 

(14) 
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from which one can see immediately why we have chosen 
the subtraction constant at cus.;, 1 unlike papers 12

•
4

•
5
/. 

Now taking the experimental values on Re f(w) at different 
energies, the subtraction constant equal to Ref ( w s) = 
= -0.087 ± 0.002 [ 11 - 1 ] 151 and h (w) , J 30(w) as they 
are presented in fig. 3 we get from (14) a set of values 
of lmf(w) in unphysical region (see table). Unfortunately 
we do not know to what values of energies in unphysical 
region they correspond. It does not follow from the gene­
ralized mean value theorem. 

To get at least some image about the width of an 
energy interval which can be reached by changing the 
parameter w in 

lm f (X . ) = 
I 

2(w
2
-w:) / w'lmf(w') dw' 

--11--~N (w ,2_w2 )(w ,2 -w2) 
s 

(15) 

1 ( w 2 -1 X w~ -wiN> 
- fn l-----~-

11 ( w 2 -wiN)( w: -1} 

we have replaced in the last equation lm f(w ') by our 
parametrization (see full line fig. 4) and calculated the 
corresponding values of lm f (Xi) in unphysical region. 
They are also given in the table. 

Comparing the obtained results in the table and the 
fact that lmf(w} in wee isgivenbysmall value of complex 
part of s-wave scattering length(b 0 =0.081 ±0.006[p-l]) 
one can draw a conclusion that the new data on Ref(w)/8 / 

may be consistent with dispersion prediction only if Im f( w) 
in unphysical region has a drastic behaviour. The last 
effect is not very understable from the mathematical 
point of view because we do not find any strong singulari­
ty which could be responsible for the strange behaviour 
of 1m f ( cd) in unphysical region. 

It remains only the question to what extent one can 
confide in new experimental data on Re f(w). We would 
like to remind that they have been obtained by means 
of a phase shift analysis which suffers from well known 
ambiguities. 
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Table 
The values of Imf(w) in unPhysical region calculated by 
an application of the generalized mean value theorem to 
the dispersion integral 1 1 ( w). 

w [MeV] lm f ( X 1 ) ± L\ I m f (X1 ) Imf(X i) 

164 0.0565 + 0.0299 0.0692 

190 0.1926 + 0.0300 0.0680 

191 0.1233 + 0.0227 0.0680 

198 0.1237 + 0.0257 0.0676 

200 0.0415 + 0.0334 0.0676 

205 0.1099 + 0.0486 0.0675 

2 08 -0.0110 + 0.0242 0.0675 

215 -0.0224 + 0.0179 0.0673 

237 -0.1666 + 0.0659 0.0669 

238 -0.0528 + 0.0173 0.0669 

250 0.0590 + 0.0083 0.0667 

275 -1.0705 
(0.2359)~ 0.1832 0.0663 

285 -0.7949 
(0.2185)~ 0.2375 0.0663 

2 96 
-0.5106 
(0.2610)~ 0.3149 0.0662 
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If the phase shift analysis allows also the solution 
which gives the reflected values Ref (w) (see data denoted 
by circles and dashed errors in fig.3) then these should 
be chosen as a right solution and the discussed disagree­
ment relation prediction will be removed. The last three 
positive (in brackets) values of Im f(X i) in the table which 
were calculated under this assumption, confirm this. 

At the end of this section we would like to mention that 
the choice of the right solution in an ambiguous phase 
shift analysis by means of the dispersion relation is a well 
known method. In the case of rr N scattering it was used 
already 20 years ago /9/ 

4. CONCLUSIONS 

The new experimental data on Ref(w) of forward 
rr 4 He scattering process were analyzed by the dispersion 
relation approach. The corresponding contributions of 
dispersion integrals were recalculated more carefully 
and the question whether one can expect that the behaviour 
of the imaginary part of forward rr He scattering ampli­
tude in unphysical region can remove the disagreement 
of dispersion relation predictions with the new experimen­
tal points on Re f((tJ) was discussed in detail. 
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