


1 Introduction

The impoaossibility of small viclations of Fermi or Bose statistics within the
local quantum field theory using the deformation of the trilinear commuta-
tion refations of H. 5. Green [1] has been studied in a set of papers [2-7]. It.
was found that the negative squared norms appear in many-particle states
in that theory [4-6] in accordance with the general theorem proved eartier
[8]. This theorem reflects the fact that there do not exist generalizations of
nsual Fermi and Bose statistics other than the para-Fermi and para-Bose
statistics of finite orders in the framework of the local algebra of abservables
in the usval 3+1 dimensional Minkowski space [9, 10]*. Really, the orders
of these statistics are discrete: 1, 2, 3,... and there are no continuous transi-
tions between statistics of different orders. In particular, it is impossible to
have a small violation of the usual Fermi or Bose statistics that correspond
to the parafermions or parabosons of the first order.

The classification of particle statistics in greater than two space dimen-
sions [9, 10] contains only one possibility in addition to para-Bose and para-
Fermi statistice of finite orders: the infinite statistics when all representa-
tions of the permutation group can occur. But according to the Freden-
hagen theorem [11 this statistics cannot be embedded in the local algebra
of observables®.

'The para-Fermi and para-Bose statistica of order M are defined as the identical particle stasistics in
the three dimensiona] wpace under the restriction of 2 possible number of particles in the sgymmeiric or
antisymmetric gtate, respectively, by some positive integer nunber M. So, the number of particles in such
states equal to or more than M 41 are forbidden. ¥t is clear that cases with M = 1 correspond to the ordinary
Fermi and Bose atatistics.

3 A simplifying naderstanding of this theorem can be achieved for parafermions on the basis of the following
reasoning. It is well known that soon after his discovery of the states with the negative energy for the
relativistic particle with the half spin Dirac proposed to fill in these staies beforehand by particles in accordante
with the Pauhi principle. A hole in this Dirac vacuum can be considered as an antiparticle with the particie
mass and opposite charge. Obviously, one can fill in the negative-energy states not only by one, but also by
two, by three and thus by any finite number of particles according to the para-Fermi atatistics of & given finite
order. A hole in this pare-Dirac vacyum ecould be considered zs an antiparafermion with the paraparticle
mass, opposite charge and opposite hidden internal quantam numbers. However, we cannot folfil this vacnum
if the order of para-Fermi statistics goes to infinity. In this case we cannot define the antiparticle s a hole in
the Dirac vacuum. Fredenhagen [11] proved that the conjugate (antiparticle) sector always exists in the local
algebra of observables. Thus, the infinite statistics canndt be embedded in this algebra for lack of that sector.



So, if we insist on the violation of the statistics at any price, we are forced
to try for this purpose to attract the infinite statistics corresponding to the
nonlocal guantum field theory. ’

Recently Greenberg [12] has proposed to explore the so called "quon”
statistics which are described by the g-deformed bilinear commutation re-
lations. Really, this statistics allows a small deflection of the parameter of -

~ deformation g from 1 or ~1, which are values corresponding to the Bose and
Fermi statistics, respectively. It is much important that the many-particle
states for quons have positive-definite squared norms for state vectors. How-
ever, Greenberg succeeded only in the non-relativistic quantum theory. In
fact, each of quon statistics is an infinite statistics, and, due to the locality
problem for the infinite statistics, the status of a relativistic field theory of
quons is doubtful [12]. A
" Here I shall try to consider the infinite statistics as the limiting case for
finite parastatistics when their orders go to infinity. In this case we can
control the conversion of the local quantum field theory into the nonlocal
one: However, the result is negative: there is the only infinite statistics
cafresponding to ¢ = 0. Any ather values of the parameter g are forbidden
just because of the ezistence of antiperticles. Thus, we conclude that the
limiting approach forbids a small violation of Ferma or Bose statistics due to
the impossibility of a continuous transition between admissible cases ¢ = 0
and ¢ = £1.

