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1 Introduction 

The impossibility of small violations of Fermi or Bose statistics within the 
local quantum field the6ry using the deformation of the trilinear commuta-
tion relations of H. S. Green [1] has been studied in a set of papers [2-7]. It 
was found that the negative squared norms appear in many-particle states 
in that theory [4-6] in accordance with the general theorem proved earlier 
[8]. This theorem reflects the fact that there do not exist generalizations of 
usual Fermi and Bose statistics other than the para-Fermi and para-Bose 
statistics of finite orders in the framework of the local algebra of observables 
in the usual 3+ 1 dimensional Minkowski space [9, 10]1. Really, the orders 
of these statistics are discrete: 1, 2, 3, ... and there are no continuous transi
tions between statistics of different orders. In particular, it is impossible to 
have a small violation of the usual Fermi or Bose statistics that correspond 
to the parafermions or para.bosons of the first order. 

The classification of particle statistics in greater than two space dimen
sions [9, 10] contains only one possibility in addition to para-Bose and para.
}l""'ermi statistics of finite orders: the infinite statistics when all representa
tions of the permutation group can occur. But according to the Fred en
hagen theorem [11] this statistics cannot be embedded in the local algebra 
of observables2 • 

1T.he para-Fermi and para-Btae statistics of order M are defined as the identical particle statistiGs ln 
the three dimeltllional apace under the restriction of a poasible number of particles in the 1ymmetri•~ or 
anti,ymmetrit state, respectively, by some positive integer nutnber M. So, the number of particles in sud. 
states equal to or more than M +1 are forbidden. It is cle~~.r that cases with M = 1 correspond to the ordinary 
Fermi and Bose statistics. 

:o A simplifying understanding of thle theorem ca.n be achieved for parafennioM on the basia of the following 
reasoning. It is well known tltat soon after his discovery of the states with the negative energY for the 
relativistic particle with the half spin Dirac propo11ed to :fill in these states beforeh!Uld by particles in accordan.t.:·e 
with the Pauli principle. A hole in this Dirac vacuum can be considered iiJI an antiparticle with the partide 
mass and opposite charge. Obvio11.8ly1 one can fill in the negative-energy states not only by one, but also Uy 
two, by three and thus by any finite number of particles according to the para-Fermi statistics of a given fin.ite 
order. A hole in thl11 para.-Dirac vacuum could be considered as a.n a.ntipa.ra.feimi.on with the pa.raparticle 
mass, opposite charge and opposite hidde~ internal quantum numbers. However, we cannot ful£1 this vacuum 
if the order of para.-Fermi statistics goes to in!inity. In thls case we cannot define the a.ntipa.rticle as a hole in 
the Dirac vacuum. Fredenhagen [11] proved that the conjugate (antiparticle) sector always exists in the local 
algebra of oht!erva.bles. Thllll, the in:finite 11ta.tistics caJtn6t be embedded in thlB algebra. ior lack of ths.t sector. 
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So, if we insist on the violation of the statistics at any price, we are forced 
to try for this purpose to attract the infinite statistics corresponding to the 
nonlocal quantum field theory. 

Recently Greenberg [12] has proposed to explore the so called "quon" 
statistics which are described by the q-deformed bilinear commutation re· 
lations. Really, this statistics allows a small deflection of the parameter of · 
deformation q from 1 or -1, which are values corresponding to the Bose and 
Fermi statistics, respe~tively. It is much important that the many~ particle 
states for quons have positive-definite squared norms for state vectors. How~ 
ever, Greenberg succeede~ only in the non-relativistic quantum theory. In 
fact, each of quon statistics is an infinite statistics, and, due to the locaJity 
problem for the infinite statistics, the status of a relativistic field theory of 
quons is doubtful [12]. 

Here I shall try to consider the infinite statistics as the limiting case for 
finite paras:tatistics when their orders go to infinity. In this case we can 
control the conversion of the local quantum field theory into the nonlocal 
one: However, the result is negative: there .is the only infinite statistics 
cotresponding to q = 0. Any other values of the parameter q are forbidden 
just because of the existence of antiparticles. ThnR, we conclude that. the 
limiting approach forbids a small violation of Fermi or Bose statistics due to 
the impossibility of a continuous transition between admissible cases q = 0 
and q = ±1. 

