


1. Introduction

The main difficulty in the quantization of gauge theories is the nonphysical character
of gange field components which have the zero canonical momentum, or are not included
in the action owing to the gauge invariance.

And the following dilemma arises: i) to quantize only the physical part of the com-
ponents, contradicting the manifest Lorentz invariance, but conserving all quantum and
gauge principles; or #i) to quantize all components by a relativistic invariant approach,
but not being anxious about the nonconservation of quantum and gauge principles in
this approach. We shall call these approaches the * quantum” and "relativistic” ones.

The first "quantum” approach to the quantization of electrodynamics was consid-
ered in the pioneer papers by Heisenberg and Pauli [1, 2], where the gauge theory was
treated as one of the types of relativistic quantum mechanics in accordance to the Weyl
formulation [3]. ) _ )

The highest achievement of the "relativistic” approach is the Faddeev-Popov (FP)
method [4] based on the Dirac quantization [5]. The simplicity and -efficiency of this
method stimulated in many aspects the contemporary development of gauge field the-
ory. In the context of this development. the old "quantum” approach is conventionall ¥
considered as a particular case of the choice of a nonrelativistic gauge, which is needed
only to demonstrate that all quantum principles are fulfilled for all gauges due to their
equivalence, ’ .

The theorem of equivalence of different gauges is the one of the basic elements of
the FP method and defines the region of its validity. '

It is worth to recall that the cquivalence theorem is strictly proved [, 6] only for
asymptotically free states of the elementary particles (on their mass-shell), or for the
asymptotically flat space-time in the case of gravity, which restricts the region of the
application of the FP method by the scattering problem and the "island” Universe.

The fact of the nonequivalence of different, gauges off mass-shell is well known and
moreover i is used for the derivation of the Ward-Slavnov-Taylor identities [5].

The same off mass-sheil nonequivalence of different time-axes of the Heisenberg-
Pauli (HP) quantization [1, 2] of electrodynamics is also known in the atomic physics
(6] .

There are two different points of view on this time-axis dependence of the HP
quantization: i) the "theoretical point” [5] is to consider the time-axis dependence
as the defect of the quantization scheme and to try to get rid of this time-axis by
the transition to a relativistic invariant gauge, and it) the "practical point” [6] is
the description of an atom in the rest frame and a moving atom by different time-axes
(gauges) with the rest, or moving, Coulomb field, correspondingly (the choice of the rest
time-axis for a moving atom breaks down the relativistic dispersion law [7]). Tn other
words, in the atomic physics this "theoretical defect” is used Just for the relativistic
covariant description of bound states formed by elementary particles off mass-shell. In
the last case the time-axis dependence of the HP quantization is not a "defect”, but a
useful physical fact. ‘

Thus, the experience of the atomic physics not only testifies to the dependence of



the off mass shell physical results on gauges bui also uses this dependence [or relativistic
transformations in accordance with the initial interpretation of the HP quantization.
In the light of this fact, a relativistic invariant gauge of the FP method locks as only
the technical reception for the calculation of scattering amplitudes on mass—shell, and
is not suitable for the description of the bound state physics and of nonflat space-time
in gravity. The latter was emphasized by the authors of the FP method [8]. Schwinger
-[9} was the first who pointed out (before the FP method formulation [4]) in a sharp
form the possible difference between the HP quantization and the relativistic gauge
one as the consequence of the noncommutativity of constraining and quantizing.

Tn this paper we shall apply the non-Abelian generalization [6, 10, 11} of the HP
method [1, 2] to quantization of the time reparamectrization invariant theories, including
the relativistic particle, string and the Einstein gravity, and shall consider the concrete
examples of the physical nonequivalence of the two approaches: the "quantum” and
the "relativistic” one.

In the second scction we discuss the minimal HP quantization for the simplest
example of the zero-dimension gravity.

" In section 3 the medels of relativistic particle and strings are considered.

Secticn 4 is devoted to the Einstein gravity in n+1-dimensional space-time.

In section' 5 we consider the Friedmann approximation. ]

In section 6 the influence of inhomogencity and the evolution of the Newlon law
are estimated.