The infinite statistics corresponding to ¢ = @ coincides with the classical
Maxwell-Boltzmann statistics. We can comprehend this connection hetween
quantum and classical statistics by means of the following reasoning. 1t can
be suggested that-our quantization, as any parastatistics scheme, should cor-
respond to the usual Fermi or Bose statistics of identieal particles with an
infinite pumber of internal degenerated degrees of freedom, which is equiva-
lent to the statistics of nosidentical particles since they are distinguishable
{in principle} in their internal states [13--15.

Finally, we conclude that in our field theoretical approach adinissible
statistics (in three dimensional space) are: para-Fermi and para-Bose statis-
tics of finite orders and the only infinite statistics which coincides with the
classical Maxwell-Boltzmann statistics.

In conclusion I shortly compare my approach to the infinite statistics with
others.



2 The deformed Green’s paraquantization

For definiteness we consider the simplest examples of spin-integer and
spin-half-integer fields: the scalar field

pla) = (2m)? f B R(265) P (age™ 4+ bt ettey, (1)
and the Dirac field
$ix) = (2:7)‘3"2[d3!c{m/15k')”2 > [aogu(o, k)e ™™ + bF v(o, k)e™], (2)
T oe=klf2 . .

where k is the particle momentum and &g = By = (k? + m?)/2, The magni-
tude of ¢ characterizes a spin state and u{eo, k) and v(o, k) are well known
Dirac’s (bi)spinors corresponding to the positive- and negative-frequency so-
Jutions of the Dirac equation (see, for example, [16]}.

For these fields we postulate the g-deformed Green trilinear commutation
relations: for the scalar field :

() e (0] w2} = ipAlz — y)pla), ' 13)

where 7 is the Hermitian conjugate field and the Az} is the well-knowun
Pauli- Jordan function '

. .._ - ke —ikz tkr :
Alx) = :2—{_2_::}3/7?:(6 — ), _ (1)

which is singular on the light. cone and vanishes beyond it, and for Dirac
field

[} ()] w120 = ~ipS(z ~ yhi(z), (5)
where ¢ = ¢+, and
Sla) =~ (iv"8, + m)Ala), 6)
| The g-form in Egs. (3) and {":) means
[4,B]_, = AB — qBA . (7)

The q and p are any realvalued parameter. Their reality is conditioned by
. the hermiticity of the observables which have the g-form. For example, the
Hamiltonians and charges are written as

Hoyent, = —p! /dax{[('itqo(:;c),r‘}ttp*'(.'r:}]ﬂ +{Viplz), Vo™ (a) .,
' (), T ()]} + conat., {RY
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Q= iep™ [ E{l(2), 000" @) - [Ouro), 0" (@) o+ const., (9
and

Hpir. = —p" fdsa:{(—i’y -V+ m)aﬁt{fg(:t),‘l!;a(:ﬂ)]_q + eonst., (10)

Qpir. = ep™? [ds:z'yuﬁ[d)ﬁ z), ¥a{z) } + const. (11)

We can readily verify that our theory is self-consistent. Indeed, the sub-
stitution of the Hamiltonian (8) or (10} into the Heisenberg equation

—18p(z) = [M,9(z)]- (12)

gives the (free) Klein-Gordon® or Dirac equation due to the commutation
relations (3) or {5) and the projective properties of functions {4) and {6)
(see, for example, [16]}.

Further, these relations (3) or (5) ensure the locality of any observables
taken in the g-form. For instance, for the Dirac field we have®

[[Wa(®), ¥a(2)]—q, hf.’a(y)n!?i(y)}—q]— = —ipSusly — @) [Wal), ¥{y)] - +
+ipSau{z — y)_{%(y), 1’»”{3(37)1—:;- . _ (13)

The right-hand side of this relation vanishes when x and y are separated by
the space-like interval.

