


1 Introduction

The hypothesis that the carly universe might have undergone ait exponential expansion
might explain a number of essential questions. Why, for example, the observed space is
homogeneous and isotropic and energy density in it is so close to the critical value [1].
In the exponentially expanding epoch the universe has the de Sitter geometry with fixed
radius. Il the radius is sufficiently small, there may be interesting effects arising froin
the behavior of quantum field theories in such curved space. In this way gravitation can
influence the properties of the effective potential and can change the symmetry-breaking
pattern in gauge models. ‘

In the one-loop approximation and assuming a de Sitter space-time this problen has
been studied for scalar electrodynamics [2] and for the more realistic SU(5) gauge theory
{3).{4]. These papers show that gravitational eflects change the phase structure of the
theory, but analysis there was restricted to a particular choice for the quantum state of
the system,i.e. to the state which is invariant under transformations of the de Sitter group
[5)- Al observers moving [reely register it equally as a thermal equilibrium state at the
same temperature (2ra)~! (Hawking tex.nperaturc), with a the radius of the space [6].

Note that the thermal equilihrium state in de Sitter space-time is always possible in
static coordinates where the external gravitational field does not depend on time. Thus,
a natural question arises: how does symmetry breaking occur in the de Sitter universe
il a given quantum field is in an arbitrary thermal equilibrium state different from the
invariant one? For this purpose, the study of finite-temperature quantum field theory in
a static de Sitter space-time is necessary.

This subject is also interesting by itself. Let us recall that a frecly moving observer in
this space has an event horizon separating from the whole space-time the region he can
never see. The presence of horizons can have interesting consequences. It is known, for
instance, thal there is a close connection between event horizons and thermodynainics
[6]. However, although the thermal properties of Green functions in the Rindler, de Sitter
and Schwarzschild spaces were considered (7], finite-temperature effective potential and

symmetry breaking in the static spaces with horizons were not investigated.



The present paper studies the quantum theory of a scalar field in the static de Sitter
space-time at arbitrary temperature denoted by 87'. The analysis of the scalar case
turns out to be rather simple and can help to undersiand us the features specific of more
realistic gauge theories.

The paper is organized as follows. Section 2 is devoted to the quantization of a scalar
field ¢ in the static de Sitter space. The cnergy operator in that space can be introduced
and divided into two commuting parts, defined in causally-disconnected regions. This
rnables one to formulate the functional integration formalism for the thermal averages
in each region. [t turns out that the integration here goes over the ficld configurations
placed on the compact four-dimensional space Oy with an Euclidean signature. 'This
space is the infinitely-shected along the "imaginary™ time 7 hypersphere §9 of the radius
a where points (r, %) and (7 + 3,7') are ideutified. At the Hawking temperature, when
1= 2xa = . the space O becomes a fovr-sphere S*. In the general case it has conic
singularities where the Killing vector field generating transtations along 7 is null.

In Section 3 the finite-temperature cffective potential V(¢, 3) is introduced in the
framewark of the fnctional integration formalism lor averages. Studying the spectrum
of the Laplace operator on (05 we are able to find the expression of the one-lovp effective
potential as an expansion in 371, We use here zeta-function regularization [8), [9]. The
suitable forms of §7(¢,F) and of the average energy density £(¢, 3) are given for the
ground and de Sitter invariani states. It is shown that, in the limit of asymptotically small
space-time curvature, they both coincide with the vacuum effective potential computed
in Minkowski space.

The scaling properties of the theory in the conformally invariant case are considered
in Seetion 4, where the stress tensor anomaly is obtained explicitly. [nterestingly, it turns
out to depend on temperature. At 8 = By the standard value of the anomaly is recovered.
The possible reasons of this circumstiance are briefly discussed.

Finally, in Section 5 for a real selfinteracting scalar field we show the rlilferences of the
symmetry breaking pattern in the ground and de Sitter invariant states. It is shown that
in the ground state a discrete symmetry of the classical theory is always spontaneously

broken. whereas at the Hawking temperature it can he restored at a certain value of the



spacc radius a.. Conclusions and remarks are then presented.

Technical delails needed for the explicit evaluation of the zeta-function near 8 = By
and in the ground state are reported in Appendix A and B, respectively. The results of
Appendix A can be used to estimate the temperature corrections to the potential near

the de Sitter invariant slate.

2 Static de Sitter Space-Time at Nonzero Temper-
atures

2.1 Quantization in the static de Sitter space

De Sitter space-lime is a solution of the Einslein equations with a positive cosmological

constant. In the static coordinates the line element can be written in the form

ds? cos? \dt? — a®(d\? + sin? \d0? + sin® x sin? 0d€?)

gudt? — gdride? (i,j =1,2,3) 1)

1

and —oo < t < 400, =7 <\ <7, 0< 0,6 <1, ais the radius of space. The properties
of the static coordinates are discussed in 1i10]. One has to mention here that they cover
only part of the space-time and that the regions || < /2 and |y] > 7/2 are separated
by the surface B = S? and are cansally-disconnected.

