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1. Introduction 
The large Axial Anomaly contribution t.o i.he prot.on flpin fltrucf.ure (l'lE'€1 e.g., [1] and Ilef. therein)!lat.ttnlly pnll!l a question of it" parf.onic intNpretation. Thi~ problem Wlt.A solved by Muellll"'r [2] in l.he framework of Landau levell'l now approach f,o the Axia.l Anomaly I3J. Proceeding in this direct.io.n it appeared possible to describe Axial AnomaJy tven in a aemicl3.8Sical way [4, .5]. 

The key element of the Mueller approa.rh a.llowing to genera.lize the Gribov f.rea.t-me.nt of the ma89les5 {ermions to the mnssive cm~e i.'l t.he cancellation bet.wetm the a.nomalous and explica chirall!lymmef.ry bre.a.king. This phenomenon is very t.ram'lpa.rent. when the standard UV approach to the anomaly is a.doptcd. Really, the anomaly arises: when t,h€ cont.ributiou of I. he regulator fermion!'! (with the nonzf>.ro infinil.e mass limit) is subtracted f~om the a.:xia.l current matrix element. Therefore, t.he ~tnom.,JouR l.erm differs only in aign (coming from the subtraction) from t.he "normal" one, arising from t.he phy,ical fermion mass, l[ the la.tter is mud larger than all t.he kinE>mal.icaJ va.ri<t.bles. ' 
The Landau levels picture manifests t.hat the anomalous chiralit.y flow cancels t.he normaJ one only for vacuum st.atea .with the nega.t.ive energy. If one considers the real positive ·energy states, the s-traightforward gf'nen!Tzation of MneUer argnmenh1 shows the explicit. chiral symmetry breaking to bE'. of t.he F.ame flign with t.he anomaJons one. Therefor<'., one may expect that in ma.-~e-lf'!'!s QCD Axlal AnomaJ.v wonld genera.t.e a va.riel .. v of f.he helicit.y-Rip Rpin effects, reproducing the effect of the large quark mass. 
Making use of the normal-anomalous cancf'Uil.tion in t.he "phyRica.l" Landau levels frame­work it is desirable to have its cxpla.nal.ion in "phy~ical'~ language.. It. is just f.he ~ubjert. of the present Letter. It. appe.a.ra !.hat t.he. na-t. ural IR cut.offlea.ds t.o t.he c.hiralit.y fiow a.~~ociat.e-d with the excited Landau leveh;; a.nd compensating t.he ground st.ate con1.ribution (Seci.ion 2). The relation of this procedure t.o the super"ymmetric quantum mechanics is the Aubjed of Section 3. The possible implict1tions for the Axial Anomaly at 2 + l dimensions and Anyon Supe:rconduct.ivity problem are discussed in Section 4, while the concluding remarks f\rr­pretfented in Sed-ion 5. 

2. Orbital momentum cutoff and the chirality of ex­
cited Landau levels 

The eigenetat.es in the constant. ma.gndir. field.« {6] a.re highly degenera.t,f'd. 'I'bf': rat!~ C'r 1.hi" degeneracy per unit area is nothing dse tha.n the number of the ma.gnetir ftux quant.a 
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N~ = eHD.xD.y 
27rfiC 

(I) 

To obtain th& familiar expre8Sion [2, 3] for the chiral charge anomalous nonconl'lerva.tion 

(2) 

one should multiply- it.- by the longitudinal degE'.nera.cy rate in the constant electric field 
EIIH 

N _ eED.tD.z 
II - 21rfi ' (3) 

and by 2/i- the chirality change induced by eB.Ch pair of the Rt.a.f.el'l crrn;eing the zero energy 
level [3J. This derivation makee clear t.he topological nl\1.ure of the anomaly even in the 
one-flavour QED cue because of the topologlcal origin of the magnetic flux quantum. The 
du&lity between its pert,urbative and nonpe:rturbative trea.tment is also manifested: each 
power of !rrtall parameter e comef; from t.he large number N. 

Choosing the symmetric gauge one obtains the i.wo-dimens-ional Hamiltonian (in t.he four­
dimenfrional relativUtic case one may substit.ut.e !.he energy E in the r .h .s. of the SduOdinger 
equation for Jc2- p~- m2/2m): -

, I , , , 
H = -(Ho- Ll- S 2 ' ' ( 4) 

Hereafter magnetic unit" Me used. L and S are the orbital and ~pin a.nguJa.r mmnrntum 
respectively (note that the single component differs from zero). H0 iA t.he Hamiltonian of 
the two-dimen!ional harmonic oscillator with the eigenva.luefl 

E0 :=l+l. 