However, egs. (3} and {5) are not invariant under the charge-conjugation
transformation :

p(z) — pda) = p™(x), T2 — pf(E) = el), (14)

B(2) — Polz) = CYT(2), d(x) — Pu(z) = [C ()], (15)

where %7 is the transposed (bi}spinor and C is the charge conjugation ma-
trix. The theory remains C-invariant only in the case ¢¥ = 1 and this is just
the Green paraquantization scheme [1]. Thus, in the general case ¢* # 1 our
theory is not valid for the Hermitian field: for the truly neutral scalar field
when p*(z) = p(z) and for the Majorana neutral field when ¥.(z) = ¥(z}.
For them we have only the Green quantization.

. 3For she acalar field it is necessary to consider the Heisenberg equation (12) both for the field @(z) and for
ita canonically conjugate momentum x(z) = Be™ ().
For derivation of this relation one ought to make use of the general identity

[A, Bic, {C, Dl = [[{4, Ble, C]-, D}y + [C, [A, Bic, D].],-

where € and n are any numbers. In eq. (13) we use also the Hermitian-conjugate relation of eq. {§).



On the other hand, our theory remains P-invariant under the space- re-
flection. But it is not invariant under the anti-unitary time-inversion trans-
formation. As any local theory, our theory possesses the ¢'P7T-invariance.
Thus, in the general case particles are replaced by antiparticles and vice
versa under the time inversion. The only Green quantization remains invari-
ant under C, P and T transformations separately.

Now we can determine commutation relations for the creation and annihi-
lation operators of particles and antiparticles in given one-particle states {for
instance, with the definite momentum k and spin-state o). We label these
states by the indices r, v/, r” for particles and by s, s', & for antiparticles. For
simplification we propose these states to be discrete (We can assume that
the system is placed into a finite volume.).

The substitution of decompositions {1) and (2) and their Hermitian con-
jugate expressions into eqs. (3) and {5}, regpectively, gives the set of formula:

(for, af|-gs aen] - = pdoeran, | (16)
lar, a]-g afi] = ~péermal, (17)
(i, b5 ~g» arr}- = 0, ' {18)
[{b*" af]-g, a8 = 0, (19)
85,0l ]y, a0l- = peerd?, (20}
HGN ] s Cpr } = —pbyprbs, 21
{55 ,bs«} o] = 0, 29)
6, bsl-gy071- = G, (23)
lar, af]-g, 7]~ = 0, : . {(24)
[[ar, 67—y, 0] = 0, {25)
([ox, bs] -5, b1 - = Fpbowar, _ (26}
(b7, 6})g bs)_ = £pbegal, (27
(b3, 0] 3]~ =0, (28)
[, by g bl - = 0, (29}
b7, by]-g bl = Fpbawb], | (30)
[[b;‘-&bS’]-qy bor] . = L pdegnby. {31}

In egs. (26, 27, 30, 31) the up and down signs correspond to the scalar
and spinor case, respectively. These signs determine the correct connection
of the spin with parastatistics: para-Bose statistics for a scalar field and
para~-Fermi statistics for a spinor field.

Finally, the substitution of decompositions (1) and (2) into expressions
(8) and (10) for the Hamiltonian and (9) and (11) for charges gives the



foliowing uniform expressions

H = Z f FeE(Nac+ N&y) - (32)
Q=Y [ #k(Na- N3) (33)
7
where Nex and N, are the nomber operators for particles and antiparticles
Nok = =07 aok, 8] -q + const, {34)
ok = F07 (Bl bot] - + comst. {35)

Due to egs. (16)-(31) they obey the required equations

[Nr,an]- = — 6o, (36)
{N:, bs’]— = "‘685’})3'3 (37)
[V, N2 = 0. (38)

After all, only these properties make it possible to consider operators o, a™
and b,b* as annihilation and creation operators for particles and antipar-
ticles, respectively. That was a starting point for H. S. Green {1] in his
formulation of a generalization of the usual quantization scheme.