'l'he infinite statistics corresponding to q = 0 coincides with the classical 
Maxwell- Boltzmann statistics. We can comprehend this connection between 
quantum and classical statistics by means of the following reasoning. It can 
he suggested that our quantization, as any parastatistics scheme, should cor
respond to the usual Fermi or Bose statistics of identicaJ particles with a.n 
infinite number of internal degenerated degrees of freedom, which is equiva
lent to the statistics of nonidentical particles since they are distinguishable 
(in principle) in their internal states [13-"15]. 

Finally, we conclude that in our field theoretical approach admissible 
statistics (in three dimensional space) are: para-Fermi and para-Bose statis
tics of finite orders and the only infinite statistics which coincides with the 
classical Maxwell-Boltzmann statistics. 

In conclusion I shortly compare my approach to the infinite statistics with 
others. 
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2 The deformed Green's paraquantization 

For definiteness we consider the simplest examples of spjn-integer and 
spin-half-integer fields: the scalar field 

yo(,;)= (2rr)-3i' I cf'i:(2Ekt 'i2(ake-ik" + bteikx), (1) 

and the Dirac field 

1/'(x) = (2rr)-312 I d3k(m/8k) 112 L [a",ku(u,k)e-ikx + b:,kv(cr,k)eikxj, (2) 
rr=±l/2 

where k ]g the particle momentum and k 0 :::::::: Ek :::::.:. (k2 + m.2 ) 112 . The magni
tude of" characterizes a spin state and u(",k) and v(cr,k) are well known 
Dirac's (bi)spinors corresponding to the positive- and negative-frequency so
lutions of the Dirac equation (see, for example, [16)). 

For these fields we postulat~ the q-deformed Green trilinear conunutation 
relations: for the scalar field 

where 1p+ i::J the Herrnit.ia_Jl conjugatf• field awl the 6(:r) is th~ wdl-known 
Pauli .Jordan function 

( ) -i I d3
k · -ikx ikx) ~ x = 2(2rr)3 F\ (c -' ' (4) 

which is singular on the light. cmw and vanishes beyond it, and for Dirac 
field 

(5) 

where '¢ = 4J+ {o and 

S'(:r) = -(h''D" + m)~(x). (6) 

The q-form in Eqs. (3) a.nd (5) mea.ns 

[A, Bj_, = AB- qBA. (7) 

The q and p a.re any n~al-valucd parameter. Their reality is conditioned by 
the hermiticity of the observa.bles which have the q-form. For example. the 
Hamiltonians and charges are written a._~ 

Jt""' = -p-
1 I d3

x{[il1<p(x),il1r;o+(;r,)]-, + [V<p(x), v<p+(:r)J_, 

+m2 [•f(.r,),:p+(,:)j_,} + con,,t., 18) 
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Q,rot. = iep-1 I d3x{[cp(x),a,<p+(x)J-q- [81cp(x),<p+(x)J_4 } +canst., (9) 

and 

7tv;,. = -p-1 I d3 x[( -h · V + m),pt/,p(x), ,b,(x)]_, + con.,t., (10) 

-1 I 3 o - . Qv;,. = ep d X"f0 p[t/Jp(x), ,P,(x)h +canst. (11) 

We can readily verify that our theory is self-consistent. Indeed, the sub
stitution of the Hamiltonian (8) or (10) into the Heisenberg equat.ion 

-i81¢(x) = [7t, ,P(x)J- (12) 

gives the (free) Klein-·Gordon3 or Dirac equation due to the commutation 
relations (3) or (5) and the projective properties of functions ( 4) and (6) 
(see, for example, [16]). 

Further, these relations (3) or (5) ensure the locality of any observahles 
taken in the q-form. For instance, for the Dirac field we have4 

[[t/J,(x ), ,bp(x )]_,, [!f.l.(y), ¢v(Y)]-,]- = 
+ipS,v(x- y)[t/J"(y),,bp(x)J-q· 

-ipS"p(y- x)[t/J0 (x), ,b,(y)J_, + 
( 13) 

The right· hand side of th.is relation vanishes when x and y are separated by 
the space-like interval. 