We can always choose in de Sitter space a Killing vector field generating one-parameter
group of isometries, a subgroup of SO(1.4). The coordinates (2.1) correspond to the time-
like part of a Killing vector field associated with translations along the time . These
coordinates are restricted by the bilurcate Killing horizon [11] on which the Killing vector
field is null. It coincides with the event horizons of oscrvers with tracctories being com-
pletely inside the static frame (2.1). The two-surface B is the bifurcation surface that is
left unchanged under the action of the given one-parameter group.

The quantization procedure for a real scalar field in Lhe curved space-lime is given in

terms of the commutation relations for the field variables [5)
[#(r), dw)] =0 (2:2)

[ M (x) b, (y)da" ()] =0, (2.3)
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L FWé(), duly)dary) ~ if(z) (2.4)

where the points z and y belong to a space-like hypersurface £, such that the Cauchy
data on T defire uniquely a solution of the classical equation in the whole space-time.
For the static spaces we can introduce the energy operator H which is associated with a
generator of the unitary transformations of the field ¢ under translations along the time
coordinate {. In the static de Sitter space (2.1) H depends on the time component Tt of
the energy momentum tensor

H= Vg T (2.5)

t=conat

1t is splitted into two paris f; and H, depending on the field variables and acting in
the regions |x| < x/2 and |x| = n/2 respectively (g is the determinant of the metric
(2.1)). For the model of the real sclf-interacting scalar field with the action and the

energy momentum tensor given respectively by

S= / ' =g (%(LW“sﬁ - vw)) : (26)

and
T = 20 1%65,60" (27)
from (2'2)'.(2'4) it follows
[, ) = [ do™ Gul@d0ud + 0:00) = 0 (28)
B

where do® is the surface element of B; the operators A and flz commute because the time
component of the metric tensor g, vanishes on the bifurcation suzface. In particular, the
last equality shows explicitly that there is no energy exchange between the two causally-

disconnected regions.

2.2 Functional integration formalism for the averages

We can choose now (in an oscillator approximation) the creation and aanihilation oper-
oators of particles associated with the Hamiltonian (2.5), this allows us to construct the
representation of the commutation relations (2.2)-(2.4) given on the corresponding Fock

space.



. . . -1
Let us consider a canonical ensemble of such particles at temperature #  in one of the
causally-connected regions, when {x| < x/2, for instance. The thermally averaged value
of a physical variable @ measured in this region reads
< @ >p= Z; Tr(Oe M) (2.9)
where Zj is the partition function determined by the eigenvalues E, of the operator H;
Zy=Tr(e ™)=Y ¢ (2.10)
The parameter 37! coincides with the local temperature measured by the observer being
at the origin of the static coordinates at x = 0 and the average (2.9) does not depend on
the behavior of the system in the rest of space.
To oblain the functional integral representation for the average values {2.9), let us
make the coordinates =¥ discrete (with intervals Az) on the surface t = const. Then, in

the causally connecled region {x| < 7 /2, the transition amplitude from the state |¢' > to

the state |¢ > for the infinitesimal imaginary-time ¢ turns out to be

i — m TA2A 3 2
U6 8) =< dle-1g >= lim H( 9(2)g"(z)Az' Az Az) (~Si(68)
Art—0 .

2re
(2.11)
where
U 2
S(o, ¢') = % Z \ /—g(:c)Az‘A:rzA;ﬂ [g“(z) (ﬂz_)__ei(_zl) +
) i 2

+¢(z) (———————‘b(“’) - "SA(;.‘F Az ))) + V(¢)] . (2.12)

According to this definition the functional ¥(e, ¢) = [ d¢'U.{¢, ¢')¥(4') has the following
properties:

V(e,P)le=o = ¥(g) (2.13)

- azw(€l¢)|==0 = qu’(¢) . (2.14)

A, is the Hamiltonian in the region [x| < /2

= [ v (3 Pea V) 215

Ixl<x/2
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connected with the stress tensor via the formula (2.5). On the surface ¢ = const (that is
on 83) 11 = (g¢)~'/7,$ is the quantity proportional to the canonical momentum in the
coordinate representation

i{z) = ; ! 8 (2.16)

(detgy;)'/* 66(x)
The transition amplitude for the final imaginary-time interval § is given by the integral

Us(e.8) = [ Doerssie®) 217)
where
D¢_ATI.IAT—‘U <|H<ﬁ1:[( 2w AT d¢(-zw7'l) 3 (218)

13 1 It 1 i r} r} ¢
Saleh, ¢ Varazmo = / . ﬁ\/gu detg;; drd’s [59“(0:¢)’+ 9B + V()| (2.19)
0<7<

with the boundary condition ¢(z,r = 8) = ¢(z), §(z, = 0) = ¢'(z). The representation

for the average value of an operator @ follows from (2.9) and (2.10)

<O 5y= 75! / DgO[gle5@ | (2.20)

Zﬂ=/D¢e—3rs(¢) , (2.21)

where N¢ = d¢pDé and Sp(¢) = Ss(d, ). From the definition (2.19), the integration in

(2.20) goes over the field variables placed on the compact space O with line element
ds® = cos®ydr? + a¥(dx? + sin® xd6? + sin? x sin® 0d€?) (2.22)

which is the Euclidean form of the line element (2.1), and the periodic parameter T ranging
from 0 to 4.