3 The Fock representation of the g-deformed Green
relations

First we consider the Fock representation only,for particles, i. e. we
consider only relations (16) and (17). '

This construction has been fulfilled in paper 8], and here we briefly for-
mulate general results of this investigation. :

As usual, the Fock representatlon is defined by 1be requlrement of the
existence of a unique vacuwn vector | 0 > such that

g |0>=10 for all ane-particle states r . (39)
Then the following relation
L% | 0 >=pé| 0>, (40)

also holds, where p is any numeral parameter. The proof of this relation is
performed just in the same manner as it was done by Greenberg and Messiah
17} for the Green guantization.

The basis vectors of the Fock representation are obtained by applying all
monomials in the creation operators to the vacuum vector. Herein vectors
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obtained with different orders of these operators are independent of each
other.

In this representation the action of a* on basis vectors merely adds one
particle to the number of initial particles. The action of an operator a on
the basis vectors can be calculated via eq. (17); we can move the a-operator
to the right, vacuum according to eq. {17) and then make use of eqs. {39) or
(40}. 1n the general case we obtain s

ara)af.al |0 >=pb. af af |0 > +Zém[q (g~ p)a;..a},_|
k=22

—;;qu — Fat - 08 Ay at  lal a0 > . {41)

Toel T PRt T

The general state vector with a non-fixed number of particles is written
in the form

[aw)

[ >=0, 0> +Y Z tlf“‘){v',.;r jat ._.a;j: 10 >, {12)

n=1ry,.

We do not propose any symumetry propertics of amplitudes iD(”J{_rl, O
from the outset. For projections of vector (42) on basis vectors we have

<0| ¥ >=0,, ' . {43)
<0la, | ¥ >=p¥ir), ' (44)
<0 arar | ¥ >= g U0 vy ry) 4 plgp — p)W ey, ry), {45)°

<0 l Gy Gop g Uy, i 14 >=p ‘1’( (T‘],l’g,?’;} + ]) (QP - [))\I}( ) 71,7_5,7‘2) +
+P%(qp — )V (12,71, 73) + plgp — p)? W (7‘3\?‘1,?”2) +
+pla(ap — p)° = pp] W (ra,ry, 70 + plap — )20y ra ) - (46)

etc. .

We see, the connection between amplitudes and projections is not so sim-
ple as it is for the usual quantization with commutators or anticommutators.
For the construction of orthogonal combinations of projections we ought to
form basis vectors of irreducible representations of the permutation groups
Se. (n = 2,3,...) of their arguments. We shall consider those combinations
later.

From {44) we can deduced the norm of one-particle vector

w0 = p 3 (w0 (47)



[ts being positive definite means the reality and positiveness of the parame-
terp

pPr=p>0 (48)

(Here the star denotes the complex conjugate.)

Further, the following theorem holds [4, B]: assume that p takes finite
real number values. Then the squared norms of state vectars being positive
definite in the Fock space implies that the number of particles in a symmetric
or in an aentisymmetric state cannot exceed a certain number M and the
parameter g takes only three admissible values®

g=0, 1. | (49)

Cases ¢ = %1 correspond to the Green quantization [1, 17]. Herein the
case ¢ = 1 corresponds to the restriction for the number of particles in
symmetrical states {para-Fermi statistics), and the case ¢ = —1 corresponds
to the same restriction for antisymmetrical states (para-Bose statistics).

In these cases there is the connection between parameters

p=2pg/M. (50)
Of course, we always can renormelize operators
ar — +/pa,. (51)

So, p is a free parameter and we can choose this parameter to be equal to
the order of parastatistics

p= M. i (52)
Then, instead of eq. (50) we have

p=2q . (53)

Thus, the parameter p introduced into the initial relations {(3) and (5)
and, respectively, into eqs. (16) and (17) takes the positive value p = 2 for
the para-Fermi statistics (¢ = 1) and the negative value p = —2 for the para-
Bose statistics (g = —1). As we indicated before, the Green quantization is
charge-symmetrical.