However, eqs. (3) and (5) are not invariant under the charge-conjugation 
transformation 

1/J(x)-> 1/J,(x) = C,PT(x), ,b(x)-> ,b,(x) = [C- 1t/J(x)j", (15) 

where .pT is the transposed (bi)spinor and C is the charge conjugation rna· 
trix. The theory remains C-invariant only in the case q2 = 1 and this is just 
the Green paraquantization scheme [1]. Thus, in the general case q2 # 1 our 
theory is not valid for the Hermitian field: for the truly neutral scalar field 
when cp+(x) = <p(x) and for the Majorana neutral field when ,P,(x) = ,P(x). 
For them we have only the Green quantization. 

, 3For the tt.:::ala.rfield it ia neceeaary to congider the Heisenberg equation. (12) both for the field lf'(x) a:nd for 
its canonically conjugate momentum ,-(x) = 8tlf'+(x). 

"For derivation of this relation one ought to make use of the g~neral idefi:tity 

[[A,Bj.,[C,DJ,J-: [[[A, Bj.,CJ-,Dl, + [C,[[A,Bj.,D[-J,. 

where € a.nd 'I are any numbers. In eq. (13) we use a.lso the Herm.itia.n·conjuga.te relation of eq. (5). 
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On the other hand, our theory remains ?-invariant under the space- re
flection. -But it is not invariant under the anti-unitary time-inversion trans
formation. As anylocal theory, our theory possesses the CPT-invariance. 
Thus, in the general case particles are replaced hy antiparticles and vice 
versa under the time inversion. The only Green quantization remains invari
ant under C, P and T transformations separately. 

Now we can determine commutation relations for the creation and annihl
lation operators of particles and antiparticles in given one-particle states (for 
instance, with the definite momentum k and spin-state u). We label these 
states by the indices r, r.'"' r 11 for particles and by s, .s', s" for antiparticles. For 
simplification we propose these states to be discrete (We can assume that 
the system is placed into a finite volume.). 

The substitution of decompositions (1) and (2) and their Hermitian con
jugate expressions into eqs. (3) and (5), respectively, gives the set of formula: 

[[ar, a:,]-q, C!r"]- = pbr1r110.r, 

[[ar,a;J-q,a~,]- = -pbrr11 0.~, 
[[a,b,]_,,a,-]_ = 0, 
[[bt,ai]-,,a;.J- =a, 
[[b;t,a;"J_,,a,.•]- = pb,,-b;t, 
[[an bs]-q, a~]- = -pbrr'bs, 

[[b;t,b,·]-,,a..]- = 0, 
[[b;,b,•]_,,a;t]- = 0, 
[[a, a;.]_,, b;t]- =a, 
[[a,., a;.]_,, b.]_= a, 
[[ar,bs]-q,b:,]_ = -=fP8ss10.r, 

[[b~, a~J-q, bs']- = ±pbss'a:, 
[[b;t,a;]_,,b;.J~ =a, 
[[a, b,]_,, b,·]- = a, 
f[b~,bs']-q,b:..J- = -=fP{;s's"b-:, 
[[bt,b,•J-q,b,nj_ = ±pb.,nb,•. 

(16) 

( 17) 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

(24) 

(2f>) 

(26) 

(27) 

(28) 

(29) 

(30) 

(31) 

In eqs. (26, 27, 30, 31) the up and down signs correspond to the scalar 
and spinor case, respectively. These signs determine the correct connection 
of the spin with parastatistics: para-Bose statistics for a scalar field and 
para-Fermi statistics for a spinor field. 

Finally, the substitution of decompositions (1) and (2) into expressions 
(8) and (1a) for the Hamiltonian and (9) and (11) for charges gives the 

5 



following uniform expressions 

1t = L I d3kE.(N •• + NZ.) 

" 
(:12) 

Q = L I d'k(N,.- N~.) 
" 

(33) 

where .N<Tk a.Jld .N~k are the number operators for particles and aJttiparticles 

Nuk = -p-1 [auk,a~kJ-q + const, 
N~k = 'fp- 1[b;;.,b,k]-q +canst. 

Due to eqs. (16)-(31) they obey the required equations 

[Nr,.ar']- = -lirr'ar1 , 

[N~,bs']- = -fJ 8111b81, 

[N, N~J- = 0. 

(34) 

( 3.5) 

(36) 

(37) 

(38) 

After all, only these properties make it possible to consider operators a, a+ 
and b, b+ as annihilation and crea.t,ion operators for particles and antipar
ticles, respectively. That was a starting point for H. S. Green [1] in his 
formulation of a generalization of the usual quantization scheme. 

