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INTRODUCTION 

F.Palumbo [1] showed that the spinor QED Hamiltonian HqsD is un
bounded from below. He got thiB interesting result. considering, in fact, 1.he 
operator 

H = J dS(O)fl.;,HQEDfl.,. 
J dS(o)n;.n,. (0. I) 

here dS(O) = J1k#o,.\=l,2dq(k,,\), and fl.p, is a trial function depending on 
the transversal photon variableS q(k, ,\), k f. 0, \k\ < l,), = 1, 2, on electron 
and positron degrees of freedom and on the zero momentum mode vector 
potential variable q(O) [1],[2). Thus, H depends on q(O) and 11/&q(O). The 
simplest choice of the probe function enabled F .Palumbo to get the operator 
H of the form 

(0.2) 

Here, a does not depend on q(O). The operator H 1 iB obviously unbounded 
from below. ThiB result is obliged entirely to the new term H,, see eq. 
(1.8). F.Palumbo hM shown that this term has to be introduced into the 
QED Hamiltonian that is given in text books~ see, e.g., [3]. In this work I 
substitute 

dS(r) := dq(O) IT dg(k, ,\) (0.3a) 
k#O,kjlf:±r,,~•l,2 

for dS(O) in eq.(0.1) (here riB a fixed value of the photon momentum) and 
use a more sophiBticated choice of the trial function (see eqs. (2.1), (2.2), 
(2.7), (2.8), (2.19) and (2.23)). The result is the formula. 

HqsD ~ H2 =- L [0 (~ .\) 0 (!r .\) + g(r, .\)q(-r, .\)-?] 
A:1,2 q ' · q ' 

+canst+ 0(1/V), (0.3) 
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-( = [e2 c(m/1, r/1) + e'd(m/1, r/l)]l'. (0.4) 

Here, e? is the nonrenormaliz~d coupling constant, m is the electron mass 

parameter in the Lagrangian of the spinor QED, l is the momentum cut.~ 

off parameter, Vis a large periodiC'ity volume, i. --+ co , V --+ co , c(x, y) 

and d(x, y) are some functions, c(x, 0) being positive , c(O, 0) > 0, d(x, y) 

;., bounded if x ~ 0, y ~ 0. Equations (0.3) and (0.4), if e2 «: J, indicate 

the existence of the negative photon squa.red mass of Lhf'. ol-der of magnitude 

....., e2 F and unboundedness from below of the operators H 2 ar1d HqeJJ, a."3 

well as the operator h of the abstract. 

The a.rt.icle is organized M follows. Section I contains rather volum.inous 

preliminary explanationR concerning: a) the spinor QED Hamiltonian and 

gauge-transformational propertieR of t.he variables, this Hamiltonian depends 

on, b) my method of the cut-off, c) the problem of competibility of the real

ist.ic nJt-off with the Lorentz inva.ria,nce and d) the idea. of my proof Sectlon 

II coni.ai!Js the proof of the statement of the abstract, i.e. t.b12 derivation of 

eq&. (0.3) and (0.4). Appendix A contains derivabon of some formulas which 

are n:ecessary for the proof of Sec. II. 

SEC.I. SOME PRELIMINARY EXPLANATIONS 

Here, I shaU consider the Hatniltonian h, 

h = Hqso + H2 ( 1.1) 

which is the sum of the QED cut-off Hamiltonian He< ED [1],[4], 

(]. 2) 

and tbe positive tern1 H2: 

Hoph = jrca'')' + (rotB'')'Jdx/2. 
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= " f- & fi + 4: 2 q(k, ,\)g( -k, ,\)]/2, ~ , •Jq(k, n &q( -k, n · · k-t-o,.-1::::1,2 

Hoj = L E(p)[a'(p, CT)a(p, <7) + b'(p, CT)b(p, a)j 

= f,;:;(x)[-ic¥''i7 + pm],P1(x)dx, 

here E(p) = .jp2 + m 2 
, 

H, = e J ¢;(x)ci:•h(x)B''(x)dx, 

B''(x) = L e(k, ,\)q(k, -l)e'kx/fo, 
k-t-0.).::::] ,2 

H = e'" p(k)p( -k). 
' ~ 2Vk2 · 

k¢0 

here p(k) = J ,p;(x)1j;1 (x)e'kxdx, 

(U) 

