


E2 - 9399

S.Dubniéka,* V.A.Meshcheryakov

MODEL-INDEPENDENT RESULT

FOR IMAGINARY PART OF FORWARD
T He* SCATTERING AMPLITUDE

IN UNPHYSICAL REGION

ASubmitted to Czechoslovak Journal
of Physics B.

O8%cj Y WHCTHTYY
saepux becacpopensl
BHENNOTEKA ,

® Address from January 1st,1976: Institut
of Physics, Slovak Academy of Sciences,
89930 Bratislava 1, Czechoslovakia.




1. INTRODUCTION

Generally, there are two families of forward disper-
sion relations of the elastic scattering of two strongly
interacting particles. They can be classified according
to the relative position of an elastic threshold we to
the first inelastic or eventually anomalous threshold o
on the physical sheet of Riemann surface.

The first family includes the forward dispersion re-
lations without the unphysical cut, i.e., the following ine-
quality wy> 0, between the corresponding thresholds
is fulfilled. In this case the forward dispersion relations
can be in principle used to relate the real part of forward
scattering amplitude with experimental data on total
cross section without any admixture of a model depen-
dence at all energies. In case that an eventual appearance
of pole terms in unphysical region were misleading (pro-
vided that one does not want to utilize the method of
determination of corresponding residues based on the
use of analyticity in cosg plane /1 ) we stress that
by using symmetric (under crossing) amplitudes the
noticeable contributions of pole terms is suppressed /2/

The forward dispersion relations containing an unphy-
sical cut (the inequality wg <w, holds in this case)
represent the second family. The low energy behaviour of
a real part of amplitude evaluated by means of such
dispersion relations depends to some extent on models
used for imaginary part in unphysical region.

There is another characteristic feature being in
a relationship with the appearance of an unphysical cut
which is inherent for binary processes belonging to the
same family. We have in mind the singular nature of
total cross section in elastic threshold (known in nuclear
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physics as 1/v law /3/ | v is the velocity of an incident
particle in laboratory system) in the case Wo <Wep.
If no unphysical cut is present (i.e., w, > w.p ) the total
cross section takes nonnegative finite va?ue. This feature
can be simply understood as a direct consequence of the
optical theorem, the parametrization of partial wave
amplitudes and their threshold behaviour. Really, for
all processes belonging to the first family, the imaginary
part of forward scattering amplitude at the elastic thre-
shold is zero. This will be fulfilled by %aking the limit
kp, -0 (ks an incident laboratory system momentum)
in the optical theorem for any nonnegative finite value of
total cross section. On the other hand the imaginary part
of forward scattering amplitude of processes from the
second family is equal to the imaginary part of the
complex s -wave scattering length which is always a
positive real number. Any finite real positive number will
be reached by taking the limit k- 0in the optical theorem
onlyif o, ~» + at elastic threshold.

In this paper we shall be interested in the forward
7*4He scattering which belongs to the second family. The
corresponding forward dispersion relation will contain
the contribution from an unphysical cut because there
is open the following channel »4He - TN (T means
3He or 3H and N represents the nucleon) which is res-
ponsible for the lowest of all existing branch points in
7 *He scattering process.

The correct evaluation of »*He forwarddispersion re-
lation and a comparison of obtained results with experimen-
tal data, strictly speaking, can be carriedout only if expe-
rimental data on o, and Ref(w) for both,positive and
negative pions at the same energies and in a sufficiently
wide energy interval will be available. At present we
have the situation when the aforementioned quantities
were measured at only very few points for both charged
pions simultaneously and the remainder of experimental
data exists either for positive or negative pions only.
Despite of this it seems to us that some interesting re-
sults can be obtained also under the present experimental
situation. In recent past it was already confirmed 7245/ .
to some extent.
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The first results on real part of forward »*He scat-
tering amplitude by a dispersion method were obtained
by Ericson and Locher 72/, At that time only four experi-
mental points on real part wereavailable and nothing could
be said about the agreement between experimental and
theoretical results.

The authors of paper /6/ were discussing the incon-
sistency of the dispersion relation prediction /2/ with
new experimental data. This incited one of us (8.D.) to
analyze in detail the calculation of the real part /% and
to look for the most probable cause why it was impossible
to get the consistency between the experimental data
on real part and total cross section through forward
dispersion relation.