3 The Fock representation of the q-deformed Green 
relations 

First we consider the Fock representation only_. for particles, i. e. we 
consider only relations (16) and (17). 

This construction has been fulfilled in paper [8], and here we briefly for
mulate general results of this investigation. 

As usual, the Fock representation is defined by the requirement of the 
existence of a unique. vacuum vector I 0 > such that 

a, I 0 >= 0 for ~ll one-particle states r . (39) 

Then the following relation 

a,a;. I 0 >= pli,• [ 0 >, (40) 

a] so holds, where pis any numeral parameter. The proof of this relation is 
performed just in the Rame manner as it -was done by Greenberg and Messiah 
[ 1 7] for the Green quantization. 

The boBis vectors of the Fock representation are obtained by applying all 
monomials in the creation operators to the vacuum vector. Herein vectors 
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obtained with different orders of these operators are independent of each 
other. 

In thi~ representation the action of a+ on basis vectors merely adds one 
particle .to the number of initial particJes. The action of an operator a on 
the ba....,is vectors can be calculated via eq. ( 17): we can move the a-operator 
to the right vacuum according to eq. ( 17) and then make use of eqs. (39) or 
( 40). ln the ,general case we obtain 

The general state vector with a non-fixed number of particles is written 
in the form 

We do not propose a.uy symuwtry fHopertic.s of amplitudes tp(n)(rh ... , r .. ) 
from the outset. For projections of vector ( 42) on ha.."lis vectors we ha.ve 

< 0 I W >= W0 , 

< 0 [a,, 1 w >= pw\ 1l(r 1), 

< 0 I a,, a,, I i!f >= p2 ~r(')( ,., , r,) + p( qp- p )i!f(2)( r 2, r 1 ), 

(43) 

( 44) 

( 4.5) 
. :J '(31 2 (3) < 0 I a,, a,, a,, I ilr > = p ilr • ( r,, .,.,, r,.) + 11 ( qp -· fl) W · ( r 1, r·3, r,) + 

etc. 

+p2(qp- p)w(3l(r2,r, r3 ) + p(qp- p)'w("l(r3 ,r1, r 2) + 
+p[q(qp- p )2 

- pp] ijf(:!l(r3 , r2, r 1) + p( qp- p )2 i!f(3)(r2, r 3 , r1 ) (46) 

\Ve SCf.!, the connectJon between mnplit,udet~ and projections is uot so shu~ 
pleas it is for the usual quantization with commut.a".tor·s.or anticommutator~. 
For the construction of orthogonal combinations of projections we ought to 
form basis vectors of irreducible representations of the permutation groups 
Sn. (n = 2, 3, ... ) of their arguments. We shall consider those combinations 
later. 

From (44) we can deduced the norm of one-particle vector 

llw(ll II'= P :L I i!f(ll(,.) I'· (47) 
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Its being positive definite means the reality and positiveness of the parame
ter p 

p' = p > 0. (48) 

(Here the star denotes the complex conjugate.) 
Further, the following theorem holds [4, 8]: assume that p takes finite 

real number values. Then the .9quarcd norms of state vectors being positive 
definite in the Fock space implies that the number of particles in a symmetric 
or in an antisymmetric state cannot exceed a certain number M and the 
parameter q takes only three admissible values' 

q = 0, ±1. (49) 

Cases q = ±1 correspond to the Green quantization [1, 17]. Herein the 
case q = 1 corresponds to the restriction for the number of particles in 
symmetrical states (para-Fermi statistics), and the case q = -1 corresponds 
to the same restriction for antisymmetrical states (para-Bose statistics). 

In these cases there is the connection between parameters 

p = 2pqjM. (50) 

Of course,, we always can renonnelize operators 

(51) 

So, p is a free parameter and we can choose this parameter to be equal to 
the order of para.statistics 

p=M. (52) 

Then, instead of eq. (50) we have 

p = 2q. (53) 

Thus, the parameter p introduced into the initial relations (3) and (5) 
and, respectively, into eqs. (16) and (17) takes the positive value p = 2 for 
the para-Fermi statistics ( q = 1) and the negative value p = -2 for the para
Bose statistics ( q = -1 ). As we indicated before, the Green quantization is 
charge-symmetrical. 