(14) 

(15) 

(1.6) 

(L 7) 

HP = -~(il:ro/' + eq(O) /1/•;(x)&,P,(x)dxjfo, (18) 

H, = M 2/2 /[q(O)/fo + B''(xWdx, (1.9) 
here M' > 0. In equations (!.2)-(1 .9) Hoph is t.he Hamiltonian of free 
transversal phot.ons~ e(k, ,\) is the polarization vect.or of a photon with the 
moment.umk and polarization index A, (ke(k, c\)) = 0, (e•(k, ,\l)·e(k, U)) = 
S"·''' e'(k, .\) = e( -k, ,\),q(O) is the spatially independent zero momen
tum mode of the vector pot.entia.l [1], [2], [4], q(O) = JB(x)d'x/fo, 1!01 
1~ the !IaJniltonia.n of free eledrons and positrons, m is the fermion mass· 
parameter, c1(p, a) and b(p, a-) a.re the annihila.tion operators of the elec
tron and positron with the momentum p and spin projection 17, v'l(x) ~ 
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:[[u(p, >J)a(p, cr)+;;(p, n-)&•(-p, o-)]e'vx;JV, u(p, o-) and v(p, <T) are the so

lutions of the Dirac equation with the energy ±E(p). The Hamiltonian I-1 1 

describes the interaction of photons 1 electrons and positrons. The Hamilto

nian He describes the Coulomb inieraction between electrons and positrons. 

In the Fourier representation of the functions B"(x) and ,P1 (x) one has 

!k! < [1 IP! < [1 (see 1 however, items 1.4. ·and 1.4.1.), l being the cut--off 

parameter, V is large periodicity cube 1 V tends. to infinity. 

1. The Hamiltonian HqED U. expressed in terms of the gauge mva.n

ant quantities B'',q(O) and 1)>1 . If the functions A"(x) and ,P(x) in the 

Lagrangian 

which gives riBe to the Hamiltonian HQBD, undergo gauge transformation 

A~-+ A,.+a.\(x)f&x,~, 1/J -t e'e>..(z.)t/J: the variables Btr) q(O) remain constant, 

and the function 1/>1 (x).acquires a spatially independent phase mult.iplier (see, 

e.g.[4]). Thus, my method of the cut-off does not break down the gauge in-

v<~,nance. 

HP is the zero momentum mode term of the QED Hamiltonian [I]. The 

discovery of it enabled F.Palumbo to prove the unboundedness of the Ha.mil

tonian HqsD from below [lj. 

1.1. Here, I am going to ·show that not only the Hamiltonian HQED, 

but also the Ha.miltonian h = HqED +Hz, Hz being positive, see eq.(l.9), i.s 

unbounded from below if the positive quantity M 2 is not too large so that 

the inequality 

(1.10) 

,. fulfilled (see eq.(0.4)).We have c(m/1, 0) > 0, thus -f > 0 if e2 <t: 1 
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independently of the sign of the function d(m/1, 0). Thus, for small values 
of e2 my r;nnsideration gives stronger result than that by F. Palumbo. 

1.1.1. Omitting the Coulomb term in the present consideration, one gets 
an essentially analogous consideration for t.he massless Yukawa model. For 
this model. also there holds the statement analogous to that of item 1.1 , 
where 1 however, one ha.s to take d=O,so that the restriction e2 < e~ of the 
abstract disappears. 

1.1.2, Let. us note that one cannot prove the unboundedness from below 
of the &calar QED-s Hamiltonian via the method of this work: in case of 
the scalar QED the squared oscillator frequency in eq.(0.3) is positive if 
e2 < 1(and has the order of magnitude- e21'). Thus, combining the spinor 
field with several charged scalar fields, one hopes to construct the QED model 
whose Hamiltonian is bounded from below. 