When 3 = f); the space Oy is the four-dimensional hypersphere S*. The two noint
thermal Green function defined in agreement with (2.20) al 8 = By coincides with the
Green function of the de Sitter-invariant quantum state that also turns out in static
coordinates to be periodic analitic function of the imaginary time (6] with pericd 27a.
This state is the vacuum, but its field excitations, which are defined in a de Sitter invariant
way [5], cannot be interpreted as particles of a certain energy. All observers moving freely
register this state as a thermal equilibrium at the same temperature 85' = (2ra)™ {6].

Let us point out that thermal equilibrium at the Hawking temperature only in the given

6



part of static frame (|x| < 7/2) does not mean the de Sitter-invariant vacuum because the
quantum state of the system in the other casually independent part of space (x| > /2)
can he quite arbitrary.

I3 =n""3y (n=12.). the integration in the representation (2.20) for the averages
goes over the fields on the hypersphere §1 on which the points (7,z%) and (7 + 3,z°) are
identified.  Such space is an orbifold [12]. At zero temperature Op = O and is an
infinitely-sheeted sphere 51, For the arbitrary temperatures Oy is the factor space of Oy,
over the ciclie rotation group with period 8 leaving the two-surface B unchanged. In all
the points out of B it has the geometry of an hypersphere but in the domain of B, when
I = 772, it looks like the product space cone ) S2. The volume of Oy is 7V where V is

the volume of the spatial part of space-time (V = {za?/3).

3 The Effective Potential

3.1 Basic formalism

Phase transitions in curved spaces at arbitrary temperatures can be investigated as in the
flat one applying the effective potential method. The effective potential V(yp 9) in our case
can be introdueed via the path integral representation for the partition function (2.21).
For this purpose. fet ns consider in {2.21) the "static” parl @ = (BV)™1 ;)" Vg d'ré(x)

of the field variables on Oy (g is the determinant of the metric (2.22})
%y = / Do = / Do + o)™l =
=N /11’«;('_""/"'(‘""” s (3.1)
where ¥ is a normalization constant. I'l'h(' potential 1 is defined by the integral
(=YY o) = ] Dy e Snletd) (3.2)
over the fields obeying the condition
/, Vg dizg(z) =0 . (3.3)
Oy

If V(@,B) is a known function of ¢, Lhe partition function can be found from (3.1} by the

method of stationary phase. The points ¢; of minima of V(p,B) correspond to various
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field configurations with the average field strength in the considered volume V cqual te ¢;
in the one-loop approximation. The real part of V{¢, ) is a sum of the classical potential
energy V'{y) and of the quantum corrections to il. If a field configuration ¢; is unstable,
then V(e,, 8) has a nonvanishing imaginary part determining its decay-rate {13].

To calculate the one-loop effective potential, one has to expand the functional Sp(p +
¢') in (3.2) on ¢', taking into account the condition {3.3), and to approximate it by the
expression

Sale +¢') = (VB)V(e) + %/OB V3 &'z ¢'(2)Qp)4 () (3.4)
where (o) = —0 + V() (O is the Laplace operator defined on Op). The integration
in (3.2) can be performed as usual if we use the completeness of the eigenfunctions ¢,(r)

of O, so that the field ¢(z) can be expanded as
$(z) =) dntula) (3.5)
where the eigenfunctions are normalized a"s follows
A V3 'z u(@)mlz) = b (3.4
s

and change the measure (2.18) by the measure D¢ = Hn(27r)"/7;zd¢,‘ with g a normal-

ization constant . Integrating over ¢, we get from (3.2)

Vi) = Vig) + o [logldes(u?Q) ~ loglu™*V 0D - @7)

According tu (3.3), we eliminate from V (¢, B) the contribution of zero mode of the Laplace
operator. The last term is important for analitical properties of the effective potential
when the space-lime curvature is large.

If all field configurations are stable, the one-loop partition funciion can be derived
from (3.1) considering the minima with the zero imaginary part Im V(p;, 8) = 0. In the

given approximation it turns out to be

- 27\ ~BVV (e, 8)
Zy= Z ( Vo] ﬂv) e . (3.8)

Taking into account the normalization of the zero mode ¢ in (3.1) and (3.5),(3.6) and

(3.7) we can substitute N with u(8V)"/? and represent Z, in the form

Zy= Y eV (3.9)

8
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where

Y - -2

Vip,B) = V(o) + 2[,,, log (det(n%Q)) - (3.10)
It is obvious that in the flat-space limii, when the radius and volume of space tend to

infinity, both the quantities V (i, 3) and V(y, ) coincide.