5In paper [8j this theorem WU8 formulated somewhat differently: the restriction. that the n.u.mber of partidet~ 
in a symmetric or in a.n antiaymmetric state cannot exceed a certain n_umber M has been proposed a.a the point 
of departnre. In paper [4] it wa.a shown for the siniplest case M = 2 (i. e. within a special parametrization 
for p, q and p [3]) that this restriction is in fact a consequence of a more general property of the positive 
definitene~~a of state vector norma. This result ca.n_ be extended to the Clllle!l of pa.ra-Boae a.nd p!Ll'llrFermi 
statistics of arbitrary order. I am intending to publish the proof of this general th.eorem elsewhere. 
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Another allowed value of q: q = 0 corresponds to the new charge

asymmetrical paraquantization [14, 15]6
• In this case the connection between 

parameters is 

P = ±pfM. (54) 

If the relation (52) holds again, then the parameter p takes the values 

p = ±1, (55) 

and now its sign determines the kind of statistics: para-Fermi for p = 1 and 
para-Bose for p = -1. 

In this case projections have a. simple form 

< 0 I a,.a,._, ... a,,a,, [1)1 >= L ( ->.)N(1')pn-N(1')1)J(n)(rp" rp,, ... , ·rpn),(56) 
'PeS.,_ 

where Pis an arbitrary permutation of indices 1,2, ... ,n, and N(P) is a 

minimal number of transpositions of two indices which are necessary for the 

restoration of their normal order. It is easy to prove that the combination 
(56) satisfies the requirement of parastatistics of order p: its symmetrical 

combination in the case p = 1 or antisymmetrical combination in the case 

p = -1 for p + 1 particles vanish automatically. We can consider these 

combinations (56) as a natural generalizations of usual antisymmetrical and 

symmetrical combinations for Fermi and Bose statistics, respectively, which 

correspond to p = 1. 
It may not be out of place to mention that the combinations (56) do not 

obey any other symmetry relations in contrast with the Green quantization 
[1, 17]. . 

In both admissible events q2 = 1 and q = 0 a continuous transition from 

one parastatistics to another parastatistics of different order is forbidden. 

In particular, a small violation of Fermi or Bose statistics corresponding to 

p = 1 is not possible in the framework of parastatistics of finite orders. 
We should notice that the above theorem [4, 8] can be proved whether or 

not antiparticles are included into the theory. In reality, it holds for both 

relativistic and nonreiativistic theories. The crucial property which one uses 

is the requirement that the squares of state vector norms be positive. 
Nevertheless, the inclusion of antiparticles into consideration permits us" 

to establish the correct connection between spins and parastatistics: particles 

with integer spins obey para-Bose statistics and particles with half-integer 

8 In pa.per.[8} this case was omitted. 
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spins obey para-Fermi statistics7
• For the scalar and Dirac fields which we 

consider this theorem may be proved by means of the requirement for the 
vacuum state 

b, I 0 >= 0 for any antiparticle states, (57) 

and the requirement of positiveness of squared state vector norms for hath 
particles and antipartic1es. The important ingredients of this proof arc (A) 
the difference of sign~ in the right-hand ::lidc of eqs. (30) and (31) for thc~e 
fields and (B) the ahov<~discussed connection between signs of the parameter 
pin eqs. (53) and (.5.5) and the kind of parastatistics. 

Remark that the description of antiparticles wHhin the Green paraqua.n
t,ization and in the para.quantization corresponding to q =. 0 is som~what 
different. In tb~ former case the relation analogous to eq. (40) takes place 
for antiparticles too 

(58) 

al)d the order of antiparticle parastatistics p, coincides with the order of 
particle parastatistics p. 

But in the case q = 0 there is another relatio·n 

b,b;; I 0. = D.,• IO > (59) 

Nevertheless, the orders of para.."Jtatistics for particles and antiparticles 
coincide aga.in because the antiparticles may occur only in the particle
antiparticle pairs (for more details see [14, 1.5]). The number of particles in 
the initial state may he arbitrary. We C:annot assert that this peculiarity of 
the new paraquant.ization scheme is able to explain the particle-antiparticle 
asymmetry of the world but it does not contradict this asymmetry. 

4 The uniqueness of the infinite statistics 

Heretofore we considered only para.gtatistic.s of finite order. Now we 
·incJude into considera.tio.n our .main intention: the infinite statistics. 

We shall interpre1; the infinite statistics as a limit case of para.'3tatistics 
when their orders go to infinity. 