l is the maximum value of the orbital angular momentum arTiong it.s l + l degenerated 
eigen8ta.te8. The baais ill of course chrn!~>:n t.o diagona.Jize i. TJ1e eigenvalues of the full 
Hamiltonian are: 

l- m l .1 J '= -2--!! + 2 ::= n + 2- .~ ::= n., I .'II= z· (G) 

Note tha.t the orbital momentum is quantized modulo 2, because f.he parity is just (- )""'~ in 
the two-dimensional case. l- m ::= 2n is t.hen even and (6) conedly reproduceR the fn.miliar 
expreMion for the Landau levels. The quantum mfmbers are) however) nonconventional. In 
pa.rticu]ar, l has no diret'.t physical int.erprE>.t.a.t.lou. Tf, il'l t.h(' price l l1a.d to pa:.y t.o expreHf.l r 
in terms of the angular momentum varia.ble.s. 

Consider first the ground Landau level. ft is degenerated according to f. he orhit.a.l- mo­
mentum variat.ion·. s = 1/2,£ = m = 0) 1)-2 ... To ha.ve t.he finite degenera.ry ra.tc,.one Rhould 
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restrict the maximum mbital momentum: {m= ~ m,.,.Q$ = N1.- 1. Thii restriction is well­known as the Aharonov··-Casher theorem [7J iu the case of the magnetic flux confined to the finite space region while the charge ill allowed to move in the infinite flat It is juSt the normalizability conditiou: t1te high orbita.l momentum states are nondecreasing &t the infiuity. 
Passing on to the exci~ed levels let us firt:~i omit the t~pin degree of freedom. The first excited level of the spiule~:>s charge i.1:l realized via (1 = 1, m = -1 ), (l :;; 2, m = 0) 1 etc. How should one re8trict these quantum numbers to obtain the finite degeneracy ra.le for all the exciled levels? 
My maiu poctula.te is: t S lmu,r; = N 1. - 1 for aU levels. 
It immediately restricts the m valuetl also, because m S l by definition. Although the direct physical meaning of l iH a.kent, it is just l that determines the ra'e of the wave fundi ana deueai>e at. i11finity, gover11ed by the k = 0 term in the following repr-esentation: 

(7) 

Unfortunately, it is impussib!e to moe t.he Aharonov--Ca.sher norma.lizability argument here: the excited levels wave fmictious are uonnormalizable at all under their theorem conditions mentioned above. The propUtied orbital momentum cutoff may be1 however, considered ;u; an IR n•.gularization. Its mai...t1 objt>dive iti to provide the fi~ite degenera.cy rate in the trauslation- i.n variant manner. 
This regularization immediately leads t.o the following important consequences: i) The degeneracy rate is energy dependent .. ft is obvious tha~ the energy increaSe by unity results in the degeneracy rate decrea8e to the same amount: Nl! = NJ..- n. ii) A-o the degeJJetacy rat.e is by defiiJit.ion po!litive t.l1e spectrum should be limited from l:1.bove: n.,.a.z = N.l. -1 = lmc.z· The l.R regulariza!.ion induces the UV one! This phenomenon is qualitatively transparent: the wa.ve function becomes more "wide" while the energy in­crea.-,e::L Although this width is· usually neglected when the degeneracy is calculated, one C<tllnot place even a single ~:~tate of Lbe high euouglt energy in the fiXed a.rea. Let us retum to Lhe actual t:~piu-1/2 case. Ea.ch excited levelto 18 degenerated according to the spin flip. However, the adopted regularUation partially removes this degeneracy. Each n~ 2: 1 is realized as (n = n., s = 1/2) and (n = n,- 1, s = -1/2. If all one-particle states are occupied, the degeneracy difference results iu the 3 = -1/2 spin for each excited leveL Note that ihere are juBt N1. excited level!:! in the spin-1/2 case exactly compensating the ground !'ita.te spin. It is just the required medlanllnu· of uorma.I-a.nomalous cancellation. It io not obvious which contribution t:ihould be identi'fied with the normal and anomar Jou-o chiral symmetry breaki.ng. The "cla.ssical" orbital momentum direction 1;, negative [4] (we consider the' posit.ive charge: orbital momentum direction coincides with the magnetic moment one) reflecting the diamagnetic properties of the classical bounded charge. That ill why m ~-positive for the ground level and becomes negative for the excited ones repre­sen-ting the semiclassical behaviour. However, passing from the massless to the WMI!iive case tl1e chirality breaking associated with the ground level) changes sign [2]. The e~cited levels contributioJJ should be identified a.!! an anomalous one. 

