
V.V.Burov, S.M.Dorkin1, A.Yu.Korchin2, . 

V.K.Lukyanov,A.V.Shebeko2 

ON THE GAUGE INDEPENDENCE 
OF ELASTIC ELECTRON-DEUTERON 
SCATTERING AMPLITUDE 
IN THE IMPULSE APPROXIMATION 

Submitted to" Few Body Systems" 

E2-93-467 

1 Far East State University, Vladivostok 
2Kharkov Institute of Physics and Technology, Kharkov, Ukraine 



1 Introduction 

It is well known that the gauge invariance principle imposes substan­
tial constraints on the amplitudes of electromagnetic (EM) processes on 
compound systems. The continuity equation for the EM current density 
operator and the Ward-Takahashi (WT) identities for the corresponding 
Green functions follow from this principle to the first . order in e. Here 
we shall consider the WT identity for the 5-point Green function and its 
consequences for the Mandelstam current that determines the electron 
scattering amplitude off the deuteron in the framework of the Bethe-
Salpeter (BS) formalism [1, 2]. · · 

One should emphasize that the continuity equation for a prim.ary 
(Noether) current and effective current operators, e.g., the Mandelstam 
current or conserved currents in nonrelativistic quantum mechanics; is 
insufficient to guarantee. the gauge independence (GI) of the EM tran­
sition matrix elements ( cf. [2, 3, 4]). In addition, the initial and final 
states must be consistent with thy current. 

As a 'rule the conserved deuteron EM current involves the two-body 
contributions associated with meson exchange (interaction) currents 
(MEC). At the same time it has been proved [5, 6] that the elastic e-d 
s½attering amplitude in the impulse approximation (IA), i.e., only with 
the one-body free e-N scattering contribution included, may be gauge 
independent itself. This observation has been made using the BS. for-

. malism, both with the OBE and separable potentials. At first sight the 
result does not agree with the commonly accepted standpoint. 

The aim of our paper is to study this situation more thoroughly. We 
shall try to analyze it for other N-N interaction models. Applications 
to the elastic electron scattering on the pion ( the two-body system at a 
quark level) will be given as well. In addition, the consideration for the 
two-body systems will be extended via some generalization [7, 8] of the 
WT identity for arbitrary system of charged particles. 
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2 Gauge invariance and gauge indepen­
dence in the Bethe-Salpeter formalism 

The Mandelstam current for a two-fermion system consists of the one-
A[l] d b d [z] body, µ, , an two- o y, A,,, , parts: 

A = A[l] +Al2l µ, µ, µ, : (1) 

which. meet the following relationships [1] (see also [2]): 

iqµ,A~f(p, k; P, K) =_e18(p _:_ k - !) x 

x [5(1l( K + k)-1 - 5(1l( P + p)-1 ]· 5(2l( K - k)-' 1 + 
.. 2 · 2 2 · 

q 
.e28(p - k.+ 2) x 

x [5(2l(J( - kt1 _::5(2l(P-~ Pt1
] 5(1_l(K + k)-1 , (2) 

2 : · 2 · · · 2 

iq,,, A~l(p, k; P, K) = e'iV(p - :l., k; K) - V(p, k + !; P)e1 + 
. 2 ~ . . q . 

.+e2V(p+ 2,k;K)-:- V(p,k- 2;P)e2, (3) 

where k and J( (p and P) are the relative and total 4-momenta of virtual 
ferrriions involved in the initialand final states, q = .(w, q) is the momen­
tum transfer, P =I(+ q, 5(i)(p) is the dressed fermion propagator, and 
V(s', s; P) is the kernel of the BS equation ~hich depends on the refa-

. tive momenta s1
, s and the tot.al momentum P. Besides, in the isospin 

formalism 

1 . e;=\el +rz(i) 
2 ' 

where e is the electron charge, i(i) is the Pauli matrix, and i = 1, 2. 

(4) 

It should be noted that Eqs.(2) and (3) do not allow one to deter­
mine the current unambiguously. They only impose constraints on the 
longitudinal component of the current. 
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The elastic e-d scattering amplitude can be written as 1 

'TJ; = Ef j ;xp(p)A,,,(p, k; P, K)xK(k) d4kd4p = c,,, M,,,, (5) 

where XK(k)(XP(P)) is the BS amplitude describing the initial (final) 
state, and cµ, is the polarization vector of the virtual photon. 