1.2 The Palumbo's proof of the unboundedness from below of the QED 
Hamiltonian ( see eq. (0.2)) is essentially based on using zero momentum 
mode q(O) [1]. On the contrary, my consideration has little to do with the 
zero momentum mode term Hp. The unbound.ednese from below of the spinor 
QED Hamiltonian {ife2 < 1} is the consequence of the fact, that in any QFT 
model with a trilinear interaction g x fermion• x boson x fermion the g2 

perturbation theory correction to the boson squared mass is negative. The 
latter fact is common knowledge since long ago. 

1.3. It is worth mentioning here that the starting point of my key con
struction (2.7), (2.8) was an attempt to get a variational estimate of the 
type of eq.(O.l) by using the trial function n,., 
n,. = ezp(J<o + ~<1 e)io >where the function n,, 

~ 

flo= ezp(L ~~:nen)IO >= eKIO > {1.11) 
n=O 
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is the grOund state wave function of the Schroedinger equation 

(HQED- £)\1 = 0, (L 12) 

and IO > is the st,ate of the bare fermion vacuum. 

1.3.1. The exponential representation (Ll lL being substituted into the 

Schroedinger equation, enables one to recurrently find functions-operators 

K,. 1 n = 0, 1, 21 ••• (were the ground state to exi~t). These functions-operators 

depend on the zero momentun1 mode variables q(O), on the photon vari

ables; q(k 1 ..\), k # 0 and on the electron and por;itron creation opera.t.ors. Of 

course, the exponential representation is equivalent to the stra.ightforwani 

linear representation 

Sl:o = 2....:· f!onen. 

"1.~0 

(1.13) 

One should stress, however. that the repre~entation of the type ( 1.11) L:-3 

preferable t.r) t.hat of (1.13). This fa.ct was fir~t. noticed by F. Coe>sler a.nd R. 

Haag [5]. I did systematically use the exponential reprcHentatiou to consid~r 

the boson models g(cjl4 ).,,g(¢4}3, a.nd g((¢"¢J"h [6] Later I have generalized 

the forma.lism to enable one to consider also fertnions [7]. ThiR generalization 

eSsentially boils down to substit,utiug expression ( 1.1.1) of the ground state 

wave function into the Sch.roedinger equation, multiplying thts equation by 

the operat.or e-K and using eq. (2.JOa.) (see also conunents after 

eq. (2.10a.) ). 

1.4. The consideration of the present work is of any value only if one 

believes that the cut-off Schroedinger equation (1.12) governs the QED. 

Of cour"'e, the cut-off Schroedinger equation approach to QED, even if the 

Hautiltonian is bounded from below (item l.L2.) , giveA rise to problems 

with the Lorentz invariance -cf. 1 e.g., analogous approach lo the g( 4/') 4 model. 
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I hope, these problemes r:an be solved via a properly chosen reali.,tic regular

ization ( r:ut-off), I do mean tbe introduction into the Fourier representation 
of t.Jw function B''(x), eq.(1.6), of a photon form-factor F,,(k, I) and intro
duction int.o the analogom~ representation of the fermion operator t/o1 (x) of a 
fermion form-factor F1 (p, 1). These cut-off representations of the the vector 
potential and the fermion operators are to be used only in the interaction 
terms H1 , He and HP. 

1.4.1. Let us·denote by m; the n-t.h order perturbation theory contri
bution to the squared fermion mass ffi.the spinor QED. Obviously, one has 
m~ = m2 . Using the form factors 

Fj(p, l) =I: FnjC-nB(p)fl, I: Fnf = 1, (1.14) 

I ~as able to exhibit the momentum dependence 0£ the quantity m~: 

(1.15) 

Here, o(i) -> 0 as x -> 0. The second and third order perturbation theory 
contributions to the squared mass of the fundamental particle in the g.Jl! 
modt>.l show the analogous momentum dependence. I hope, it is possible 
io eliminate the momentUiu dependence of the squared rnass by a proper 
choic~ of the consi.a.nts f'.. in form factors and thus, to construct the Lorentz
invariant perturbation theory. 