Our previous theorem has been proved under the assumption of the finite
ness of the parameter p. However) it is not valid in the infinite limit. We 
ought to consider this limit again from the outset. 

r'f"h.c contu•cl:ion between spins and th.e kinds of para8tati.stks has been cstah!ish.ed in paper [18]. Howev<".r, 
th.•' ~.u.tltors mad.-: use of~. S!Je(·illl representation ~for th.e Green para.field, the eo called Green a.rum.tz: tb.e slim 
rf, ·~d.ina.ry bo~o-nk '-'f fermio!tic iield~ wh_ich obey anornalons (C0ntra.ry) m•ltl!al commutation relations. Thi~ 
r'f.pt;'S,~JLt~t.'c(•l!. i~ M.'~ ',:onvenieut. in l,h,, coSP. q = 0, 
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Again at the first step we restrict our consideration only to the parti
cles. Taking into account the limit p ....., oc we keep in eq. ( 41) only terms 
proportional top. Then instead of eq. (41) we get 

I o >. (60) 

It is easy to prove that the following bilinea•· relations take place within 
this representation 

(61) 

Evidently, we can accomplish the renormalization of operators (51) at once 
and get rid of the infinitely rising parameter p. Then we arrive at the q
defonned bilinear commutation relations 

(62) 

As it was mentioned above, these relations were used by Greenberg [12] for 
the formulation of small violation of ordinary Bose or Fermi statistics. 

Now the right-hand sides of eqs. ( 16) and ( 17) vanish due to eq. (62). It 
means that the left-hand sides of these equations vanish too, i.. e. p = 0, 
which corresponds t.o the limit pfp--+ 0 in the limit p--+ oo at a finite p. 

Using eq. (62) we have for a projection of an arbitrary vector 

0 I I ,,, _ " M(1'),r,(n)(· ) < Gr,.ar,._, ... ar2 ar, 'l' >- L_- q 'l' 1'pJ,TP2,•··,TPn, (63) 
'PESn 

where M('P) is the Ininirnal number of successive (neighboring) tran8posi
t.ions of two indices necessary for the restoration of their normal order ( cf. 
cq.(5fi) where the question is the minimal number of any t.rallspositions). 
The partichla.r cases can be obtained from eqs. (45) and (46) in th~ limit 
p--+ oo and operator rcnormalization (51). 

Surely, the cases q = 1 and q = -1 correspond to ordinary Bose and 
fi'ermi statistics. But if q2 f::. 1., then we can compose from expression (63) 
any combinations which are the basis vectors of irreducible representations of 
the permutation group including symmetrical and <:intisymmetrical functions 
in any number of particle states. Such statistics without any restrictions on 
the allowed ·Young scheines are called infinite statistics. Each of them is 
defined by its parameter q. 

Nevertheless, the requiretnent of positive definiteness of l'tate vector 
norms imposes a definite restriction on possible values of the parameter 
q even in the case of- infinite statistics but not. so strict. as for finite statistics. 
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First, consider the symmetrical or antisymmetrical vector of two particles 

lw, >= l:w,(rhr2)a;;a;, I 0 >, (64) 

where the function W, (r~o r 2 ) is ,\-symmetrical 

w,(r2 , r 1) = ,\W;(r1, r 2 ) and ,\ = ±1. (65) 

The norms of such vectors can be calculated by means of eq. (63) (at n = 2). 
We obtain 

11w, II'=< w, 1w, >= (1 + >.q) 2: lw,(r,, r,) 1'. (66) 

'!'heir positiveness requires 

{67) 

It can be proved that the squared norms of all vectors made by limits of 
polynomials of the creation operators a+ are strictly positive within the 
interval (67) [12]. As q approaches ±1, the symmetric or antisymmetric 
combinations are more heavily weighted and for q very close to 1( -1) the 
theory becomes very close to the Bose (Fermi) statistics. Thus, we can, as · 
Greenberg [12] proposed, consistently formulate "small violations" of Bose 
or Fermi statistics in the framework of such a "quonic" theory. 

However, Jet us to include antiparticles into our consideration. Herein we 
eliminate the special case q = 0 from the outset. Then we can copy eqs. (30) 
and (31) for antiparticles as 

where 

[[bs,b:.J-q,bs"]-:::: p/is's''bs, 

[[b, b;;J_,, b;,,]_ = -p,8, .. b;,. 

q, = 1/q and p, = 'fp/q. 