2. .The Zero-Dimension Gravity

To emphasize the difference between the HP and FP schemes of quantization we
consider at first the case of the zero-dimension gravity:

W chttE L 1{1 P4 al( )] i=d .(1)
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where F(q) is an arbitrary {unction over the variable ¢.
There are two variables o and q with the canonical moementa
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and the Hamiltonian
H=a&P,+§P - L =oH,; H:%[FHPZJ. (3)

The classical motion equation for a

{H, B} = H =0, ((ﬁq) - F?(q)) 0



allows one to define.the proper invariant time
. ! dg
dIF = adt TF(i) =+ —_ (5)
U F
which coincides with the Friedmann time in the homogeneous cosmology.
The classical equation for the variable q faithfully copies eqgs.(2), {4) and does not
contain any new information.
‘In the quantum theory according to the correspondence principle we should repro-
duce the I'riedmann evolution. ‘ : ‘
Let us apply at first the conventional quantization [4, 12}, where both the variables
are included in the canonical scheme, and constraints £, = 0, H = 0 are imposed on

the wave function. The last equation

HE =0 = [(di;) + F3Hg)| W(g) =0 (6)

is well known in quantuni gravity as the Wheeler-DeWitt equation [12, 13]. This
constraint should be completed by "gauges” f(¢) = 0,0 = 1, restricting the group
of gauge invariance. This result is interpreted as the stationary picture without any
evolution [13].

The minimal quantization [6, 10, 11]. (which reproduces the HP quantization in
electrodynamics [1, 2]) is based on the construction of the minimal set of dynamical
variables by explicitly solving the classical equations for the compenents without time
derivative in the action. This quantization at all the steps conserves all quantum prin-
ciples (uncertainty, observability, correspondence) and gauge invariance. For example,
the initial theory (1} cannot be considered as quantum with respect to the component
a as the constraints (2), (4) fix simultaneously the canonical momentun P, and ”co-
ordinate” e, and contradict the uncertainty principle. To conserve this principle we
should use for the construction of the canonical scheme only the initial action (1), or
its first-order formalism version '

Wy = f " daP - at), - (7)

taken onto explicit solutions of the classical equation for a (4). It is very useful to
introduce here the notions of the surface of admissible dynamics (SAD) defined by
eq.(4}), and of the minimal action on SAD: ' '

R T 4(T) )
witin _ 4 ]0 dt§F(q) = + fo dF(q). ®)

The minimal action is invariant under the reparametrizations of time: t—¢ (t} .and
depends on the dynamical variable at the boundary of the Friedmann time 7). The
_action (8) has a nontrivial canonical momentum P = FF and leads to quantum theory
with the wave function: '

YMin(g) = AP A W) - Vi) + ¥, : ®)



where A®) are the coefficients of the decomposition of the wave function in accordance
with the two types of SADs. This wave function does not coincide for £ # 0 with the
Wheeler-DeWitt one (B) as it satisfles equations

. . 1d
(PP =0 (P= ) (10)

According to the principle of ebservability, the quantum theory (9) is expressed
only in terms of gauge invariant magnitudes. L

According to the principle of correspondence, in quantum theory there is'the gen-
erator of evolution which should reproduce the Friedmann equation of the "boundary”
evolution {5). ) ‘

Tt is easy to prove that the role of this evolution generator is played by the Hamil-
tonian of the initial theory (3), and that the Heisenberg equation

1 i
. - 1
—aq = —aa'[H,q] = p= :l:P. (1 )

reproduces the Friecdmann one in the classical theory (5). We can see that the Hamil-
tonian of the initial theory plays simultaneously two roles: a) the role of the constraint
(4} for the‘invatiant time interval 0 < ¢ < T, and #) the role of the generator of
evolution (11) at the boundary of the time intervai ¢ = Tr.