It is interel'iting that one can observe some cancellation between the contribution• of different Lauda.u levels to the orbital angular momentum) too. Note Lbat the occupied 
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gcouud state orbital momentum is: 

(8) 

This quadratically grown expr~sion is looking ~trange, at first sight . .It is however familiar 
in the framework of the Laughli11 approach i,o the Quantized Hall Effect [8]. The famous 
Laughlin wave functiorr det>crib~ the ground st.ates as consisting of the electron pairs with 
unit relative orbital momentum, justifying Eq.(8). Its straightforward generalization for the 
excited level is: 

1,."~-:ln 

Ln ~ L m~ 
m=-~ 

One can easily check that 

lim"''"- 3n)(l,,.""'- n +I) 
2 

(9) 

(1 0) 

Total orbital angular momentum of all Landau levekl is zero! This cancellation is even more 
~ubtle than the cancellation of ~pin angular momentum discussed before. The· excited level11 
orbital momentum does not manifet~t sharp 13igo change, contrary to the spin one. It varies 
smoothly from the maximallm.a~(l<n<l,., + 1)/2 value to the minimal -lm4J), turning to zero at 
n:;:;; l.rrv:.:~;/3. The identification of normal and anomalous contributions, if poetlble, requires 
furLI.Ie.r investigations. 

3. Axial Anomaly and Supersymmetric Quantum Me­
chanics 

The charged spll1- 1/2 particle motion in the magnetic field with uniform direction i6 the_ 
realization of supersynunetric quantum inechauics [9]. In fa.ct, the maiu consequences of 
supersymruetry were discovered already in the mentioned paper by Aharonov and Casher 
[7] 

First, the cancellation of bosonic aud fermionic vacuum 08cillations leads to the zero 
mode appearance. h is \hiti level, connecting the p08itive and negative energy states for 
wa.ssletts fermions, which is crucial for the Axial Anomaly· manifestation [3, 2}. 

Second, all the excited levelB are degenerated with ret~pect to spin-flip. ThiB degeneracy 
excludes the excited levels from the chirality balance in the sta.nda.rd treatment of the 
Anomaly [3, 2]. 

Therefore, Axial Anomaly, usually described a.s a. violation of the ( chira.l) symmetry, may 
be thought of as a manifestation of the (super)symmetry. 

It is iustructive 'to study the action of the !!upersymmetry generators on the eigensta.tes 
of tl1e adopted angular momentum basill: 

Q.Jl,m,s ~ 'f1/2) -jl± 1,m'f 1,s ~ ±1/2). (ll) 

Note tbat spin, orbital momentum aud coordinate dependence are aJl ch&nged, while the 
total angular momentum is conserved. Thia property ia easy to verify in the cue of the 
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arbiLrary axia11y ~>yuunetric magueiic field. Tlte rela.tiou~ between ~upersymmetry and an­
gular mmllentum conservation probably nzay be extracted also from the fact that t>pin-1/2 
angu!u.r momentum deutiity it> proportionaJ to the axial current) while the orbital mornen­
l.um deu8ity-to the derivative of the vector current. The nonreuormaliza.tion of the can: 
served operalor allows one to relate the oue-loop QED anomalous magnetic moment t.o 
axiaJ anomaly [10]. One 1nay expect. that Lbe exploring of the SuSy QCD in the EMC Spin 
Cri~>il::l resolution [I I] i::; po:>sible to jwltify with the help o'I the total a.ngula.r momentum 
r.on:>cr vat ion. 

Finally) one :>hould notice that the propot>ed IR cutoff obviously violates one of the two 
b38i\ SuSy predictions, namely) the degeneracy of the excited levels reflecting the chiral · 
!:!YUHuetry. One, 1uay say that although the axial anomaly in massless.case is a consequence 
of t.he ~upersyuunetry, its det:~cription iu ma&~ive ca:;e requires very specific explicit ~:~uper­
t>ymmetry violation. 

4. IR cutoff, Axial Anomaly at 2+1 dimensions and 
Anyon Superconductivity 

At> the charge motio11 i11 the magnetic fle1d ):; in fact two-dimensiona.l 1 the whole a.ualyl:lis 
of Sect.iou 2 is appli;::able at 2+ 1 dimeut>iom;. The basic difference is the absence of spin 
degree of freed01u: a.s a reem!t, !lpin projectim1 onto the magnetic field direction should he 
su bstiLult~d for tbe char~e. The ::~tandard Gri.bov treatment iu the lllaasless case result.s then 
iu the iuduceJ va.CUlllll charge and Chem-Simou!l (CS) term [12]. 

