


1. Introduction

The large Axial Anomaly contribution to the proton epin structure isee, e.g., [1] and Ref.
thereinjnatorally pute a question of its partonic interpretation. This problem was solved
by Mueller [2] in the framework of Landan levels flow approach fo the Axial Anowaly
(3] Proceeding in this direction it appeared poseible to describe Axial Anomaly even i a
semiclassical way [4, 5].

The key element of the Muelier approach allowing to generalize the Gribov treatment
of the massless fermions to ithe massive case s the cancellation between the anoraalous and
explicit chiral symmetry breaking. This phenorenon is very transpareni when the standard
UV approach io the anomaly is adopted. Really, the anomaly arises when the contribution
of the regulator fermions (with the nonzero infiniie mass limit) is subtracted from Lhe axial
current matrix element, Therefore, the anonalous term differs only in sign (coming from
the subtraction) from the "normal” one, arising {rom the physical fermion mass, if the latter
is much Jarger than all the kinematical variables., ‘

The Landau levels picture manifests that the anomalous chirality flow cancels the normal
one only for vacoum states. with the negative energy. If one considers the real positive energy
states, the siraightforward generalization of Mneller argnments shows the explicit chiral
syrmmetty breaking to be of the same sign with the anomalovs one. Therefore, one may
expect that in massless QCD Axial Anomaly would generate a variely of the helicity-fliip
spin effects, reproducing the effect of the large quark mass. :

Making ase of the normal-anomalous cancellation in the ” physical” Landau levels frame-
work it is desirable to have its explanation “physical” language. It is just the suhject of
the present Letter. It appears that the natural IR cutofl leads to the chirality flow associaied -
with the excited Landan levels and compensaling the ground state contribution {Section 2).
The relation of this procedure to the au persymmietric quantum mechanics is the aubject of
Section 3. The possible implicalions for the Axial Anomaly ai 2+ | dimensions and Anyon
Superconductivity problem are discussed in Section 4, while the concluding remarks are
presented in Section 5.

2. Orbital momentum cutoff and the chirality of ex-
cited Landau levels

The eigenstates in the constant magnetic fields {6] are highly degenerated. The rate of ihis
degeneracy per unii area is notling else than the number of the magnetic flux quanta .
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To obtain the familiar expression [2, 3] for ihe chiral charge anomalous nonconservation
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one should multiply- it by the longitudinal degeneracy rate in the conetant electric field
EiiH ’
elBAtAx

NM - 27h !

(3}

aud by 24 — the chirality change induced by each pair of the states crossing the zero energy
level [3]. This derivation makes clear the topological nature of the anomaly even in the
one-flavour QFD case becanse of the topological origin of the magnetic flux guantum. The
duality between its perturbative and nonperturbative treatment is also manifested: each
power of small parameter ¢ comes from the large number N.

Choosing the symmeiric gauge one obtains the iwo-dinrensional Hamiltonian (in the lour-
dimensional relativistic case one may substitute the energy € in the r.h.s. of the Schrodinger

equation for \/e? — p2 — m?/2m}:
A= %(f?o “h-8& (4)

Hereafter magnetic units are used. L and § are the orbital and =pin angular momentum
respectively (note that the single component differs from zero). Ay is the Hamiltonian of
the fwo-dimensional harmonic oscillator with the eigenvalues

['is the maximum value of the orbital angular momentum among its { + 1 degenerated
eigenstates. The basis is of course chosen to diagonalize [. The eigenvalues of the full
Hamiltonian are:
g:i-:ﬂ—Q-l-l:n-{-l'—q:n M:i {6)
g 5~ [ 5

2

Note that the orbital momentum ie quantized modulo 2, becanse the parity s Just (~)" in
the two-dimensional case. [ —m = 2n is then even and {8) correctly reproduces the familiar
expression for the Lardau levels. The quanturn mimbers are, however, nonconventional. In
particular, ! has no direct physical interpretation. T = the price [ had to pay to express «
in terma of the angular momentum variables.

Consider first the gronnd Landau level. [t is degenerated according to the orbital. mo-
mentum vanation: s = 1/2,{ = m =0, },2... To have the finie degeneracy rate,.one should



resitict the maximum orbital mementum: lmag = Mynge = Ni ~ 1. This restriction is well-
known as the Aharonov--Casher theorem [7] i the case of the magnetic flux confived io
the finite space region while the charge is allowed to move in the infinite flat. It is just
the normalizability conditiou: the high orbital momentum slates are nondecreasing at the
influity.

Passing on 10 the exciied levels et us first omut the spin degree of freedom. The first
excited level of the spinless charge iy realized via (f=lLm==-1){{=2m= 0), etc. How
should ane restrict these quantum rumbers to obtain the finite degeneracy rate for al! the
exclied levels?