The second role of the initial Hamiltonian transforms the "stationary” wave function
(9) into the Green function of the boundary Friedmann evolution

G(0|TF) = WM™ g(T)]. (12)

Tt is useful to represent this Green function in the form of the IFP functional mtegral
in the "boundary” gauge

o) = g(Tr) )

in terms of the initial action (7) and the variables P, ¢, o
GOIT) = [ Da Da DPAresly — olTr)™ @0, (1)

where App = {H,q} is the FP determinant. :

By the example of this integral it is easy to sce the main difference of the minimal
HP quantization from the conventional approach with the fixation of ‘an arbitrary
‘gange: the "boundary gauge” (13) is the final result of the SAD construction of the
invariant variables, but not the initial supposition. This SAD construction leads to the
boundary dynamics ¢(Tx), which has all attributes of quantum dynamics: Hamiltonian,

ihe Heisenberg equation and the Green function of the evolution.

' The "boundary gauge” gives the definite rule of the ordering of the operator P, ¢
in the constraint H = 0, so that this constraint becomes equivalent to eq. (10).

The variable of the type of q(’IF) in the role of the physical time, undressed from
all attributes of quantum dynarmcs is applied in the models of relativistic particle and
' strmg [14, 15).



3. Relativistic Particle and String

Let us consider the action of a relativistic particle

T . . * .
W= —-mf dryf X, Xm X, X* = X2 x? (15)
0

in the first-order formalism
T .
W= / dr[X:P, 4+ XoPy — oM, (16)
0
; .
H = E(w2 - Bl wh= PP im? (17)
The surface of admissible dynamics {SAD) is defined by equation H = 0, or
FPopa) = twlF), (18)
and the primary quantization of the "boundary evolution” (%), 12) |
G(0lXo) = f dapN[af,,f’e*‘-"f"’f"xow + aﬁ;ie—**':ﬂ+‘x°w] (19)
coincides with the representation of the secondary quantization for a scalar relativistic

field up to the normalization N.
The equation of the boundary dynamics
1dX, mdX,

Q'F;Tmfz't = E‘ i = :tw; (ITF = adt (2[])

is the analogy of the Friedmann eqs. (4),(5). The solution of eq. {20)

. w 1 B .
XolTr) = TFT—n* : FFW: Vi = o (21)

-

is the Lorentz transformation which gives the connection between the Friedmann proper
time Tr and the time Ty of the spectral decomposition of the Green function over
the eigenvalues of the physical Hamiltonian {18) on SAD. In the considered case this
"quantum” time Tq coincides with the variable X, (X, = T, which is distinguished
from the variables X; by the opposite sign of its canonical momentum term in the
initial Hamiltonian (17). : )

By the same way one can constrict the Green function of the "boundary evolution”
of the relativistic strings (16, 17, 18]. From the very beginning we choose the first-order
formalism '

T m R .
: W:/ dff do{XiP: + XoPy — ot + BPY, (22)
0 D )



where

il

1 4
Ho= s {Pf TIPED ey 72){32],
P = XLP—yX.P, : (23)
are the total energy a.nd_total mormentum, which act as constraints
CH=0; P=0. (24)

Let us decompase the space coordinates and momenta over harmonics

) 1 - i COs N
Xi(r,0) = ;XJ+%%Z a;(r/n),

n
n£0
Pj-('r,'o.} = B+ ﬁZCOS ne a;(t/n), (25)
nf0 : '

where X;, I—’j are the total space coordinates and momenta, a;{r/n) are harmonics.
Then the explicit solution of eq. (24) can be represented in the form

Fog) = ¥%[P(+) + Pk 1 Xow = ¥§1§[’Pf+) - Pl (26)
Pley = [Pf +ii’ 4 i e*e L(in)(f)} 1/2, ‘ (27)
n=1 -
? =Y a7/ n) ag(v/n), ' (28)
- |
L) = 3 aslr)£n— k) aslr/B) (29)
kz—o0 .

The initial action (22) on SAD (26) takes the form

T T
in . . 1
W&d:r) /; d’i’/; do’{X,'Pi F XO(T, 0’)~2—( P(+) -+ PHH

T w : .
f dr / dﬂ'{X,'P,j) F X()(T) 133 + rni. ’ (30)
] a .