SEn paper [8] thia theoremn was formulated somewhat differently: the restriction that the number of particles
in a aymmetric or in an antisymmetric state cannot exceed & certain number Af has been proposed as the point
of departure. In puper [4] it waa shown for the simpleat case M = 2 (i. e. within z special parametrization
for p,q and p [3]) that thie restriction la in fact a consequence of & morte general property of the positive
definiteness of state vector norms. This result can be extended to the cases of pare-Bose and pars-Fermi
statistics of arbitrary order. I am intending to publigh the proof of this general theorem elsewhere.
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Another allowed value of ¢: ¢ = 0 corresponds to the new charge-
asymmetrical paraquantization {14, 15}°. In this case the connection between
parameters is

p=xp/M. (54).
If the relation (52) holds again, then the parameter p takes the values
p= i1, )

and now its sign determines the kind of statistics: para-Fermi for p = 1 and
para-Bose for p = —1.
In this case projections have a simple form

<O Grytr_yetiny@ry | U >= Y (AP NI (g 75y, .., 70 ), (56)
' PES, .

where P is an arbitrary permutation of indices 1,2,...,n, and M(P) isa =
minimel number of transpositions of two indices which are necessary for the
restoration of their normal order. It is easy to prove that the combination
(56) satisfies the requirement of parastatistics of order p: its symmetrical
combination in the case p = 1 or antisymmetrical combination in the case
p = —1 for p + 1 particles vanish automatically. We can consider these
combinations {56) as a natural generalizations of usual antisymmetrical and
symmetrical combinations for Fermi and Bose statistics, respectively, which
correspond to p = 1. _

It may not be out of place to mention that the combinations (56) do not -
obey any other symmetry relations in contrast with the Green quantization
1, 17 ’

In both admissible events ¢ = 1 and ¢ = 0 a continuous transition from
" one parastatistics to another parastatistics of different order is forbidden.
In particular, a small violation of Fermi or Bose statistics corresponding to
p = 1 is not possible in the framework of parastatistics of finite orders.

We should notice that the above theorem (4, 8] can be proved whether or
not antiparticles are included into the theory. In reality, it holds for both
relativistic and nonrelativistic theories. The crucial property which one uses ‘
is the requirement that the squares of state vector norms be positive.

Nevertheless, the inclusion of antiparticles into consideration permits us’
to establish the-correct connection between spins and parastatistics: particles
with integer spins obey para-Bose statistics and particles with half-integer

9n paper. (8] this case was omitted.



spins chey para-Fermi statistics’. For the scalar and Dirac fields which we
consider this theorem may be proved by means of the requirement for the
vacuum state

»

b, ] 0 >=0 for any antiparticle state s, (57}

and the requirement of positiveness of squared state vector norms for hoth
particles and anfiparticles. The important ingredients of this proof are (A) -
the difference of sigus in the right-hand side of egs. (30) and (31) for these
fields and (B) the above-discussed connection between signs of the parameter
£ in egs. (53) and (55) and the kind of parastatistics.

Remark that the description of antiparticles within the Green paraquan-
tization and in the paraquantization corresponding to ¢ = 0 is somewhat
different. In the former case the relation analogous to eq. (40) takes place
for antiparticles too

b 0. = pebue | 0 > - (58)

and the order of antiparticle parastatistics p, coincides with the order of
particle parastatistics p.

But in the case q= @ there is a.nother relation
bb3 | 0. = 8, |0 > {59)

Nevertheless, the orders of parastatistics for particles and antiparticles
coincide again because the antiparticles may occur only in the particle-
antiparticle pairs (for more details see [14 15}). The number of particles in
the initial state may be arbitrary. We cannot assert that this peculiarity of
the new paraquantization scheme is able to explain the particle-antiparticle
asymmetry of the world but it does not contradict this asymmetry.

4 The uniqueness of the infinite statistics

Heretofore we considered only parastatistics of finite order. Now we
include into consideration our main intention: the infinite statistics.

We shall interpret the infinite statistics as a limit case of parastatistics
when their orders go to infinity.

Our previous theorem has been proved under the assumption of the fimte—
ness of the parameter p. However, it is not valid in the infinite limit. We
ought to consider this limit again from the outset.