The field average < &(z) >g in the one-loop approximation can be found from (2.20)

in a similar way, and is

< $(z) >p= ZP(ﬂ , (3.11)
where the coefficients
e~ BVViwib)
P(8) = W . Zpi(ﬂ) =1, (3.12)

in the equilibrium state are the probabilities for a given field configuration ¢; to appear.

From (3.9) we can also obtain the average energy as the sum

N o o
<H>p= —5log 25 = Z_jP.-w) VE(wi,8) (3.13)

where the quantities
Elgi,8) = (ﬂV(so., ) . (314}

are the energy densities of the configurations ¢;.
In the trivial case of a frec scalar ficld the effective potential V(yp,3) has only vne
minimum at ¢ = 0, as in the classical theory, because the determinant in (3.7) does not

depend on the field .

3.2 Zeta-function

To regularize the determinant in Eq.(3.7), the zeta-function method [8] can be used be-
cause the eigenvalues A, m of the operator —~O+ V”(p) on Op can be found exactly. They

are characterized by two nonnegative numbers n and m and depend on the temperature

o
Aam(B) = a2 (n = m + B/ B)m) (n —m + (Bu/Bm +3) + V'(g) ,  (3.15)

n=012.. m=0,1,..,n;



The multiplicity g, of the ecigenvalue A, n is (n —m + 1)(n —m + 2} if m # 0, and
{n 4+ 1){n +2)/2 for m = 0. In the case of the Hawking temperature 8};' this operator
turns into the operator on the hypersphere S* with A, = a™2z(r + 3) + V"(y) and the

multiplicity

=Y gam = é(n+ I(n+2)(2n +3) . (3.16)

m=0
The renormalized log det(Qp ), the effective potential V (i, 8) and the average cnergy
F{. B) expressed in terms of the generalized zeta-Tunction

"1ﬁ) zzgnm a ’\nm . (’;.17)

n=0 m=0

now read

log (dec(u"c;n) = - [0, ) + log(k*a®)¢(0.8)] (3.18)

Vie.8) = Vig) - [C'(U,ﬂ)+log (1a’)((0,8) +log (V'(0)p™™)] . (3.19)

2/3))
F(p, B) = V(g) -

where ('(z,3) = %C(saﬂ)

Let us find a more suitable form for the zeta-function (3.17). If we express (¢*M,.,) 7% as

ZV % 9 101(0,8) + log(6%a?)(0, 8)] (3.20)

an expansion with parameter A = 9/4—a?V" () and point out that 3522/ 5°" _ f(m.,n) =

(3.17) obr,ammg

(=4) = 3 Cua)at {Z (Cr (2 + 2k ~ 2, (Bu/B)m + 3/2)
k=0

m=0

— A By (25 4 2%~ 1, (BB + 3/2)
b (s = 1 ) on2z + 28, (3u8m + 372)

1
- 3 {C[g(?l +2k —2,3/2) — %(R(% + 2z, 3/2)} } , (3.21)
where the coefficients 7x(z) are defined by
T'(z+k)
) = -t 3.
C2) = ey (3.22)
With the following integral representation for the Riemannian (g-function
l 00 ys—l e ay
= — —d, 3.
taso) = s | A= (3.23)
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we are able to sum up over m. For instance, one can get

1 iyl
ZCH (3/8)m +3/2) = e )/ T ?v[_c—(ﬂnfﬁ)ydy , (3.24)

m=0

for e s > 2. Thus, inserting (3.24) in (3.21) we have

e oo 2:42k-3 i (oth (
X Ak y 3, %
D Culz)a A by T 1‘(2z+zk—2)

k=)
(y_xt) sinh * (2‘2—:‘;") (w_’u) coth ( o7 )smh (”%L) - ’Blcoth (J%)
R T T T(2: 3 0k .(3.25)

Note that from (3.25). if the variable = is close to zero, ((z,8) is determined by the
behavior of the integrand only in the vicinity of the lower limit of integration. n this case

one can nse in (3.25) the definition of the Bernoulli numbers B,

= L ";' = (3.26)

(valid for lr] < =), lo get a representation for ((z./3) as a series of odd powers of the

temperature

R . Dyn i
{(=. Zm( A‘Z();) (H)

A k=0

1
[c,g(;): 420 420 —3.3/2) - —gn( +2k+2n -1, /z)] .
(3.27)

This representation helds for = elose to zero and can be applied to compute ((D.,3) =
ling,—o (= ¢) and its first derivative, obtaining for ¢(0, 8) the exact simple expression