We have taken into account here the solution of eq. (26) for X

Kor,) = LX) Py = Pl0) (31

and the disappearance of all inhomogeneous terms owing to the integration over .
The Green function for the minimal action (30) is constructed by the spectral
decomposition over the eigenfunctions of the effective Hamiltonian:

P24, = w0, v = {v,, Pi} (32)



which represent the states with different spins and masses formed by the v, —fold
action of the different mode operators a;(0[n > 0} = af on the vacuum: @

3
H{a,(lj'])”"s'/, /1[0 >, This Green function has the form:

o=

G0 Xo) =3 f PN, [Awefff’”f—"xﬂ”wbu + A,(,“)e*"’fﬂ’:’f”‘f'“v&),,]-, (33)

where A are the creation and annihilation eperators of the string with the sets of
their quantum number ». The Green function (33) reproduces the results by refs [18).

We would like to eruphasize here that the minimal {first) quantization of the particle
and string corresponds to the second quantization. This fact points out that in gravity
field theory we can get the third quantization.

4, Minimal Quantization of the n+1 Dimensional Gravity

We shall consider the Einstein theory in {n+1) dimension.

1 (n+1)

W= fd"mdzo[ﬁs + Lyl Lo= - RBlguw)v~g, (34)

2r2

where L is the matter Lagrangian, and choose the ADM metric [19} {which is used
for the canonical quantization) with the factorization of the "scale-space variable” [20]
af{x) = exp () , and the conformal invariant * graviton” hy;

(d5)" = gudedz” = o*(dz°)* — a’hy;{dz’ — Bdz®)(de’ - §dz?), (35)

V—g =aad"; deth=1. o " {36)

The curvature of the {n+1}) dimensional space (34) is decomposed in a "kinetic” term
{K), and the "potential” (" R), and "surface” (Z) ones

(R =k +0) gy 2%, ' (37)

where

i 1 :
K =n(n— 1)&—2,‘112 - m11;*115;; (TIF = 0), (38)
S
H =8y — @&(a"ﬂ"),

2 .. ‘
f = Bohf — B*, — 8% + ;6}‘6,»;32 . (39)
1 .

™ R(a?k) = R(a®) + ;R(h); (Buhf = K¥8,hy), . (40}

v



1= 250 ) 2050 o2

R(R) = anjhf(aihi — 20h) + OLORM, (42)

26,@#3’*,1}, (41)

e a—iﬂ- {a [ Rty 4 1L ﬂ‘*n] — 1 [711]} | (43)

where ﬂ)’f is a covariant derivative in metric ki, Aé = ¢ uh®.

One can see that the kinetic term (38) is split into positive and negative parts, and
the tole of the variable of the "houndary dynamics” (with the negative momentum
squared) plays the scale of space a(x). The components a, ff; do not have canonical
momentum and are nonphysical fields. The classical equations for the ficlds o, H¢, «
in terms of the definition (37)-(43) have the form

1

2alk —7) R] = T M), (44)
= [ () g () J =T, @)
2—1;[2&;, FIUK + T} = (n = 2)(K =" R)] = ~TH(M}, (46)

where T#(M) is the matter energy-momentum tensor. {We have uscd the expression
T2 = a¥P, which in terms of canonical momenta does not depend explicitly on a).

In the first-order formalism with respect to the time derivative the action (34) has
the form

W= f d*zdx®[Popt + K 0ph? + PardoM — oM + 35P) 4+ Wi, (47)

Here we introduce the brief denotion for matter fields M and their canonical momenta
Pass H and Py, are the densities of the total Hamiltonian and total momentum:

H=a"[§iii+R(2)+T°(h w)] (@:Wn"i—l)) (48)

— _ak ( ) 2K, — a"TH(M), '(49)

T[?(h,M) T3(M) +T5(h),
22K R(R)

TU (h) = aln 2x2q?’ (50}
Wy is the surface term
P ar 2ok pgr
Wer = [ dzda®< - - - 2KFS ¢
= fda:x{ — ak[ e n(n—1)+ e} {51)
The explicit solving of the constraints
H=0, Py :70 ' (52)



leads to two surfaces of admissible dynamics which correspond to a creation (+) and
an a.meihi]ation {~) of the Universe:

an R(a?)]M*
Play = FFpmy; Fyy = K [2T&-J9(h’ M)+ —,E?JJ ? (53)
o 1a® gy R0
Kl = :ﬁ:g‘n—ak o +a" T (M). (54)