The GI condition • 

q,,,M,,,=0 (6) . 

will be fulfilled if th_e current satisfies (he identities (2) and (3) and besides 
the BS amplitude XI{ ( and XP) is a\ solution of the BS ·equation with the 
same kernel 

5<1l(K + k)-1 8<2l(K - kt1xrdk) + j V(k,p; K):ndp)'d4p = o. (7) 2 2 · 

3 Gauge independence in the impulse ap­
proximation 

In the IA {see the figure) the amplitude takes the form 

J [ p I( J( q 
M111 = xP(P) ri1l( 2 + P, 2 + k)5<2l( 2 - kt1o(p- k - 2) + 

p I( I( q ] +r~2l( 2 - p, 2 - k)5<1l( 2 + kt1o(p- k + 2) XK~k) d4 kd4p, (8) 

where r ,,,(p', p) is the ,N N vertex function (irreducible) which obeys the 
one-body WT identity [9]: 

q/J,f~l(p',p) = e; [5(i)(p')-l - 5(il(p)-l]. (9) 

Here we shall not discuss the construction of the vertex which, in general, 
includes the nucleon off-mass-shell effects (see, e.g., [10]). Note that the 
WT identity for the on-mass-shell ,NN vertex f ,,,(p',p), which can be 

1 We omit here the spinor and isospin indices. 
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expressed through the Dirac (F1(q2)) and Pauli (F2(q2 )) form factors, 
reads· 

qµft>(p',p) = Ft>(q2) [sJi\P't1 -·sJil(P)-1], (10) 

where So(p) is the freefermion.piopagator. Using these ingredients leads 
immediately to the standard IA. . -

+ 
K ~ p 

K/2-k=P/2-p 

K/2+k = l;l/2+p 
K ~ p 

Figure The amplitude for elastic electron-deuter~n scattering in the 
impulse approximation / - · · 

The GI condition of interest 

implies that 

qµMl1J = ·o 
_µ 

iqµMt21 = jxp(p) [e1V(p-½, k; K)- V(p, k -t f; P)e1 + 

q q ] -, +e2 V(p + 2, k; K) - V(p, k - f P)e2 XI<(k) d4kd4p = 0. 

(11) 

(12) 

It turns out that this relation is fulfilled for some models of the in­
teraction kernel. At first, let us separate the isospin structure 9f V: 

V(p,k;JJ) = L TITVT(p,k;P), (13) 
T=0,1 

4 

;·\ 

-~' 

where TIT is the projector onto the state-with the total isospin T and VT 
is the corresponding component of the interaction. Choosing the ladder 
approximation 

VT(P, k; I()= VT(P ·_ k), (14) 

one can verify ·that Eq.(12) is satisfied identically. This result holds 
regardless of the value of the isospin of the initial (final) state, though, 
of course, in the case of the deuteron only the component Vo contributes 
to. Eq.(12)°. Note that the OBE interactions have the dependence (14) 
and, therefore, the corresponding amplitude wiil be gauge independent. 
This conclusion is in agreement with the statement of ref.[5}. 

The next example is the interaction of separable type. l\Iany-rank 
s~parable BS kernels are ·being used in calculations of the properties of 
few-body nuclei (6, 11]. They have the structure 

V(p, k; J() = L A;jg;(p)s!j(k), (15) 
•,J 

where g;(p) and g;(p) are the form factors, and A;j = >.ji are the con­
stants of the model. The authors of (6} have proved the GI of the IA for 
the, interaction (15). The proof was based on using the transformation 
properties of all the quantities in (12) with respect to the Lorentz boosts. 

At this point one should emphasize that the result arises from. the_ 
fact that the vertex function 

' p p 
</>(p, P) = s(l)( 2 + p)-1S(2>(2 - Pt 1 XP(:7) ( 16) 

for the model (15) is independent of the total momentum P. For example, 
in the case of the one-rank separable interaction one ,has 

' . . . 

</>(p,P) = Ng(p), 

where N is the normalization factor calculated at P2 

being the mass of the bound state 

( 17) 

M 2 with M 

N = [-jJJ(k)~s(l>( P + 1.\5(2>( P - k)g(k) d4k]-
112 

8P7 2 2 _ 
(18) 
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Now let us consider the elastic pion form factor iµ the generalized 
Nambu-Jona-Lasinio model [12]. The qq interaction is chosen there in 
the form 

Va11;.s-v(P, k) = gf(p2)J(k2
) [Ia11I.s-v,- (-y5r):11('y5r).s-v], (19) 

where f(k2) is the modt;l form factor, g is the coupling constant, I is 
a diagonal ~atrix, and the Greek indices are used for the Lorentz and 
flavor indices/ The 1rqq vertex function is 

</J(p, P) = N-y5 J(l)x1, (20) 

where XI describes the pion isovector state. The corresponding piori BS 
amplitudes are written as 

I( I( 
XI<(k) = S(k+ 2 )¢(k, K)S(k - 2 ), 

p - - p 
XP(P) = S(p - 2 )¢(p, P)S(p + 2 ), 

and 

~( k,I<) = -,0¢( k, K) t ,o-
, In this model the 

1

quantity qµ ML21 is equal to 

qµMt2
J = gE (K2

) J d4 kf(k2 )Sp [s(k- ~ ),5 S(k + ~ ),5
] x 

x[ed((k-1)2) +ed((k+I)2)]­

-gE (P2
) j d4 kf(k2 )Sp [ S(k - ~ ),5 S(k + ~ ),5] x 

(21) 

(22) 

(23) 

x [ed ((k: ½) 2
) + ed ((k-½)2)], (24) 

E (K2
) = INl2 j d4 kSp [-y5S(k- ~ ),5S(k + ~ )] f 2 (k2

), (25) 

.. .whereµ" is the pion mas~, and 1(
2 =· P 2 = µ;. 