My main postulate is: { L lae = Ny — 1 far all levels,

It inunediately restricts the m values also, because m < [ hy definition. Albough the
direct physical meaning of ! i absent, if is just { that determines the rate of the wave
funciions decrease at wfinity, governed by the k = 0 term in the following representation:
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Unforlunately, it is impossible 1o use the Aharonov-— ‘asher normalizability argument here:
the excited levels wave {uiictions are nonnormalizable at all under their theorens conditions
mentioned above. The proposed orbital maolgentuny cutoff may be, however, considered
as an IR regularization. Its nuain objeclive i {o provide ihe finite degeneracy rate in the
trauslation-invariant manger, .

This regularization imniediately keads to the following important consequences:

i} The degeneracy rate is energy dependent, It is obvious that the energy increase by
unity results in the degeneracy rate decrease to the same amount: N, = N; — n,

) As the degeneracy rate is by definition positive the spectrum should be limited from
above: npe, = No —1 =1, The IR regularization induces the UV one! This phenomenon
is qualitatively transpareni: the wave function becomes more ” wide” while the energy in-
creases. Although this width is usually negtected when the degeneracy is calculated, oue
cannot place even a single state of Lhe high enouglt energy in the fixed area.

Let us return to the actual spin-1/2 case. Each excited levels s degenerated according to
the spin flip. However, the adopled regularization partially removes this degeneracy. Each
ns 2 |is realized as (n = n,,s = 1/2) and frn=n,—1s5= —1/2, 1f all one-particle states
are occupled, the degeneracy difference resulis in the s = —1/2 9pin for each excited level,
Note that there are Just N, excited levels in the spin-1/2 case exactly cowmpensating the
ground state spin. I is just the required mechanisny of normal-anomalous cancellaiion.

It is not obvious which contribution shauld be identified with ike normal and anoma-
lous chiral symmetry breaking. The ”classical” orbital momentun direction is negative 4]
{we consider the positive charge: orbital momentum direction coincides with the magnetic
moment one} reflecting the diamagnetic properties of the classical bounded charge. That
w why 7 is positive for the ground level and becomes negative for the excited ones repre-
senting the semiclassical behaviour. However, passing from the massless to the masgive case
the chirality breaking associated with the ground level, changes sign [2]. The excited levels
contribution should be identified as an anomalous one.

[t is interesiing thal one can observe some canceliation belween the contributions of
different Landau levels to the orbiial angular momentum, too. Note that the oceupied

y

3



ground state orbital momentuin 1
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m=1{

This quadratically grown expression is looking sirange, al first aight. It is however famiiiar
in the framework of the Laughlin approach to the Quaniized Hall Effect [8], The famous
Laughlin wave function deseribes the ground states as consisting of ithe eleciron peirs with
unii relaiive orbital momentum, ]usthymg Eq.(8). lis straightforward generalization for the
excited level is: o

e 3n){lopur — 1)

o= Y m= Urnas = 2 (3)

m=-n

One can easily check that

Ni.=u0 (10)

Total orbital angular momentum of all Landau levels is zero! This cancellation is even more
subile thas the cancellation of spin angular momentum discussed before. The excited levels
orbital momertum does not manifest sharp sign change, contrary to the spin cne. It varies
smoothly from the maximal Loz (lmass + 1)/2 value to the minimal —/,,.,,, turning to zero at
7 = lnae /3. The identification of normai and anomalous contributions, if possible, requires
further inveatigations,

3. Axial Anomaly and Supersymmetric Quantum Me-
chanics

The charged spin-1/2 particle motion i the magnetic field with uniform direction is the
realization of supersymumetric quantum wmechanics [8]. In fact, the maiu consequences of
supersymruetry were discovered already in the mentioned paper by Aharonov and Casher

[7]. .

" First, the cancellation of bosonic and fermionic vacuum oscillations leads to ihe zero
mode appearance. It is this level, connecting ihe positive and pegaiive energy states for
wassless fermions, which is crucial for the Axial Anomaly manifestation [3, 2].

Second, all the excited levels are’ degenerated with respect to spin-flip. This degeneracy
excludes the excited levels from the chirality balance in the standard ireatmment of the
Anomaly 3, 2]. '

Therefore, Axial Anomaly, usually desciribed as a viciation of the (chiral} symmetcy, may
be thought of as a manifestation of the (superjsymmetry.

[t 18 instructive to siudy the action of the supersymmeiry generators on the eigensiaies
of the adopted angular niomentum basis:

Qullym,s=FH 2 ~ {21 mF 1 s=£1/2) (11

Note that epin, orbital momentum and coordinaie dependence are all changed, while the
total augular momentum ig conserved. This property is easy to verify in the case of the



arbitrary axially symometric maguetic field. Tlie relations between supersyminetry and an-
gular miomentuw couservalion probably may be extracted also from the fact that spin-1/2
angular momeniuni density s proportional to the axial current, while the orbiial momen-
tum density—to the derivalive of the vector current. The nonrenormalization of the conl
served operalor allows one to relate ithe oue-loop QED anomalous magnetic moment to
exial anamaly [10]. One may expect that (he exploring of the SuSy QCD in the EMC Spin
Crisis resolution {11} is possible to jusiify with the help of the total angular momentum
conseivaiion. '