The result of paper /4/ resides in the following. To
get a better agreement of a calculated real part with
experiment, one has to shift the maximum of total Cross
section in resonant region to lower energies and to
higher values. This prediction was later confir med experi-
mentally by Wilkin et al.’”/ and by inclusion of the
last data the agreement with experimental values of real
part was improved s/,

Recently again new experimental data (four points)
on real part have appeared /8’ and three of them at higher
energies seem to be inconsistent also with the newest
dispersion predictions

The aim of the present paper is to investigate to
what extent one can expect that the imaginary part of
forward »*He scattering amplitude in unphysical region
can improve the situation. Because,as it will be seen
later, neither physical (here we have experimental data
on total cross section) nor asymptotical regions can
be responsible for such changed behaviour of real part.

2. EVALUATION OF DISPERSION INTEGRALS

The once-subtracted forward dispersion relation for
symmetric elastic =~ *He scattering amplitude in labo-
ratory system takes the form /2-4-5/
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where units h=c=p; -1 are used, p is the mass of pion,
Ref(w,) is a subtraction constant and o pn=~0.143 [4]

It will be seen in section 3 that one has to choose the
subtraction constant at the value o, from the physical
region unlike the papers /2:4:5/ Assuming that Ref(w)
near the elastic threshold will change its behaviour
slowly we shall choose o, = 1.007 [¢] (this corresponds
to the shift of 1 MeV into the physical region) and the
value of real part will be kept equal to Re f(m,) =
= -0.087%0.002 [¢~!] as it was determined by analysis
of 7— *He mesic atom data’%’.

The integrals in (1), which we denote by J, @) 1Jg (w),
J3 (w) are contributions to Ref(w) from the unphysical,
physical and asymptotical regions, respectively. Such a
decomposition is appropriate since the main sourse of
our information about the behaviour of Re f(w)is in the
total cross section and this is known only for l<w <
<17.14 {p ]. At present time, there are no experimental
data on o,  for o > 17.14[¢] and no information on
Imf(w) can be obtained from direct measurements in
unphysical region.

To evaluate the integral

_2idd) T imf(w) .
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one must choose a suitable function (dependeing on a few
free parameters) for Imf(w) by means of which one gets
a good fit of existing experimental data.

The authors of paper /2:5/ did not show it explicitly
and they confine themselves to mentioning only that
a smooth polynomial fit through the imaginary part has

been carried out. We have tried to repeat the fitting pro-
cedure with the polynomial

Imf(w) = A _o" 3)

but without any success. The minimum was reached at
the value )2 =84 on 14 degrees of freedom what is clearly
unsatisfactory result.

In paper /4/ for that reason the physical region inter-
val 1< o < 17.14 [g] was decomposed into three parts
each of which has been interpolated by means of different
function for o,, . The singular nature of total cross
section at the elastic threshold was not taken into account
because the analytic continuation of zero-effective-range
amplitude consisting of two first partial waves has been
used to calculate theimaginarypartfor 1< w <1.16 [ul.

In the present paper we succeeded in finding the
following formula

A P
o T D) ®
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for total cross section where P; (o) means a polynomial
of the fifth order in energy. Expression (4) possesses
all the desired properties:

a) it is one smooth function for all known experimental
region,

b) it diverges at the elastic threshold,

¢) by means of it one gets an excellent fit of existing
experimental data.

The fitting procedure was carried out through the
optical theorem

Vo2 =1 .

Imf(w) = 4”—atot %)
and the result for x2 ~ 10 on 14 degrees of freedom is
graphically shown in fig. 1. The shape of the imaginary
part of forward scattering amplitude following from (5)
and its comparison with experimental data is pictured
in fig. 2. :




P Now, combining eq. (5) with (4) and replacing the
wh imaginary part of the amplitude under the integral in
relation (2) one can calculate the physical region contri-
Bor bution into the real part of the forward scattering ampli-
tude which is graphically presented in fig. 3 by dashed
line 2.
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Fig. 3. The comparison of the recalculated behaviours of
7[‘ (w) and J3o(w) with ex?erimental data on Re f(w).
fle new experimental data '8’ are denoted by crosses.
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20 The contribution from the asymptotical region o >