. 2 (51— 60(Bu/BY: = 3u/id))) (2 /) , N
P ) Lzl s
WA= [ 3380 ! 2 s +1 *‘ (3.28)

At the Hawking temperature this result coincides with the expression obtained by other
authors [2]. To compute the first derivative of {3.27) we observe that

( 1)1|+I o

n! da

~—ip(a) (3.29)

‘(%(3(:1?(3 +n+1a))

el

with 7 integer > 0. Unfortunately, as far as ¢*(0. 7'} is concerned, it van only be expressed

)

in terms of an expansion

) 20,4 8\ .7 3 20,0 .3\ 1, :
J(0,1) = T [Qn ('-3‘ E) g (\— l"‘i)] T [Cn (~~5‘§> i (‘ B

(SR



(Dl 2) s D (S 2 —)

1 & [ar B B
1 2 B, +AT? 2n+2 g4 2ntd
TZ[12 mt (2n + 2)( ‘2n+l)+ (2n +4)(2n +3)(2n +2)(2n + 1)

2n
x%‘—'— [(27: +2)(2n + 1)@ (g) - ;—1,1;‘2"“’ (g)}

2 G, (VAT 3
__ZZan YT {(2 + 70— 2)(2n + 2k — im0 (5)

1 (entze-ny 2)
v (2 : (3.30)

where T = /8. The last equations (3.28) and (3.30), once inserted into (3.19), define

n=0

explicitly the effective potential as an expansion in the temperature 8. This expansion
is especially useful to investigate the potential V(yp, 4) at the low temperatures. Another
expansion of V(p,d) around the Hawking temperature can be found in Appendix A.
However, in the inost interesting cases we are going to consider, the potential can be

written in a more suitable integral form.

3.3 Vanishing temperature and Hawking temperature

The effective potential for the space of raojus a at the Hawking temperature 85 can be

found from (3.19) substituting in it the expressions of {’(0, 8y) obtained in {2}, and of

¢(0,8y) from (3.28). It reads
1+va i-
(/ / ) u{u — -) u— 1)Y(u)du

a7y A 17 o -2
1 _A t, (331
+5AT+ 2A+log )( N 2880) +log (V" () )J +const,  (3.31)

where 1(u) is the psi-function. We can also derive the average energy density (3.14} in

this state by an expansion of ((z,3) in powers of (8y — 3)/8 given in Appendix A

Vie,Bu) = V(9) -

_ 3 1., 41 973
E(p,Bu) = Vip) + {@n)iat [‘3A * 144”5760

+11—2 (g - ~) (% - A) (11’(3/'2 +VA) + +9(3/2 - VA) - log(p2a7))] . (3.32)
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From (3.19),(3.20) and (3.27) the eflective potential at zero temperature coincides with
the vacuum energy density. A connection between zeta-functions at 8 = oo and 8 = 3y,

described in Appendix B, implies

_ 3 [f p3+/3 3~V&
V(go,oo):V(;p)-—(Er—)z—‘Fl(/l +/1 )u(u—%-—\/Z)(u-—l)tﬁ(u)du

—i—%A2 + 2—1~A + log(#*a?) (?—22 - % + ;)16%)] + const. (3.33)
At the points of minima the imaginary part fm V(p,00) gives the decay probability I’ of
metastable vacuum configurations calculated in the quasiclassical approximation T' =
—2Im V(p,00). When VA > 3/2 or if V#(p) < 0, the integrand in (3.33) has the
simple poles due to the psi-function and inlegration contour should be chosen so that
Im V(p,00) < 0. This can be achieved simply by changing V*{p) with V"(p) ~ ic/2
(¢ > @), which corresponds to go around the poles in the lower part of the complex plane.
A similar way to regularize the integral part of V(p, 8) can be taken at 8 = By, but
here the situation is different. The vacuum energy (3.33) is singular when V*(p) = 0
where both E(p, 8y) and V{p, By) are finite. The singularity and imaginary part coming
from the integral in (3.31) when 3/2 < VA < 5/2 are totally cancelled by the last term
log(V*(p)u~%). Consequently, in the vacuum state one has instability when V*() < G;
whereas at the Hawking lemperature, when V() < —4a~2 (or /A > 5/2).
Asymptotic expressions for V(p,0), V{(p,Bu) and E{p,By) at the large radius a

are written in the Appendices. One can thus show that all three quantities i the limit

a — oo coincide with the vacuum effective potential in Minkowski space

Vo) = V(o) + iy (V) (los(V”(sa)u") - g) : (3.34)

This property can be easily explained observing that the Hawking temperature ((2ra)~")
vanishes in the flat-space limit. On the other hand, the effective potential calculated at
B = By coincides with the one in a de Sitter invariant state and can be turned, when
a — 0o, only into the potential in the Poincare-invariant vacuum state.