Finally, one should notice that the proposed 1R cutoff obviously violates one of the two
basic SuSy predictions, namely, the degeneracy of the excited levels reflecling the chiral
symmetry. One niay say thal althcugh the axial anomaly in massless.case 19 a consequence
of the supersymmetry, its description in massive case requires very specific explicit super-
synunetry violation,

4. 1R cutoff, Axial Anomaly at 2+1 dimensions and
Anyon Superconductivity

As the charge motion in the magnetic field is in fact two-dimensional, the whole aualysis
of Section 2 is applicable at 241 dimensions. The basic difference is the absence of spin
degree of freedonr: as a resuft, spin projeciion onto the magnetic field direction should be
substituled for the charge. The standard Gribov treatment in the inassless case results then
m the wduced vacuum charge and Chern-Sinions (US} term [12].

The IR cutoff allows a similar resull in ithe massive case, too, in complete similarity o the
3+1-dimensional silyation. The cancellation of iwo contributions is of additional physical
nilerest here becanse of remarkable phenomena of Anyon Superconduciivity {8], requiring
just the cancellation of the bare and induced CS termss [13]. The physical reason for the [R
cutoff may be the finite, but very large (macroscopic) area of the sample [14], The depsity
of the wider excited states should then be made decreasing in the translationally invariant
wianuer, the latter being just the proposed cutoff. The translaiion invariance leads to the
conservation of the mromenium, which seems to be of interest if we should take into accouns
the exira third dunension.

Dealing with 2+1-dhnensioual ;nodels of anyon superconductivily one should relate them
o the real 3+1-dimensional world. Due io ihe uncertainiy principle it is impossible Lo
neglect the traneverse degree of freedom in the coordinate and momentum space simulta-
neously. Usually one makes this reduction in the coordinate space, assuming the energy
to be low enough to excite the transverse degree of freedom., The mentioned translation
invariance and momentum conservation inside the plaue make it naiural to start with the
2+ |- dimensional momenium space. The same resull was achieved in recent siudy of the
anomalous electron atiraction {15] owing to dealing with the scattering amplitudes iz the
momentum representation.

As high-7, superconduciors represent ihe layer structure, the uncertainty principle um-
mediately leads to the important conclusion: the electron cannot be confined to the single
Cu0 layer aud the cohereni multilayer behaviour is of major importance. Therefore, one
should choose the Neumann boundary conditions for the transverse Schrodinger equation
and obiain the nonzero transverse electromagnetic current. As a result, it is not conserved .
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in 2+ dimensions: the effeciive theory shonld be non-gauge—invariant! Note thai the non-
conservaiion of the vector current in 2+1 can lead to the appesrance of a zero-niass pole
coipletely analogous to the ghost pole in QCD [18] {see also [1] and Ref, therein}, As this
pole is a signal of superconductivity (17], we have the new mechanism of it. The correspond-
ing physical picture is the charge escape in the transverse direction and the retarn to another
place, Le., sowme ‘wormbole’ in 241 dimensional space. Note thai the commonly accepted
mechanism of high-T, superconduciivily in the Luitiitger liquid model also requires the
inierlayer cohereni iransport, when passing below T {sce, e.g., [18]}. As this theory (ana,
m particular, the transverse coherent transport below T.[19]) is strougly supporied by the
e¥perimental daia, the incorporation of ihe trapsverse dynamics inio the aRyOn BUpercon-
ductivily theory via the eleciromagnetic current nonconservation seems to be reasonable.
Recent papers [20],[21] are dealing with {wo-layer systenss, but T would like to stress that a
macroscopically large number of luyers s required to obtain the 2+1-diimensional momen-
tum space. ' ‘

These qualitative argoients,seem 1o indicate that the relation of the Axial Anomaly
i 3+1-dimensional QED to the nontrivial physies and topology at %+1 dimensions is not
exhausted by the fact that the CS term is the surface one for the anomalous divergence, [t is
possible to add that the *vortex” in the mentioned semiclassical derivation of the anomaly
equation {4} is nothing else than Anyon. The only difference is a factor of 2 resulting from
the fact that the comstant maguetic field was considered [4] rather than a monopole-like
field of the Anyon problem. ' ™

5. Conclusions

The natural orbital aagular momentom cutof incorporated to the classical Landau levela
problem allows a physical interpretation of the subtle property of cancellation of explicii
and anomalous chisal symmetry breaking. The Axial Anomaly, being a manifesiation of
the supersymmetric quanium mechanics in the massless fermions case, requires the explicit
violation of supersylmetry for massive lermions by this cuioff which is, in fact, the IR one.
The mecessity of such a cutoff is not ded nced rigorousty, but has some physical motivations.
It provides the decreasing of broadening excited levels dengity in a translstionally invariant
manner. At 241 dimensions ike analogous procedure leads 1o the zero total S term,
indicaiing the possibiliiy of the Anyon Superconductivity. The lattier may be related to the
coherent muliilayer effects. :
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