1.4.2. The textbook by W. Heitler [3] contains the calculation of the 
quantity m.~F which is the Feynman perturbation theory contribution to the 
quantit.y mi ([6], Chapter 6, sec. 29, item 1., equation (29.14')). The value 
of m.iF does not depend on [p[. 
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1.4.3. The point, however, il'l that m.~-m~F := Sm~ :f:. 0. The Hamiltonian 

HQED without the Palumbo term HP gives m~ = m~[y +rn~c' where subscripts 

"tr" and "c)' denot.e parts of the quantity m.~ which originate due to the 

exchange of transversal photons and due to the Coulomb iut.era.dion. As for 

the quantity m~F, it can be represented as 

' miF = l:Trace(A(k,p)l',.B(k,p)l',.) = Lm;F,. 
k,j.<- ' 

where m~F!T = ~tr. Thus, one has 6m~ :::: m~c - m~Flong- m~p4 . Straight.·

foward calculation gives 

z z j ( l 'I I' lim-,= e Ft p + k, I F,c(k, l)FJ(P, l)pkf k dk, 

Using equations 

IP + kl = lkl + pk/lkl + ... , Ft(k, I)-+ ~t(lkl/1), F,~.(k, l)-+ ~,.(lkl/1) 

as l ~ oo, here 1 4>t(z) and tph(z) a.re some functions 1 one gets 

as l-+ oo, cf. eq. (l.l5) . 

1.4.4. If the integral here equals zero, the second order perturba.t.ion 

theory consideration is c,ompatible with the Lorentz invariance. 

l.l'>. In principle, the term 0(1/V) in eq. (2.23) is able to reverse the 

result of my collSideration. Let it be, e.g., 

0(1/V) = const(L.b1,2 q(-r,:l)q(r,A))2 jV and const > 0. Then, the op

erat.or (2.23) will be bounded from below so that my consideration cannot 
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exch.1de possibility that the Hamiltonian H QED pos,_"et1ses the ground state. 
Let. us denote it by f2 0 v. Let us also denote by Uogoad the ground stat.e of 
the spin or QED, which it would possess, were the operator (2.23) without 
the term 0( 1/V) be bounded from below. The point is that these two 
vacua are as drastically different) as for instance are the ground states 
of t.he quantum mechanical Hamiltonians H1 ,0 and H .. 1,1tv,(V ~ +oo), 
Ha,b = -(dfdz)2 + az2 + bz'. 

SEC.II. THE PROOF OF THE STATEMENT OF THE AB
STRACT 

I shall prove this statement in severa1 steps. 

2. At first., I shall average the Hamiltonian (11) over the normalized 
photon state nph, 

n.h =canst exp( -w[q(0)2 + q(k,.\)q(-k,.\)]),r = lrl,r,w > 0, 
k#;O,k#±r;.\=1,2 

(2.1) 
i.e., I ahalJ consider the tra.nsforma.tion 

HqEv ~ HrJBDi = J n;hnQBDnphdS(r), (2.2) 

..., eq. (0.3a), and analogous transformation h-+ h,. Then, one gets H,-+ 

a a 
Hoph-+ Hopkl = L [ a ( ) a (- .\) + r2

q(r, ,\)q( -r, .\)]+canst, .\-::1,2 q r)>. g r, 

(2.3a) 
H1 -+ H11 = _e_ L q(s,.\)[a•(p+s,u)b•(-p,r)A(p+s,p;u,r) 

y'V' p,s;a=:Z:r;.\;"';,. 