To complete the calculation of the renormalized V{ip, 8) we have to add to it finite
counterterms and express the parameters through the measured quantities. It will be

done for a particular model in Section 5.
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4 Scaling and the Trace Ancmaly

l.et us consider the conformally invariant scalar field theory with the potential V(¢) =
(R/12) &%, where R is the scalar curvature, R = 12a"? for de Sitter space-lime. The
encrgy operators 1 of conformally related static metrics Fu(7) = a®(z)g,.(7) have the
same cigenvalues [14]. In this case, the scale invariance of the unrenormalized partition
function Zy follows immediately from the definitions (2.18),(2.19) of the measure D¢ and
the Fuclidean action Sg(¢) in (2.21).

In the conformally invariant scalar ficld theory, the logarithm of the renormalized

partition function is defined by (3.9),(3.18) and reads
. 1
log Zs = 5 (¢°(0, B) + log(s*a®)¢(0, 8)] (4.1)
For the constant scale transformations of the metric §,,.(z) = a’g..(z) we have S =

a i, m ,g:(z,ﬂ) = a??((z./3) and therefore the following equality for the partition func-

tion. as a function of g, and the renormalization parameter g, liolds
Zg(azg‘,,,,(t_lp) = Zp{gw 1) (1.2)

In static space-times the thermally averaged energy momentum tensor does not depend
on time and can be determined by functionally differentiating the free energy F(f) =

—d7"log Zs [14] s
2 F(3)
Tw ,3,1‘) =T
wl V=g bg(r)

{.r" are three spatial coordinates). Thus, one can write for the integral of its trace (T, “(3))

(4.3)

over the spatial volume V the following equation

] 2 dlog 7 (
/ Ee G (B = = / B DBI0 i1y = 0 D rog 75000, ) e
Iy BLET sgnela) dar
(4.4)

Finally, Eqgs.(4.1) and (1.2) give
? ey B, - <
[ e VI i) = =57 Gl Zylgnploms = A0 (1)
v
Substituting here the derived expression (3.28) for (0, ) in the conforinal case (A = 1/4)

we get the trace anomaly at the temperature 7!

v [P VG 1 (Bn) = g (3 BulA)) (16)

14



-1 ~1 —
Remarkably, it is a function of 7~ and leads at the Hawking temperature 8y = (27qa)

to the correct trace anomaly and energy-mormentum tensor of the de Sitter-invariant state
T, 1) = (9607% ) g, () . (4.7)

It is ordinary believed that the trace anomaly does nol depend on the quantum state
in which is the system [15] because it is determined by the ultraviolet divergences and is
sensible only to the space-time geometry and to the possible boundaries.

The general finite-temperature quantum field theory in static space-times has been
investigated in [[4]). 1t has been shown there that infinities, renormalization, and the
trace anomaly are the same as at zero temperature. However, the effects of horizons that
can be crucial for our analysis were ignored ., that work.

The divergences arising in the case of the static de Sitter space can be investigated
for the thermal two-point. Green function. Considered as a function of the imaginary
time ranging from zero to g3, il is given on the compact space Oy (sce {2.22)) with the
conic singularities near two-surface B, which may cffect its unusual thermal properties at
short distances. Analogons thermal Green functions. corresponding to the Rindler and
Schwarzschild metrics, are defined on the spaces with the same conical structure near the
harizons. This is probably true for the case of every space-time with the bifurcate Killing
veetor ficld. However a detailed analysis of the dependence of the anomaly on the thermal
state, and of the role of the horizon is outside the aim of the present work.

We should also mention the caleulation of the average energy according to (3.13) in
terms of the renormalized Tunction E{p, By), Fq.(3.32). In the conformal case we are
interested in | it is simply equal to VE(0, 3}, with A = 1/4 and the average value of the
field o> = 0. The energy thus oblained does not depend on 1he scale parameler p. There
is a discrepancy belween it and the quantity < H >5= [ &z /=g T: Y{Bu,z) defined
through the anomalous energy momentum tensor (4.7). However, whereas the first one,
E(0, By), is defined up 1o finite renormalization terms, the quantity < /7 >, is lolally
anomalous and consequently is of a pure geometrical character and independent of the

renormalization proceduces [15).



5 The Model

We study here, as an example, the mode] of a real quantum scalar field with syminetrical
potential
V{g) = —50%" + At (5.1)
2 4
{¢,X > 0) and compute the effective potential in the ground and de Sitter-invariant
quantum states.

The discrete symmetry ¢ — —¢ inherent in the classical model (5.1) is known to be
broken in the ground state in fiat space-time: in this case the zero-field configurations
are unstable. The symmetrical phases correspond to the configurations with zero field
strength and their relevance at nonzero space-time curvature may be found from the
results derived in Section 3.