2The irrelevant dependence on the color de.!(rees of freedom is omitted. 
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_ After calculating the traces in (24} we,find .. • 

qµMt2
J = 4gE (µ;) (e1 + e2) J d4 k(k2 + m2 - µf )f(k2

) x 

{ 
!((k-½)2) , - -

x ((k-:f)2-m2] ((k+J)2_1P2r 

-. - . 1((k+½)2) , } 

- ((k_:_f)2-m2] [(k+f)2-m2] 

(26) 

, with m being the quarkmass. 
In order to see that the _expression in the r.h.s. of Eq.(26) takes to 

zero we consider it in the Breit' frame where 

q = (0, 0, 0, qB), I(= (EB, 0, 0, -qB/2), P = (EB, 0, 0, qB/2,), (27) 

E ✓ 2 + 2 /4' . 2 : 2 B =µ,r qB , q = -qB. 

On replacing k -+ -k the product of the· denominators in the second 
term in {26) reduces to that in the first term and 

f((k+!) 2)-+J(k~-(-k+ ci;)2}=!((k-!)2). (28) 

Therefore qµ ML21 = 0. As the quantity in question is a scalar, the result 
does not depend on the choice of reference frame. 

Thus, the ladder and separable BS kernels lead to the gauge indepen­
dent elastic scattering amplitudes. The common feature of these kernels 
is their independence of the total momentum of the pair. Note that non­
relativistic potentials have this property. In the next section we shall 
investigate the GI problem employing the identity [7, 8]. It will allow us 
to understand the origin of the above result from more general point of 
view. 
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4 Operator analogue of the Ward- Taka­
hashi identity 

Here we write down the Hamiltonian 

H=K+V, (29) 

for a system of interacting particles. By definition, the operator H con­
sists of the free (kinetic) part, K, and the interaction, V. According to 
[8]- the 4-divergence of the EM current operator .can be written as 

qµJµ{q) = wp(q)- [H,p(q)] = G(z1)-1 p(q)- p(q)G(z;)-1
, (30) 

:Vhere G(z) is the propagator 

G(z) = (z - Hr 1
. (31) 

·and th~ arbitrary'parameters z; and ZJ satisfy the relation ZJ - ;i = w . 
While obtaining Eq.(30) the continuity equation for the current has been 
used. · 

. The GI condition for. EM transition amplitudes between the eigen­
states of H with the energies E; and Er follows from (30) if one chooses 
z; = E; and ZJ = E1: 

qµ(flJ;(q)ji) = 0. (32) 

Separating the one-body contribution, J111 (q), i.e., assuming that 

Jµ{ q) = Jbll( q) + Jtl( q), .(33) 

where Jt1( q) denotes the two-body and mQre c~mple~ contributions, one 
gets 

qJll](ct) = [K, /ll( q)], (_34) 

qJlrl( q) = [V, pill( q)] + [H, plrl( q)], (35) 

It can be easily shown that 

qµJill(q) = Go(z1)-1p[ll(q)- p[ll(q)Go(z;).,..1, (36) 

8 
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qµJJrl(q) = G(zi)-1p(rl(q)- plrl(q)G(z;)-1 + [pltl(q), V], 

where G0 (z) = (z - K)-1 is_ the free propagator. 
· We have from Eq.(37) 

qµ(JIJJrl(q)ji) ~ (fj[/1l(q), Y]li), 

(37) 

(38)_ 

Let us analyze the r.h.s. of this equation. Firstly, we employ the 
conservation of the 3-momentum: 

qµ(f1Jt1(q)li) = (211-)38(q + P; - P1) x 

x[AM,M1 (Vi,P1)- BM,M/P;,P1)], 

AJ\f;M,(P;, Pf)= (P J, M1IPl1l(O)VIP;, 11vl;); 

BM,M,(P;, P J) =(Pf, M11Vp11l(o)jP;, M;), 

(39) 

(40) 

where pl1l(0) is the density operator at the point x = (t,x), and orily the. 
total momenta and spin projections are indicated in the states i and f. 