(68) 

(69) 

(70) 

These relations are utterly analogous to eqs. (16) and ( 17) for part.icles, and 
we can arrange the whole our consideration for the,case of antiparticles. 

Again we propose the relation (57) for the vacuum state and obtain the 
relation (58). If p, has a finite value (irrespective of either p is a finite or 
an infinite parameter) then our theorem is valid for ant~partic1e8 too, and 
we have only three admissible values for q, = 0, ±I. We eliminate the case 
qc = 0 from our consideration 8 . The values Qc:::: ±1 correspond to q:::: ±1. 
In these cases p, = p [17]. 

8Th.is case corresponds to the limit q-+ oo when the ratio pjq is finite (i. e. p- oo too). In this ceBe 
rela.tione (16) and (17) ca.n be traneformed to the c!I.Be q = 0 by exch!Lllging operators: a- a+, 
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Thus~ it remains to consider the case of the infinite limit: Pc -+ oo (and 

p -+ oo). In this case we obtain~ as in the previouS particle case) the limiting 

bilinear commutation relations for the antiparticle operators 

(71) 

where we have already performed the renormalization b, -> ff,b,. 
Then we obtain the restriction on q, analogous to eq. (67) 

(72) 

or due to eq. (70) we have 

-1::; 1/q::; l. (73) 

The compatibility qf conditions (67) and (73) means q2 = l. Thus we have 

only q = ±1, i. e. the usual Bose and Fermi statistics. 

Therefore we have the only possibility for the infinite statistics 

q = 0. (74) 

This scheme has been considered in [13-15] in more detail. According to eq. 

( 62) at q = 0 the particle operators satisfy very simple relations 

(7.5) 

Equation ( 63) also transforms into the direct expression 
~ 

(76) 

where functions wC•l(rh r 2 , ... , r,) have no any symmetry properties. We 

can conclude that these functions describe different particles obeying the 

classical Maxwell-Boltzmann statistics [13, 14]. 

In this case the behavior of antiparticles is very peculiar [14, 15] 9 • The 

condition (59) is valid for them and the parameter p, does not appear at 

all. Therefore we are not in need of the renormalization of the type (51) 

for antiparticles and the antiparticle operators satisfy the initial trilinear 

commutation relations (68) and (69) whereas the particle operators obey the 

bilinear relations (75). As a result, the relations (3) and (5) do not hold for 

fields, and the theory becomes nonlocal in accordance with the Fredenhagen 

theorem [ll]. 
9 Rema.rk that our description of ILII.tipa.rticlea in the limit p - oo is aomewh&.t different from the Greenberg'e 

one {13]. 
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5 Conclusion 

In paper [4, 5, 8) it has been shown that it is impossible to construct a 
local free field theory for a small violation of Fermi or Bose statistics. The 
proof of this theorem does not require the existence Df antiparticles. So it is 
valid within the nonrelativistic theory as well. The positiveness of squares 
of state vector norms plays a crucial role in this proof. 

However, as Greenberg has shown, the nonrelativistic theory based on the 
q-deformed bilinear commutation relationsadmits a small deflection from the 
usual Fermi or Bo~e statistics without an infraction of the norm positiveness 
if values of the deformation parameter q are limited within the open interval 
-1<q<l. 

However, we prove in this paper that the relativistic version of this theory 
obtained as an infiuite limit of the q-deformed Green's trilinear commutation 
relations also rejects such possjbility of small violation of usual statistics. In 
this proof the crucial role belongs to the existence of antiparticles. The same 
result has been obtained in papers [19, 20] within the q-deformed bilinc<£r 
commutation relations for relativistic fields. 

Of course, we can, as Greenberg has proposed [12], unify the particle and 
antiparticle operators obeying the same q-deforrned bilinear commutation 
relations into a united field. However, this field does not obey any corn
mutation relations. Then, the question arises: why must we suppose the 
coincidence of values of the deformation parameter q for particles and an
tiparticles which are independent from the outset? In contrast, the procedure 
of derivation of the commutation re1ations for the particle and antiparticle 
operators from the trilinear _or bilinear commutation relations for a common 
relativistic field, in my opinion, seen1s a more natural As we have seen, the 
commutation relations for them are different in the limit of infinite statistics 
for the case q = 0. Meanwhile, the theory remajns CPT-invariant even in 
this case [14]. 
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