The last equation defines the covariant-longitudinal part of the graviton canonical
momentum :

K;i)-’ = K[+ UE-:!:)‘! + W(i)iﬁ - %6‘;‘(8’:?7&:)); Kri.:‘i =0 (55)
as the function over indep.)endent variables. The minima‘yl‘action has the form
wMin 2 f d“xtfmo[aghf‘ilf,?yl.+ oM Prs F BopeFay) +_Wg:(P = Fhy). {56)
The transyersality constraint (55) dictates the choice.of gauge for gravitons |
(Bohi) =0 ' (57

which is used also in non-Abelian theories [10, 21, and is analogous to the radiation
gauge 1, 2. .

The main differences of the minimal quantization from the cenventional approach
[4, 5] are ) the single-value definition of the "boundary” gauge for the scale-space
component

a(z} = a(T,z;) = exp u(T, z,), ' (58)

and i¢) the definition of the physical time T.
Formally we can write the FP integral for the gauges (57), (58), omitting the matter
field for simplicity: :

Z(0|TYFP = f (Dh;jDK“)‘(Dyl)Pj(DaD,@*)J(thff)ﬁ(pﬁ #(T,z})Appc™ ] (59)

where W} is defined by eq.(47), Agpp is the FP-determinant (8]

T
. _ .2P {ap* .
App = fDﬂ.,DUu exp{—iffd“mdt [0u ("_n_ou- M) +
. an nar
0
‘ - K24,
+9(t’k) (Tﬂo + 2.9“,):))} } : (60)

The physical time T is connected with the proper inhomogeneous time

Oopea™

dT = oz)dz" =4
K. Or(.l?) X G(i) F(*)A:i



In the case of the frame B¢ = 0 onc can convince oneself that the Hamiltonian of the
theory (48)

S

H= f d*zoH _ (62)

is the generator of the evolution for the quantum scale u{zx) and its momentum P =
—i6/6p(x) with respect to the time (61).
The Heisenberg equations

1 i wp
an# = E[H,M(f‘f)l = _?’ ' (63)
1 n IC?]PZ n—2 e Aok & N
anp = —qa |n 53 + = 5,2 ( ) + c?k(a 26 ) + Tk (h, ﬂ’[) , {b4)
WK p—2 :
k A k 1 4 .
THh, M) = THM) — n——— + 7 R(b), . (65)

completely coincide with the classical Einstein equation (44), (46), and are quantum
equations of the boundary evolution on SAD {52).

In the general case B # 0 the "boundary dynamics” is defined from the set of
eqs.(44)-(16). Thus, in the minimal HP quantization the "gauge” is calculated together
with the Friedmann time T% and quantum time Tp of the Green function spectral
decompasition. Let us consider this problem of the caleulation of "quantum” time at
first for the Friedmann homogeneous Universe.

5. The Friedmann Universe

To get the l"nedmann Universe it is euough to neglect the nondiagonal elements
of the energy momentum tensor Y = 0; »' = 0 in eqs.(52)-(55). In this case the
density momentum conservation law Pk = () turns into the equation for the 1sotroplc
homogeneous Universe

FN a [ Ra}'?”?
e (a") =0; F= . [21"0 + 2 {66)
for which the curvature can have three types
1 _ 11 ‘
FR(&) = --;;3:7'37](1; k& 0,:1:1, (67)

where rp is the constant of the dimension of length. (From the point of view of quan-
tum field theory this case can be also a vacuum, as the state without any local excita-
tions with positive energy of the type of the vacuum with respect to radiation in the
Heisenberg-Pauli electrodynamics [1, 2].)

10



The Friedmann evolution is described by the homogeneous form of eq. (61)

daa™ 1
Tp = ifn e (68)

The Friedmann evolution (68) is reflected in the "houndary evolution” of the func-
tional integral (59) where the Friedmann sector looks as the collective global excitation
of the physical space [22], which should be considered as the zero harmenics X,{r), P,
In the string model (25), (31), (32).