From these results we draw immediately the conciusion that there cannot be stable
symmetrical phases in the ground state at any curvature because V*(0) = —o? < 0 and
the effective potential has a non-zero imaginary part at ¢ = 0. On the other hand,
symmetry can be restored at the Hawking temperature 8;;' at a certain value of a if the

following conditions hold:
VIO, Bu) = 0, V(0,8u) 2 0. V¥(0) > —da™. (5.2)

The first condition is always true for this model as far as V'(¢'} depends only on the square
of the field. To investigate the second one we have to fix the meaning of the constants o
and X in terms of the measurable quantities, obtained for instance in flat-space.
Following the standard renormalization procedure we can eliminate the scale parame-
ter 4 from V{yp, B4), Eq.(3.31), by absorbing it into the definition of the finite countert-
erms that should be added to the effective potential. These counterterms have the same

structure as the initial potential (5.1). Thus, the renormalized V (¢, fy) turns out to be

;—+\/—A_ %—ﬁ 1
vmﬁu>=vw>—(—4,—‘;7;[—§([ +f )u(u—i)(u—l)w(u)du

1

12

A :i%A + log (V"(tp)a’)] + Ap? + By + const, (5.3)
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In the limit of asymptotically small curvature {a — oo} (5.3} takes the form
1 , 3
Varlo) = Vip) + gz V() [Iog(V"(«p)a’) - 5] + A+ Byt const,  (5.4)
and the renormalization conditions for it can be chosen as

V,:‘((p)l‘pa:,,a/,\ =0, VM((p L‘,7 =0?f) = 202 = m? (5.5)
They just define the positions of minima of the asymptotically flat V(p, By) and the
physical mass m of the field as in the classical theory (5.1). Moreover, they fix the values

for the constants A and B

2 2 _ 2 2 .
A= 32 = ('} log(2¢%0*) +6), B = IPe; log(20%a?). (5.6)

The flat-space polential (5.4) so obtained recovers the already known result reported in

i

(3)p? — a?)? 3rp? — o?
Tra = I
21A0%p?  27A%pt
6472 12872

The same renormalization conditions (5.5) and constants (5.6) can be chosen at zero

Ve, Butllamco = —50 0% + ¢ +

+ const. (5.7)

temperature because V(yp,00) and V(:2, By) have the same flat-space limit.
We can now investigate the second derivative V”(0, By) that foilows from (5.3),(5.6)

and takes particularly simple form at sufficiently Iarge curvature, when a? << ¢~

V™0, By) = —o* + ———{1 + 6%) 40 2 + log(20%a)) (5.8)

IG 2q? 327 2(
where 4 # 0,577... is the Euler constant. As one can see V"(0, By) changes sign and
becomes positive at some critical value of the radius @ = a,,. It can be found neglecting
the last term in (5.8) with respect Lo the second one and reads

2 _(1+867) A
O T

‘The third condition (5.2} holds if m2?a2, < 8, which is true for not very large values of A.

(5.9)

As a conclusion, we have shown in this paragraph that, while in the ground state the
symmetry is always spontaneously broken, the stable symmetrical phases can appear at
the Hawking temperature at some finite values of the space-time curvature. The natuie
of the given phase transition can be understood by considering the global structure of the

effective potential with the help of the expressions (5.3),(5.6).
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6 Conclusions and remarks

We have evaluated the finite-temperature e”.ective potential for a scalar field theory in de
Sitter space-time. The expression found enables one to study the symnmetry breaking in
two of the most interesting cases: at low temperature, and at a tempcrature close to the
Hawking one. The analysis is explicitly performed for the bare scalar potential reported in
(5.1} and sliows how strongly the presence of the temperature affects the phase transition
of the system,

It is well known that in Minkowski space-time the classical symmetry of a scalar poten-
tial under the discrete transforination ¢ — —¢ is sponlaneously broken by the quantum
effects. Rernacknbly, at low temperatures the symmetrical phase under this transforma-
1ion is mstable for every value of the radius a, whereas at the Hawking temperature, this
symmetry can be recovered for some finite value of a.

Far a generalization of these results to more realistic gauge theory, one has to find
the eigenvalues and multiplicities of the corresponding wave operators of the bosonic and
fermionic fields on the compact space O, which appear in the integral representation for
thermal averages.

FFinally. we also study the stiress tensor anomaly for the conformally invariant case and
find that it is a function of the therinal quantum state of the syslem. The reason of this

interesting fact and the possible role of the horizon here will be investigated separately.
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Appendix A. Zeta-function at 5~ Gy

To discuss the expression of the effective potential near the Hawking temperature, it
is useful to represent ¢(z, #) as an expansion in powers of (8 — #)/8. In fact from (3.15)

and (3.17), we can write

(=, 8) = ((z, Bu} + 5 ZA"F(—:T%{;:CR (22+2k—3, ;)