+b( -p - s, cr )a(p, r )D(p + s, p; a-, r) 
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+a'(p + s, tr)a.(p, r)B(p + s, p; tr, r) 

+b( -p- s, a)b'( -p, r)C(p + s, p; cr, r)] · e(s, :\) 

= H11(a'b') + Hn(ba) + H11(a'a + bb'), (2.3b) 

H2 ~ M 2(r2 I>(r, :l)q( -r, ,\) + const) = H,, (2.4) 
A 

HqEDt = Hot+ ltophl + Hn +H.,+ const, (2.5) 

Here 

A(p + s, p; tr, r) = u'(p + s, tr)&v(p, r), 

B(p+s,p;C',r) = u'(p+s,o-)&u(p,r), 

C(p + s, p; tr, r) = v'(p + s, C')&v(p, r) 

D(p + s, p; tr, r) = v'(p + s, a)&u(p, r). (2.6) 

2.1 Then, let us determine the function Of and the operator K, 

(2.7) 

K = L K(p+s,p;>7,r)a'(p+s,O")b'(-p,r) = LK(p+s,p), 
p,s,crr;8=±r 

(2.8) 

(here IO > is the state of the fermion bare vacuum: a(p, tr )IO >= b(p, <7)JO > 

= 0 for all values of p and o-) by the equation 

(Hoj + Hu(a.'b'))llj =D. (2.9) 

One easily gets 

K( 
. )- "'eq(s,.\)A(p+s,p;c:r,r)·e(s,,\) 

p + s, p, tr, 7 - - L.. "' . 
A v V(E(p) + E(Jp + sj)) 

(2.10) 
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!n order to derive cq. (2.10) from eq. (2.9), it is sufficient to multiply eq.(2.9) 
by the operator e-K and apply the formula 

-[( K ' K' . 1 [' .·- KJ e Ac =A+ [A, J -r 2 [A, R j, + (2.10,,) 

(where square brackets denote the commutator L to the operators A1 :::; Hot 
and A2 = Hu(a""b•) For the second operator all the commutators in eq. 
(2.10a) disappear, analogously for t.he operator A1 the decomposition in the 
r.h .•. of eq. (2.10a) reduce• to it .• first. t.wo terms. Thus, equation (2.9) 

bet'omes trivial 

(Not.e that if the opera.t.or A wen\ e.g., bilinear in annihilation operators and 
not. to contain derivatives wit.h respect. to boson variables 1 the series (2.10a._) 

would reduce t.o it.s firs1. thr~~ terms.) 

it. follows from eqs. (2.7) a.nd (2.8) that. 

flf =Till+ L K(p + s, p) +it L K(p + s, p))')IO > . (2.11) 
p s=±r s=±r 

Here, ITP denotes the product over ali values of p, !PI < l) terms with 

[p + s[ > i have i.o be omitted. 

Let "'denote the quantity \ljS11 by Q. Eqs. (2.8) and (2.11) give 

Q=(II(l+ L nlfp+s,p)+ L D,(p+s,p)+D3(p,r)), 
p s=±r 

D1 (p + s, p) =< oj• K(p + s, p)'K(p + s, p)jO >, 

D2 (p + s, p) =< Oj.(K(p + s, p).)2 K(p + s, p)'jo > /4, 

D1 (p,r) =< oj• K(p+r,p)' K(p- r,pl' K(p- r,p)K(p + r,p)jO >, 

D1(p+s,p) = 0(1/V),D2(p+s,p) = O(I/V2),D1 (p,r) = O(I/V2
). 

(2.12) 
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We shall introduce the quantities Q1 and D1 , 

Qt=e 0 ',D,= L D,(p+s,p). (2.13) 
p,s;s=±r 

2.1.1. The following important formula hold•: 

Q = Qt(l + 0(1/V)). (2.14) 

2.1.2. E-quation• (2.8) and (2.10) reBult in the definition 

K(p + s,p) = L q(s, ~)l<(p + s, p, ~). (2.15) 

' 
Here the function K (p + s, p, ~) doeB not depend on the vector potential 

variables q(O), q(k, ~). Eqs. (2.6), (2 9), (2.10), (2.14) and (2.15) give 

rlj(Ho1 + H11)n1 = rlj(H11 (ba) + H11(a"a + W))n1 = Zt + Z2 , (2.16) 

Z1 = -Qe' L q(r, .\)q( -r, A)Z(r, m, I)+ 0(1/V)), (2.17) 

Z( ')- 2 1 E(p+r)E(p)+(pr}'/r2+pr-m2d 
r, m, 

1 
- (211')' fpf<l,fp+<f<l E(p)E(p + r)(E(p) + E(p + r)) p. 