The I H. cutoff allow:; a similu.r result iu Lbe ruas . .,ive case, too, in complete ~:>imila.rity io the 
:l+l· dimensionaJ situation. The canc,~!lation of Lwo contributions is of additional physical 
11ltf'fE'MI. here becau!le of remarko..blr phenomena of Anyon Superconductivity [8J, requiring 
jusL the ca11cellat.iou of the bare and induced CS terms [13}. The physicaJ rea.sou for the [R 
CIJI.oJf may be the finite, but very large (ma.croscopic) area of the sample [14]. The deu~ity 
of the wider excit.ed siaieM should tli~ll be made decreasing in the translationa.lly invariant 
!Udflller, th~ latter being just ihe prop01>ed cutoff. The tra.n~>lation invariance leads to the 
cuuservation of the momentum, whid.J t!ee111s to be of illterel!it if we should ta.ke iuto account 
Lh~C extra. third di.men~>ion. 

De ali ug with 2+ J ·-dilllen~>ioua.l models of a.11yon ~>uperconductivity one should relate them 
to ihe real 3+1-dimensioua..l world. Due io the uncertainty principle it is i.rup088ible to 
nt:gled the tram;vcrse degree of freedom in the comdinate and n1ornentum space simulta­
neously. U!lually one makes this reduction in !.he coordinate !!!pace, assuming the energy 
t.o be low enough to excite the trawwerse degree of freedom. The mentioned translation 
iuva.riauce and momentum COUBerva~ion inside the plane make it natural to start with the 
2+ 1· dimensional momentum space. Tl1e same re~tult was achieved in recent study of the 
anomalous elertron attraction [15] owing to dealing with t.he sCattering amplitudes in the 
momentum representation. 

As high·-T" t>uperconductors represent the layer structure) the uncertainly principle im­
mediately leads to the important conclusion: the electron cannot be confined to the single 
GuO layer and the coherent multilayer behaviour is of major imporhwce. Therefore, one 
should choose the Neuma.nn boundary conditions for the tra.nsverse SchrOding~r equation 
and obtain the nonzero transverse electromagnetic current. As a result) it is no1. conserved. 
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in 2+1 dimensions: tbe effective t.lieory should be uon-·ga.nge--iuvaria.nt! Note that the non­conservation o[ the vector current in 2+ 1 can lead to the appea.ra.nce of a zero-mass poJe completely analogous to tl1e ghost pole in QCD [16} (see also [I] and Ref. therein). As this ·pole i.l:! a signal of superwnduct.ivit.y [17], we have the new mechanism of it. The correspond­ing physical picture is the charge esca.pt'! in the tra.nsverl're direction and the return to auother place, i. . .e., some 'wormhole' iu 2+ l dimensional space. Note that tbe commonly accepted met:ha.nJsm of high-T" supercouduci."1vi.!.y in the Luit.ii1ger liquid model a.L.o requiret~ tbe iuterlayer cohereut traJJsport, wht~n passing _below Tc (see, e.g., [18]). As this theory (an~_, ln particular, the transverse cohcre11t transport below T:.[l91) is stronglY supported by the experimental data, the incorporation of i,he tramoverse dynamics into the anyon supercon­ductivity theory via the electromagnetic current nonconl'rervatlon seeDlil to be reasonable. Rt~c·pnL papers [20},[21] ere dealing with f.wo-la.yer systeul~, but I would like to str~s that a rnacrot>copindly la.rge .numbt.:r of h-'-YNM i..; required to obtain the 2+1-dlmen.siona.l momeiJ­tum space. 
These qualitative a.rguments,seem to indicate that tbe relation of the Axial Anomaly iu 3-T-1-dimensional QED to the nontrivial physics a.ud topology at 2+1 dimensions is not exha.wsi.cd by t.he. fact dmt the CS term.i~:~ tl1e surface one for t.he anomalous divergence, It is posalble to add that the ''vortex" iu the meutio1Jed semidi!.'$!:;ica1 derivation of the a.uoma.ly equation [4] is nothing else than Anyon. The only difference is a factor of 2 resulting from the fact that the constant magnetic f1eld was coru"idered [4] rather than a monopole-like field of the Anyon problem. 

" 

5. Conclusions 
Tl1e naturaJ orbital angular momentum cutoff incorporated to the classical Landau levels problem aUows a physical interpretation of the subtle property of cancellation of explicit and anomalous cb.iral symmetry breaking, The Axial Anomaly, being a manifestation of the supersymrnetric quantum mechanic~> in the massless fermions case, requires the explicit violation of supersymmetry for massive fermious by this cutoff which is, in fact, theIR one. The necessity of such a. cutoff is not deduced rigorously, but has some physical m.otivations. H provide~> the decreasing of broadening excited levels density in a translationally invariant ma.nner. At 2+1 dirnen~:~ions the analogous procedure le~ds tq the zero total CS term, indica.tiug the pos~:~ibiltty of the At1yon Superconductivity, The latter may be related to the coherent ·multilayer effects. 
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