The connection between apins and the kinda of pa:asta.tlstica hes been established in paper [18]. However,
1he suthors made use of a epecial representation or the Green parafield, the sc culled Green ansatz: the sum
of nrdinery hosonic or fermionie ftelds which obey anomalons (contrary) mutual commutation relations. This
reptagentaiion 1.5 oL orweme.u in the cuse g = 0,

0



Again at the first step we restrict our consideration only to the parti-
cles. Taking into account the limit p — oc we keep in eq. (41) only terms
proportional to p. Then instead of eq. (41) we get

Flo>= pZémqk 'af..af, &l .al 0>, (60)

It is easy to prove that the following bilinear relations take place within
this representation

al — gata, = pb,.. - (61)

Evidently, we can accomplish the renormalization of operators (51) at once
and get rid of the infinitely rising parameter p. Then we arrive at the q-
deformed bilinear commutation relatmnb

a0t — qata, = 6. 62
T r

As it was mentioned above, these relations were used by Greenberg [12] for
the formulation of small viclation of ordinary Bose or Fermi statistics.

Now the right-hand sides of egs. {16) and (17) vanish due to eq. {62). It
means that the left-hand sides of these equations vanish too, i. . p = 0,
which corresponds to the limit p/p — 8 in the imit p — oc at a finite p.

Using eq. {62) we have for a projection of an arbitrary vector

<Ol ar, ol | ¥ >= Z qM(m\IJ{n)(rm,rm,...,rpn), {63)
Pes,

where M(P) is the minimal number of successive (neighboring) transposi-
tions of two indices necessary for the restoration of their normal order (cf.
eq.(56) where the question is the minimal number of any transpositions).
The particular cases can be obtained from eqs. {45) and (46) in the limit
p — oo and operator renormatization (51).

Surely, the cases ¢ = 1 and ¢ = —1 correspond to ordinary Bose and
Fermi statistics. But if ¢* # 1, then we can compose from expression (63)
any combinations which are the basis vectors of irreducible representations of
the permutation group including symmetrical and dntisymmetrical functions
in any number of particle states. Such statistics without any restrictions on
the allowed ‘Young schemes are called infinite statistics. Fach of them is
defined by its parameter gq.

Nevertheless, the requirement of positive definiteness of state vector
norms imposes a definite restriction on possible values of the parameter
¢ even in the case of infinite statistics but not so strict as for finite statistics.



First, consider the symmetrical or antisymmetrical vector of two particles

| ¥y >= )" Walr,m)atal | 0>, | (64)

where the function ¥y{r,,ry) is A-symmetrical
Wilra,m) = AW, (r,72) and A=+L (B5)

The norms of such vectors can be calculated by means of eq. (63) (at n = 2).
We obtain

[ P=< @1 W 5= (14 2g) Y | Walri ) |2 (66)

T1,72

Their positiveness requires
' ~1<g< 1. . (67)

It can be proved that the squared norms of all vectors made by limits of
polynomials of the creation operators et are strictly positive within the
interval (67) [12]. As ¢ approaches %1, the symmetric or antisymmetric
combinations are more heavily weighted aud for ¢ very close to 1{—1) the
theory hecomes very close to the Bose (Fermi) statistics. Thus, we can, as
Creenberg {12] proposed, consistently formulate ”small violations” of Bose
ar Fermi statistics in the framework of such a "quonic” theory.

However, let us to include antiparticles into our consideration. Herein we
eliminate the special case g = 0 from the outset. Then we can copy eqs. {30}
~and (31} for antiparticles as

Efbss b::]-qv bs"}— = pebargrbs, (68)
[Eb32b;;]—f1>b;;'}- = .“PC‘SSS””:;' (69)

where
g =1fq and p.= Fp/q. (70)

These relations are utterly analogous to eqs. {16) and (17) for particles, and
we can arrange the whole our consideration for thercase of antiparticles.