(2.17a) 

The quantity Zz evidently , equals zero: 

Z2 = o. (2.18) 

Let UB introduce the notation flfl: 

(2.19) 

There hold the formulas (see Appendix A) 

n· "' a a n 1 _ "'[ a a 
fl-Taq(r,.A)aq(-r,>.) 1 - '7 aq(r,>.)aq(-r,A) 
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+ L X(s, ,\) i) (~.All+ Y, 
s=±r q · ' 

(2.20) 

X(s, .\) = 0(1/V), Y = const + 0(1/V). (2.20a) 

2.1.3, Now let us consider the quantity C, 

(2.21) 

It is convenient io represent He in a normal form. We shall symbolically write 

down this representa.tion as He= const1 + const2 (a'"a + b*b) + const3 (a*b" + 
ba) + const,(a"a"o"o' + a."b'&a + bbaa). CorreRpondingly, we shall represent 

C as C = C1 + C2 +C., + C,. Then, C1 does not depend on the variables 

q(s, ,\), s = ±r, while Cz and C, depend on these variables quadratically and 

C3 == 0. Rotational in variance and dimensional considerations give 

C = e'mf(m/l, r/i)- L g(r, .\)q( -r, :\)e'd(mjl, r/l)l' + 0(1/V). (2.22) 
A 

Here, f(x, y) and d(x, y) are some functions. 

2.2. Equations (2.3a), (2.3b), (2.5) and (2.16-22) prove the formula 

rlj,HqsD!fl/1 =- L [&a(~ A) i) (!r A)+ 
.\=1,2 • 1 q ) 

q(r, A )g( -r, ),)( e2c( m/l, r /I) +e'd(m/1, r jl))i'] +const+0(1/V), c(x, 0) > 0, 

(2.23) 
-d. the formulas (0.3) &nd (0.4). Equation (2.4) gives 

flj 1Hz,lfl/l = M 2(L q(r,A)q(-r,.\)+const) . 
.\:1,2 

Last two formulas complete the task of this section. 
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2.2.1. ·The starting point of my consideration of the problem of unbound

edness from below of the operators (2.23) and the like is the statement that. 

the operator -(d/dz)2
- -y2 z2 , y > 0, i. unbounded from below. 
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APPENDIX A 

Here I shall prove eq. (2.20a). Equations (2.19) and (2.20) give 

Y = !lj L K(p1 + r, p1, .\)K(p2- r, p2, ;,)!JJfQ 
pl,p2,). 

+11j L K(p-s,p,.\))!l1fVQa t ')(1/VQ) 
p,s,).;s=±r q S, A 

+:Lvoat 1a 1 a 1.{1/VQJ=Y1+r2+Y,. (Az) .l. .qr)A, q_-rl,) 

Equations (2.11)- (2.14) give 

!lj L K(p + s, p, ,\)!lj = 
p 

= L < Ol" K(p + s, p)' K(p +s, p, ,\)IO > Q(1 + 0(1/V)) 
p 
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(A3) 

Y, = L < o['K(pl +r,pl)'K(pl +r,pl,,\)[0 > 
pl,p:.!,.\ 

<Of' Kip2- r, p2)' K(p2- r, p2, A)IO >(I+ 0(1/V)) 
I . 'JQ ilQ =1-)'Q;-'L ' 1 

.· 
1 (1+0(1/V)l. (A4) 

2 . ·' 8q(r,,\)ilq(-r,.\) ' 

It. follows from equations (A2) and (A3) that 

Now note that eqs. (2.10)-(2.15) resuh in the formula 

Q = exp(c<m.,i( L •J(r, .\)q( -r, \)))(! + Otl/V) (A6) 
.\.;:;1,'2 

So, equation" (AI)-(t\6) and eq. (2.14) entail eq. (2.20a). This result 

completes the consideration of Appendix A. 
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