The Green function of the evolution of the homogencous Umverse can be also
constructed by direct minimal quantization of the Einstein action in the Friedmann
approximation (66), which represents one of the models of the zero-dimension gravity
{sce Section 2). The final result can be got from eq. (56) in the form of the "third”
quantization (9) [23]: -

Zr(0[Tr) = AP e ™M)y 40, (69)
. “da . . F(a)
Min — PR, S i
W™ (a) = Vi(ro) UU ;3 Pl ——=1, (70)

where A% are the operators of creation and annihilation of the Universe. The origin of
the last term in the minimal action (70) is Wxr in eq. (56). V,.(rp) is the volume of the
n-dimensional space, in the case of the positive constant curvature it is equal

1 .
Val(ro) = r027r N TE= (71)

‘Let us choose the example of radiation
TOR) = ——2 ()

20"+ W, (ro)ro

for which the minimal action (70) for all the three types of space coincides with the
conformal time [22] '

Ming v _ ER L f dTr(a) -
W (a) = n(alfc), 7= ] “are (73)
where
24 2arcsin A
(al0) = —; nlal+1) = ———,
2In(A + 14 A?
nle|—1) = n{d+y1+ 4% 1 ) (74)
A= {ZT,?(a)]_lﬁarofcn' ~ a7 £75)

We can see that in the case of radiation the conformal time plays the role of the
"quantum” time Tg of the spectral representation like X in the models of relativistic
particle and string:

. . b E .
W™ (a) = EqTy; (TQ =rom; Eq = ﬁ) . (76)

11
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The expression (76) follows also from the quanﬁum cnergy conservation law [23]
dbg _

77

which can be used to define the physical time of a quantum observer. Ty is connected
with the Friedmann time by the nonlinear generalization of the Lorentz transformation
{21) of the proper time in the rest frame. Recall that just for radiation the notion of
the "rest frame” is absent.

In a threc dimensional space with positive constant curvature this nonlinear ”Lorentz
transformation” has the form

. _ 2
To(Ta) = rovEsin(Tajro); (&= g5 i) = 20 (18)
. V(1)rd”
and the quantum time strongly differs from the Friedmann one, which violates the
causality. . ‘ ‘
For the case of a dust
My — ﬁsz .
TNd) = —=2— [M=-—3"1%
‘ O( ) V;;(T‘o)aaj (W V;(l)T'D ] (79)

where the "rest frame” is well defined, we can demand the identity of these two times:
To = ro(n+sing); Tr = reM(n +sing). ) (80}

As a result we get the simplest version of the Schwinger-Dyson equation for the Newton
selfinteraction :
2062
kiM; A .
== =M M=1 81
2mirg 4 (81)

which suits for th’e observable Universe with the mass and radius:

Md~100GeV;  &2/27% ~ 1078GeV? 1y ~ 102GV L. ,

The case of the sum. of radiation and dust 7§ = TJ{R) + T3(d), k = +1 is described
by the formitlae:

N - - . _ Valtr
EQ = I/H_l) [E-l- MZL ;Vi+1)': 32(5;2 9 (82)
3

T . olm

aln) =1+ cosno[sinno + sin(n —ng)]; « =M (1 - M) ;

To CO8 Tp
Tr(p) 0 . _ M :
vl 7 + cos™ go[sin gy + sin(y — 5)); cosne = W (83)

which can be got as the generalization of the well known results [24]. For any radiation
the Friedmann time violates the causality. In accordance with the conservation law
of the quantum energy (77) an observer sees indeed the "quantum” time and the
"quantum” Hubhle ®constant”
sin(p — ns) , d
Hg = ; 7= —T,
? ™ Tlcosno — cos(y — n0))T(n)* dn

(84)
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but not the classical Friedmann time with the "constant”

e — Ha2 8
Hr P T (85)
which defines the critical dcnsit_y

3k

2,2,2°
Kirga

3
por = U =T (36)

In particular, even in the case of the infinitely small radiation & = 24472, 2y & 1
the relation of the classical (#¢) and quantum (/{;) Hubble constants oscillates, or
twinkles, with the period, which does not depend on +.

Let us consider the Universe with a dust and radiation for other types of space:
k= 1,0 In this case the volume V3{re) = r§¥(1) is arbitrary.