Further, we restrict ourselves to the case of elastic transition. In 
laboratory frame one has Pi = 0 and Pf = q; It is convenient to choose 
the quantization axis (the axis OZ) along q. Obviously, the quantities 
defined by ( 40) are proportional to DM,M, and, therefore, it is sufficient 
to consider the case with M; = M1. 

Now, using the transformation properties of AM;l\f, (P ;, Pf) and 
BM;M,(P;, pf) with respect to the time inversion, we find 

BM,M.(q) = (0, -M;lp111(o)VI - q, -M;). (41) 

Finally, performing the rotation around the axis OY by 180° ,ve obtain 

BM;M;(q) = (0, M;jp11l(O)Vlq, M;). 

Generally speaking it does not equal the quantity 

AJ\f;J\f;(q) = (q,M;jp111 (0)VI0,M;). 

Howeve1:, they may coincide in so~e cases. 
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In fact, in nonrelativistic description the dependence of the state vec­
tor on the total momentum is separated as 

lq, M;) = exp(iqR)I0, Mi), (44) 

where R is the center-of-mass coordinate operator. Since V depends only 
on the relative variables due· to the Galilean invariance, and operator 
pl1_l(0) commutes with R, then 

BM;M,(q) = AM;M,(-q) = AM;M,(q). (45) 

Note, that in deriving Eq.(45) the space inversion transformation has 
been used as well. 

The GI condition 

qµ(JIJLll( q)li) = 0, 

follows from Eqs.(32),(39), and (45). 
In ~eneral case 

lq, M;) = exp(iwN)I0, M;), 

(46) 

(47) 

where w = wnq, tanh w = lql/Jq2 +M2 , and Ni~ the boost operator3
• 

In relativistic approaches the boost operator being a many-body operator 
commutes neither with V nor with p[1l(0). So, our previous proof for-the 
nonrelativistic case, where N <X MR, becomes invalid. 

5 Concluding remarks 

We have analyzed the elastic e-d scattering with special emphasis 
on the GI of the corresponding amplitude. Our consideration has been 
performed both within the BS formalism and the conventional nuclear 
approach. It has relied 6n the continuity equation for the deuteron (in 
general, two-fermion) EM current operator. The symmetry properties 
of the N-N interaction and the current with respect to the space-time 
transformations have been employed as well. 

We proved that the one-body part of the conserved current gives 
a gauge independent contribution to ·the elastic scattering amplitude. 

3 Since the boost is performed along the axis OZ the spin projection is not affected._ 
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It turns out that this result holds in the BS formalism with the two­
body kernels of ladder or sepai·able types. Common feature of these 
interactions is their independence of the total momentum of interacting 

pair. 
It also was shown how one can extend the result to the elastic electron 

scattering off a nonrelativistic systerri with arbitrary interaction. 
Of course, these observations do ,not mean that the :tvlEC may be 

neglected in such situations. In fact, the results of papers [12, 131 for the 
separable qq interaction clearly demonstrate sizable influence of the twos 
body currents on the pion form factor (in particular, ~t high momentum 
transfers). Certainly, for any N-N inte1:action model the two-body and 
more complex Eivl currents should be included in a consistent way in 
calculations of the elastic form factors of nuclei. 
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BypoB B.B. n ,z:,;p. £2-93-467 
0 rpa,z:,;neHTHOH He3aBHCHMOCTH aMTIJIHTYAhl ynpyroro 
3JieKTPOH-,z:,;eiiTpOHHOro pacce.srnmI B HMilYJibCHOM npn6JimKeHHH 

Ha ocHOBe TO,KJJ,eCTB Yop,z:,;a - TaKaxamn ccpopMyJinpoBaHhl yCJIOBHSI rpa­
,z:,;neHTHOii HHBapnaHTHOCTH H rpa,z:,;neHTHOH He3aBHCHMOCTH ,IJ;JI.sI ynpyroro pac­
ce.sIHHSI 3JieKTPOHOB ,z:,;eiiTpOHaMH. HaiiAeHhl yCJIOBHSI, 06ecnetJHBaIOII1;He rpa,z:,;n­
eHTHYIO He3aBHCHMOCTb aMTIJIHTYAhl pacceSIHHSI B HMilYJibCHOM npH6Jin)KeHHH 
B cpopMaJIH3Me BeTe - COJIIlHTepa H HepeJISITHBHCTCKOM no,z:,;xo,z:,;e. 

Pa6oTa BhIIlOJIHeHa B Jia6opaTOpHH TeopeTHtJecKoii cpn3HKH HM. H.H.Boro­
JII06osa Ol15111. 
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Gauge invariance and gauge independence requirements for the elastic 
electron sea ttering off the deuteron are formulated using the Ward -Takahashi 
identity for the deuteron electromagnetic current. Conditions are found that 
ensure the gauge independence of the scattering amplitude in the impulse 
approximation both within the Bethe - Salpeter formalism and nonrelativistic 
description. 
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