2 & poper Br ~ B\ Tz +p+ k)
”ZCR(?‘“*—’ ')}“‘ZZZN( - (’:)( Hﬂ ) F(z+,;)p!k!x

p=1l r=0 k=0

ptr+3
(ptr)t  (1—1)E-2) ! 3
x{ GErrE3=o 7 (—I)"—CR \22-{-2/&:-{-6—-3,6) X

1=0

Bpyri

3
27— (L= 2" B) + =€ (2: 2k +p+ ~2,-) (———)
( ( JB) +5n(2:+ 2%k +p+r—23 Girs )

3\ 7 2B
20g {22 + 2k D R e S
+€R( +2%4+p4 32)((1)4_7‘_‘_2)

+:(n (2: +2k+p4r —:) (— Byirss + L Bperta )

(Pp+r+3) 4 (p+r+1)

ptrdd

l "
3 Z ( p+rt+1 )(—l)f:CR (‘2z+‘2k+t— 1’%) (12t = (1= 217) Bt)}

T+t &

(A.1)
where we have used the well known relation
= 1
mz m? = g (Bpa(n 4 1) - Bo) (A.2)

where B,{(r) (B,) are the Bernoulli polynomials (numbers). It is worth pointing out
that the expression (3.28) for ((8, 7}, derived from another expansion (3.27}, can be also

obtained froin (A.1).

The zeta-funclion at 8 = By was found in [2] and is given by the serics
,ﬂ =0y =1 = CH(":\A) =

Z Cilz) (f) x [((2:+2k-3,3/2)—%((2z+2k—1.3/2)] .(A3)

k:
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Its derivative has the following integral representation

C0.8) = -3 (ferff'“K)u(u_%)(u_l)wwdu

1 1 20, 1,
+ EA2+7§A+§[CR(—3,3/2)—~Z(R(—1,3/2)] . (A4)

From (A.1) it is quite easy to obtain the approximate «xpressions for {(0, 8) and ('(0, 8)
for # = By, in fact we have

JAN 17 5A 3

A? A?
C(Ovﬂ)zﬁ-ﬂ—m‘“l—ﬁﬂﬂ) ﬁ——-—2—4—+@-) , (A.5)

. 1 f+va 1-va 1
C(O,ﬂ)z{*g (/% +[ )u(u—i)(u—l)d)(U)du
A A

2 1, 3 A 973
+ S n el tae ] b wws - [fa- F - 58

+ @ (16A% — 40A +9) (w(; +VA)+ w(5 - \/Z))] . (A6)

Inserting (A.5) and (A.6) in (3.19),(3.20) we obtain the expressions for the one-loop
effective potential and energy density at a temperature approaching the Hawking value.
The next temperature correcticus can be also estimated.

The asymptotic behavior of V (i, Bu) and E(p, By) at large @ when —A = a®V*(p) >
I can be found from (3.19) and (3.20) by the asymptotic [orm of the psi-function [16].

For instance,

Re ($(1/2+ tu)) |umco = logu — Z%u" - g%u-‘ +0(u™). (A7)
One can thus obtain
3 (A AT
Vi) = Vi) + 1 flos (ien™) (55 - 5 - 5305
v vy AT A
—log (V'(e)u™") ~ 5+ 24] (A.8)
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Appendix B. Zeta-function in the ground state

The expression for the effective potential in the ground state follows from (3.19)

V(p,00) =V(g) - (4",)2 T (0,8) +log(6) £(0,4)] (B.1)
where f(z.A) = limg.o (87'¢(2, 3))- Using (3.27) one can see that

2k
flz A)—ic ) (\/-A—) ¢(22 + 2k - 3,3/2) 1((2z+21c 1,3/2) B.2)
28 = 2 Ol Ty [ : 2 3/ (B
since f(0,A) can be found using (3.28) we only need to compute the derivative & ==
0,A). Remarkably, f(z,A) turns out to be connected with the zeta-function Cul(z,A) in

the de Sitter invariant state. Comparing (B.2) and (A.3) one can see that

2 [f(z a) (V&)™ ]=3A"'CH(2,A) : (B.3)
and consequently
d 1, __l_ . _
= (Jzr0.00) = s 6G0.8) -270.8)) (B4

This equation has the following solution

F0,8) = VA / B (3 (Ca(0,5) - €45(0,0)) - 2 (£(0,5%) ~ £(0,0))]
a0,0) 2 2/(0,0)) - (B.5)

To find f(0,y?) we take into account (3.28) and (A.5), so obtaining

£10,8) = (ﬁ+y+ /H) v (u L \/Z) (4 = 1)p()du

#gpt7+ o+ 2 =2 [G-3.8/2) - {ehi-13/)] (B6)

where in (B.6) we have integrated by parts to eliminate one integration. This result can be
inseried into (B.1) and V(ip,00) takes the form (3.33). The asymptotic form of V(p, o0}
can be obtained using (A.7). It is

3 A* A 17\ A* A
Vipioo) = V(o) + s [log(ml(ap)-?) (ﬁ - 5@) -2 g] . ®D)
where —A & a2V*(p) » L.
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