For k= —1, € < M? we got the times Tg, T as functions of the conformal time 7.
‘ - {eosh(n —
?}J—(l) = wn + coshygfsinh o -+ sinh(np — 5e)]; aln) = M (M — 1) ,
o ‘ cosh g
Tr _ : M
L?) = 7+ cosh™ gfsinh g -+ sinh(yy = no)]); coshmg = —miee . (87
T‘()M . 1112 — &

In the limit A2 3 & coshry = 1 these times should coincide, therefore M = 1. The
action (70) has the form:,

W =FEgln; Fg = \”/(_1,(11712 - &)
For a flat space we got. the action with the quantum energy and time
Eq = V(M + ),
Tola) =

_ Ma
(2Ma )2 — 3% 3—fz—a~(2_Ma +872 0 (88)

21"“
IM(M +2)
The latter coincides with the Friedmann time

o

TF(CL) = WE

[(2Ma + £/ - 32(2Ma + £)/? 4 2637
in the limit £ = 0 : Ty = Tr = ry(2Me¥¥/?/6312, and with the conformal titne
ren = rea /&Y in the limit A — 0.

The example of string with nontrivial vacuum energy of local excitations (28) points
out to one mare difficulty of the definition of the type of a space by eq. (86), connected
with the above-mentioned vacuum part of the homogeneous cnergy densily aperator:
cp=cv+2 E‘- a‘(-HaE_}w;, M= My + E:‘ wp}:b“(__)hﬂ, where a(*), ) are the apera-
Lors of radiation and dust, correspondingly. This vacuum part (ev, My) is not directly
observed and plays the role of the hidden mass. On the other hard, the large-scale
periodic structure of the Universe {25} can testify, in the light of the definition of the
quantum time, that we arc living in the closed oscillating Universe.

13



From this point of view it is very interesting to investigate the boundaries of large
and small Hubble constant for the estimation of the behavior of an inhemogeneity at
the moment of a compression of the Universe.

In the next section we consider this question for the radiation Universe when the
conformal time coincides with the physical (quantum) ene and we can use the cosmo-
logical perturbation theory [26].

6. Inhomogeneity

Let us consider the "boundary” dynamics of the scale component afz) which is
given by inhomogeneities of the energy-momentum tensor

1 ,
T =< TE > 48T R(0?) = R(a) + 5 R(e™™), (39)
. a
We shaﬂ use the conventional notation {26]

d ‘
a=aged a=ape Y, E—,u = Hg — 0. . (90)
n

The homogeneous and inhomogeneous parts of eq.(61) take the forms

Hg = (26} < T§ > af ~ 1]'/7, (91)
TO - AT
vt LT + Ho® =10, (92)
Q .

(TO = 5T° o )
T

The function @ is defined from eq.(64)
[A = 2n(n — 1) H3]® — nHo®' + n(HoW' + 0"} = —Tf + (n — 2)T7. (93)

Here & and ¥ are the eigenfunctions of the operator A with the eigenvalues A = —k® #
0. (For the case of ; # 0 one needs to take into account eq.(45).)
The solution of eq.(92) can he written in the form:

K1 (n)
e RS (0) (m ot
.q« = —gFS f {df( e IO TO 4 Hind®l; (df an) (94)

In particular, for the stationary inhomogeneity 7% = 0 and @ = { we get the evolution
of the Newton faw

1 _ T
W= =l e HIONTR 1)~ P (95)
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In the cltraviolet limit &% — oo or Hg — 0 eq.s (92), {93) turn into the Newton law

U= kzz’g’, $ = 2[T,f ~(n—T0. (96)
One can see that when Hy goes to zero, f{n} — oo, the whole boundary dynamics
of inhomogeneitics disappears and in this litnit we have only the stationary Newton
interaction of stalionary inhomogeneities.

Just in this case the "boundary” gauge of the minimal quantization (58) coincides
with the Faddeev-Popov one [8)]. ,

The evolution of approaching to a singularity (f(n) — 0, Hg — oo) reflects the
approximate solution {95), which disappears quicker than the first term of the spectral
decomposition {73) WM ~ Efn. Thus, the evolution of the Universe in the vicinity
of the point of a singularity is described by the homogeneous Green function {69)
which at the time of the complete compression of the Universe has no peculiarities.
Recall that the same situation takes place for the relativistic oscillating string [14].
The external observer secs only the spectrum of string and the regular wave function
of the probability amplitude.