- Again we propose the relation (57) for the vacuum state and obtain the
relation {58). If p. has a finite value {irrespective of either p is a finite or
an infinite parameter) then our theorem is valid for antiparticles too, and
we have only three admissible values for g, = 0, £1. We eliminate the case
g. = 0 from our consideration 8. The values ¢. = +1 correspond to ¢ = +1.
In these cases p. = p [17].

8This case corresponds to the limit ¢ — oo when the ratic p/g is finiie (i. e p— oo too). In this case
reletions (16) and (17) can be transformed to the case g = 0 by exchanging operators: ¢ « o+, :
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Thus, it remains to consider the case of the infinite limit: p. — co (and
p — 00). In this case we obtain, as in the previous particle case, the limiting
bilinear commutation relations for the antiparticle operators

bebh — b, = 8,0 . (71}

where we have already performed the renormalization b, — /pcb;.
Then we obtain the restriction on g, analogous to eq. (67)

~1<¢ <1, | (72)
or due to eq. {70) we have
-1<1/gg L (73)

The compatibility of conditions (67) and (73) means ¢* = 1. Thus we have
only g = £1, i. e. the usual Bose and Fermi statistics.
Therefore we have the only possibility for the infinite statistics

g=0. ~ ' _ (74)

This scheme has been considered in {13-15] in more detail. According to eq. -
(62) at ¢ = 0 the particle operators satisfy very simple relations

00} = b (75)
Equation (63) also transforms into the direct expression
<0\ arr, Oy, | U >= TNy, rg, ), (76)

where functions ¥™(r(,rs,...,7s) have no any symmetry properties. We
can conclude thai these functions describe different particles obeying the
classical Maxwell-Boltzmann statistics [13, 14].

In this case the behavior of antiparticles is very peculiar {14, 15]°. The
condition (59) is valid for them and the parameter p. does not appear at
all. Therefore we are not in need of the renormalization of the type (51)
for antiparticles and the antiparticle operators satisfy the initial trilinear
commutasion relations (68) and (69) whereas the particle operators obey the
bilinear relations (75). As a result, the relations (3) and (5) do not hold for
fields, and the theory becomes nonlocal in accordance with the Fredenhagen
theorem (11].

3Remark that our description of antiparticles in the fimit p -+ oo is somewhat different from the Greenberg's
one {13]. -
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5 Conclusion

In paper [4, 5, 8] it has been shown thai it is impossible to construct a
local free field theory for a small violation of Fermi or Bose statistics. The
proof of this theorem does not require the existence of antiparticles. So it is
valid within the nonrelativistic theory as well. The positiveness of squares
of state vector norms plays a crucial role in this praof,

However, as Greenberg has shown, the nonrelativistic theory based on the
g-deformed hilinear commutation relations'admits a small deflection from the
usual Fermi or Bose statistics without an infraction of the norm positiveness
if values of the deformation parameter ¢ are limited within the open interval
~1<g<l. _

However, we prove in this paper that the relativistic version of this theory
obtained as an infinite limit, of the ¢-deformed Green’s trilinear commutation
relations also rejects such possibility of small violation of usual statistics. In
this proof the crucial role belongs to the existence of antiparticles, The same
result has been abtained in papers [19, 20} within the g-deformed bilinear
commutation relations for relativistic fields.

Of course, we can, as Greenberg has proposed {12], unify the particle and
antiparticle operators obeying the same g-deformed bilinear commutation
relations into a united field. However, this field does not chey any com-
mutation relations. Then, the question arises: why musi we suppose the
coincidence of values of the deformation parameter g for particles and an-
tiparticles which are independent from the outset? In contrast, the procedure
of derivation of the commutation refations for the particle and antiparticle
operators from the trilinear or bilinear commutation relations for a common
relativistic field, in my opinion, seems a more natural. As we have seen, the
commutation relations for them are different in the limit of infinite statistics -
for the case ¢ = 0. Meanwhile, the thedry remains € PT-invariant even in
this case [14].
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