>17.14 [p] (in which we have no information on ot )
is represented by the following integral
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Fig. 2. The shape of Imf(w) in unphysical region found 3 T 1714 (0 LoD (e o) (6)
through optical theorem (5) and eq. (4). s
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To find some approximate behaviour of o in
this energy region one can proceed, for instance, from
the following considerations. It is known’/2/ that the
symmetrical total cross section of light nuclei in physical
region can be empirically obtained from the symmetrical
7N total cross section by a scaling factor A" with n =
~ 0.83, where A means a number of nucleons in the nu-
cleus. One can expect that this experimental similarity
in shape will extend the validity also to higher energies.
Then, takmg into account the behaviour of total cross
section, 7 4He total cross section is expecting to decrease
nearly up t6 energy o~ 286 [u] and then will start to
grow, most probably, logarithmically.

Here we shall be a little more conservative and for
17.14 <» <286 [u] we take the constant value of total
cross section equal to the last experimental point at
w=17.14{¢]. Then the contribution

(w2_w2) 286 ©’ \/w f2_1
(w)= — = 5.24 7
ko 2n 2 l7.fl4 (0'2-02) (0 2-P) 0

can be evaluated explicitly and takes the following form

Jao(w)= _%Zg_.{\/wz_l —\/wg —llx
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ty =286 + V/(286)7 —1
and

t, =o + Vol -1 t2=w—\/w2—1
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One can see from fig. 3 (dashed line 3) that expression
(8) at those energies at which we have now an experimen-
tal information on Ref(w) gives a small contribution.

The remainder of the integral (6) is on the whole
negligible in low energy region despite of the fact that
the total cross section was assumed to rise logarithmi-
cally for 286 [yl <w <= .

Now, one can see immediately from fig.3 that the sum
of physical and asymptotical region contributions are
unable to describe the new experimental data /8/ on Re f(w)
(denoted by crosses in fig.3) and for an eventual disagree-
ment only Imf(») in unphysical region canbe responsible.

3. IMAGINARY PART IN UNPHYSICAL REGION

In this section we shall investigate the question to
what extent one can expect that the imaginary part of
forward = 4He scattering amplitude in unphysical region
really has a behaviour such that the contribution of un-
physical cut

2((02—&)2) fl o Imf(w’)
wTN(w'z—wg)((u 2 _o

Jl(w)= 5 dw’ (9)

will secure the agreement between the dlspersmn pre-
diction for Ref(u)and its new experimental data/8/

In papers /2:5/ the imaginary part in unphysical re-
gion was evaluated (see dashed line fig. 4) simply by
using a scattering length expansion

Imf(w) =ImAg —2 ReAq ImAg k| —3ImA, |k|2 (10)

where A, and Al are s and p-wave complex scattering
lengths. 4/

In paper more complicated form for imaginary
part in unphysical region was used (the behaviour of it
is shown in fig. 4 by full line) which has been found by
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Fig. 4. The model-dependent behaviours of Imf(w) in un-
physical region following from (10) (dashed line) and
from the analytic continuation of (11) (full line). .

analytic continuation of the zero-effective-range amplitude

2
Ao L3 Ak (11)
1-iA gk 1-i Ak3
keeping only two first terms in it.
Both parametrizations were derived u&)der the assump-
tion that the expansion of the function k 2 ”cotgbg (8p is
‘a complex » "He phase shift) into the Taylor series

20 +1
k™ cotg 5 =_11‘_y+ Bok’s ... 12)

f(a)) =

is convergent up to the branch point », . This must not
be the case because any nearest threshold or zero of a
partial wave amplitude (this generates the pole in function
(12)) to wgp plays the role of the first singularity to
which expansion (12) is only convergent.
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So, there are indications that the unphysical region
parametrizations for Imf (o) used in papers /2:45/ may
be doubtful.

To get a model-independent information about the
behaviour of Imf(w) in unphysical region we shall
start with confidence in experimental data on Ref(w)
and the utilization (to the integral (9)) of the generalized
mean value theorem which says:

Let
1. f(x),g(x) are integrable in [a,b]
2. f(x) is bounded in [a,b]
3. g(x) does not change the sign in [a, b}
then

b b
ff(x)g(x)dx = f(X,;)fg(x)dx , where X, < [a,b].

In the case of integral (9) we shall identify

’

@

f(x)> Imf(w”), g(x,0) -"

.2 2 2)

(w —win -w
where o takes the physical region values.