7. Effective Hamiltonian

The minimal action (56) on SAD can be used for the construction of the effective
Hamiltonian density which is formed by the two last terms in (56)

BoF) (a0 '
{F(i)aw—( _(il))— H e (i))l = Fora) @ Tgpess C

where @, a4y form the invariant volume: (d”zdz®cy,0™) and are defined together with
Fiyy by eqs.(52)-(54), (63)-(65) or (89)-(93). These equations can be represented in
the form :

Ria
FrgyOept = @™oy [TzTg(:t)(h=M) - (2)] i

K

[ BF  Bu(e0a IR Tiay(hy M
“<( L (i))):a a(i)[ ,5:) {i:)(h M)+ ————(irz( ) , {98)

n—1) K2 -1

where Tiz)(h, M} is the trace of the total energy-momentum tensor (50), (65):
Tay = Topey + T( 4

The substitution of eqs.(98) into the definition (97) leads to the following effective
Hamiltonian density expressed in terms of the minimal set of physical variables

Teay(hy M)

() (99)

Thess = Topay(hs M)~
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For the case n=3 this Hamiltonian density coincides up to the factor (1/2) with the
Tolman one [27]. To get the classical static limit it is enough to add to the expression
(99) the total space derivative [8, 27], describing the stationary distribution of the
matter in the Universe. '

Let us consider the pure dynamical example of a single nonlinear graviton, which
propagates in the direction of the axis (n)

where dr = adz®; dé® = adz™ are the proper time and coordinate correspondingly.
Then the constraints (52), (64) turn into the equations

K2

N

TO( )i To(h) = —THh) = TR, (=) (101}

which point out that the proper coordinates 7, €% on the class of functions Flr 4 £y
become integrable

a dzr®

(88, ~ B,0) (7 + €)= 0 (Qn =17 ) : (102)

As a result the effective Hamiltonian density (99) coincides with the conventional one
for graviton (101).

Conclusion

1

We considered the minimal quantization of the time-reparametrization invariant
theories. ”"Minimal” means that one uses only a minimal set of gauge invariant variables
selected by the explicit solving of equations for the time components before quantizing.

This quantization differs from the conventional approach, where the complete set
of components are considered as the variables of the canonical scheme. Tn the last case
the set of constraints, including the relativistic gauge, on the quantum level contra-
dicls the uncertainty principle as it fixes simultaneously the ficlds and their momenta.
The relativistic gauges also restrict the group of ‘gauge transformations as Schwinger
has pointed out [9], and {hereby change the off mass-shell physics in the comparison
w1th the theory with the initial gauge group. Finally, the conventional quantization of
gravity loses the dynamics of the homogeneous Universe, that contradicts the corre-
spondence principle. .

The minimal scheme [1, 2, 6, 10, 11} does not have these defects. Considering
the initial action onto the surface of admissible dynamics (SAD), defined by the time
component equations,we conserve all quanturn principles and the "gange” invariance
on the level of the physical variables and coordinates, and can reproduce the dynamics
of the homogeneous Universe in the quantum theory

16
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The main difficulty of the minimal scheme is to realize the double roles of the
Einstein Hamiltonian (as a constraint and as the evolution generator), of the Green
{function of the evolution (which looks as a stationary wave function with respect to the
stale-space field), and of the dynamical field a(z}, which plays also the role of physical
time. : '

The first role of the scale-space component as a dynamical variable points out that
in the spectrum of elementary cxcitations of the Einstein theory there is the collective
excitation of the physical space (of the type of the superfluid motion of quantum
liquid) hidden at the boundary of the time interval. This collective excitation can be
considered as the reason of the Universe expansion.

" The calculation of the Green function of the expansion recovered the possibility to
introduce the physical time of the spectral representation with the conservation of the
quantum energy. '

In the light of this definition of the "quantum” time the behavior of a closed os-
cillating Universe filled in a dust and radiation looks more attractive than in the case
of the Friedmann time, and can by used for the deseription of the large-scale periodic
structure of the Universe discovered recently.
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