Then all conditions of the generalized mean value
theorem are fulfilled and we can write for averaged
value of Imf(w) in unphysical region the following
equation

Ref((t)) ~Re f(a)s)_]z((t))— ]30(0))

Imf(X ;) - (13)

2(w?-0?) 1 o’

g DN (w'z—wg)((a'z-wz)

The denominator of (13) can be calculated explicitly
and the last relation takes the form

Imf(X,) = Ref(w)—-Ref(wg)=Ja(w) — Jolw)
(coz—l)(cozS —oi) l (14)

L |

w

(02-02)(02 -1)
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from which one can see immediately why we have chosen
the subtraction constant at os#1 unlike papers /2:4:5/.

Now taking the experimental values on Ref(w) at different

energies, the subtraction constant equal to Ref(wg) =
= -0.087%0.002 [x~117%  and J,(w), Jsolw) as they
are presented in fig. 3 we get from (14) a set of values
of Imf(w) in unphysical region (see table). Unfortunately
we do not know to what values of energies in unphysical
region they correspond. It does not follow from the gene-
ralized mean value theorem.

To get at, least some image about the width of an
energy interval which can be reached by changing the
parameter o in

2(&)2—(02) 1 o’ Imf(w’) do”

w QTN (&)’2‘-(028)((0’2"0)2)
lmf(Xi)-: (15)
lfn] (m2—1)((o2s —w%N)
T (e¥-0ly)(d -1

we have replaced in the last equation Imf(w’) by our
parametrization (see full line fig. 4) and calculated the
corresponding values of Imf(X;) in unphysical region.
They are also given in the table.

Comparing the obtained results in the table and the
fact that Imf(w) in o isgivenbysmall value of complex

part of s-wave scattering length (b ,-0.081*0.006 [p~!] )

one can draw a conclusion that the new data on Ref(w) /8/
may be consistent with dispersion prediction only if Imf(w)
in unphysical region has a drastic behaviour. The last
effect is not very understable from the mathematical
point of view because we do not find any strong singulari-
ty which could be responsible for the strange behaviour
of Imf(w) in unphysical region.

It remains only the question to what extent one can
confide in new experimental data on Ref(w). We would
like to remind that they have been obtained by means
of a phase shift analysis which suffers from well known
ambiguities.
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The values of Imf(w)

Table
ues in unphysical region calculated by
an application of the generalized mean value theorem to
the dispersion integral ] |(w).

o [MeV] Imf(X,) t Almf(X,) Imf(X )
164 0.0565 + 0.0299 0.0692
190 0.1926 + 0.0300 0.0680
191 0.1233 + 0.0227 0.0680
198 0.1237 + 0.0257 0.0676
200 0.0415 + 0.0334 0.0676
205 0.1099 + 0.0486 0.0675
208 ~0.0110 + 0.0242 0.0675
215 ~0.0224 + 0.0179 0.0673
237 -0.1666 + 0.0659 0.0669
238 -0.0528 + 0.0173 0.0669
250 0.0590 + 0.0083 0.0667

-1.0705
275 )
(0.2359)% 0-1832 0.0663
-0.7949
285 )
(0.2185)% 0-2375 0.0663
-0.5106
296 i
(0.2610)% 0-3149 0.0662
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If the phase shift analysis allows also the solution
which gives the reflected values Ref(w) (seedata denoted
by circles and dashed errors in fig.3) then these should
be chosen as a right solution and the discussed disagree-
ment relation prediction will be removed. The last three
positive (in brackets) values of Im f(X ;) in the table which
were calculated under this assumption, confirm this.

At the end of this section we would like to mention that
the choice of the right solution in an ambiguous phase
shift analysis by means of the dispersionrelationis a well
known method. In the case of #N scattering it was used
already 20 yéars ago /9/

4. CONCLUSIONS

The new experimental data on Ref(w) of forward
74He scattering process were analyzed by the dispersion
relation approach. The corresponding contributions of
dispersion integrals were recalculated more carefully
and the question whether one can expect that the behaviour
of the imaginary part of forward »*He scattering ampli-
tude in unphysical region can remove the disagreement
of dispersion relation predictions with the new experimen-
tal points on Re f(») was discussed in detail.
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