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1 Introduction 

The hypothesis that the early universe might have undergone an exponential expansion 

might explain a number of essential questions. Why, for example, the observed space is 

homogeneous ami isotropic and energy density in it is so close to the critical value [I]. 

In the exponentially expanding epoch the universe has the de Sitter geometry with fixed 

radius. If the radius is sufficiently small, there may be interesting effects arising from 

the behavior of quantum field theories in such curved space. In this way gravitation can 

influence the properties of the effective potential and can change the symmetry-breaking 

pattern in gauge models. 

In the one-loop approximation and assuming a de Sitter space-time this problem has 

been studied for scalar electrodynamics [2] and for the more realistic SU(5) gauge theory 

[3],['l]. These papers show that gravitational effects change the phase structure of the 

theory, but analysis there was restricted to a particular choice for the quantum state of 

the system,i.e. to the state which is invariant under transformations of the de Sitter group 

[5]. All observers moving freely register it equally as a thermal equilibrium state at the 

same temperature (27ra) - 1 (Hawking temperature), with a the radius of the space [6]. 

Note that the thermal equilibrium state in de Sitter space-time is always possible in 

static coordinates where the external gravitational field does not depend on time. Thus. 

a natural question arises: how does symmetry breaking occur in the de Sitter universe 

if a given quantum field is in an arbitrary thermal equilibrium state different from the 

invariant one? For this purpose, the study of finite-temperature quantum field theory in 

a static de Sitter space-time is necessary. 

This subject is also interesting by itself. Let us recall that a freely moving observer in 

this space has an event horizon separating from the whole space-time the region he can 

never see. The presence of horizons can have interesting consequences. It is known, for 

instance, that there is a close connection between event horizons and thermodynamics 

[6]. However, although the thermal properties of Green functions in the Rindler, de Sitter 

and Schwarzschild spaces were considered [7], finite-temperature effective potential and 

symmetry breaking in the static spaces with horizons were not investigated. 

1 



The present paper studies the quantum theory of a scalar field in the static de Sitter 

space-time at arbitrary temperature denoted by / 3 " 1 . The analysis of the scalar case 

turns out to be rather simple and can help to understand us the features specific of more 

realistic gauge theories. 

The paper is organized as follows. Section 2 is devoted to the quantization of a scalar 

field ф in the static de Sitter space. The energy operator in that space can be introduced 

mid divided into two commuting parts, defined in causally-disconnected regions. This 

enables one to formulate the functional integration formalism for the thermal averages 

in each region. It turns out that the integration here goes over the field configurations 

placed on the compact four-dimensional space Op with an Euclidean signature. This 

«pare is the infinitely-sheeted along the "imaginary 4 time r hypersphcie S4 of the radius 

n where pennls ( r , x l ) and (r f ^,J*') яге identified. At. the Hawking temperature, when 

i — '2xa в fin. *he space 0tj becomes a forr-sphere S4. In Hie general case it has conic 

singularities where tIn1 Killing vector field generating translations along r is null. 

In Section 3 the finite-temperature effective potential V'f^,/?) is introduced in the 

framework of the functional integration formalism lor averages. Studying the spectrum 

Ы the l.aplace operator on 0 {j we are able to find the expression of the one-loop effective 

potential as an expansion in /1~'. We use here zela-fuuction regularizat.ion [8], [9]. The 

suitable forms of \'{ф,в) and of the average energy density Е(ф,{3) are given for the 

ground and de Sitter invariant states. It is shown that, in the limit of asymptotically small 

space-time curvature, they both coincide with the vacuum effective potential computed 

in Minkowski space. 

The scaling properties of the theory in the c.onformally invariant case are considered 

in Section 4, where the stress tensor anomaly is obtained explicitly. Interestingly, it turns 

nut to depend on temperature. At /? = (Зц the standard value of the anomaly is recovered. 

The possible reasons of this circumstance are briefly discussed. 

Finally, in Section 5 for a real selfinteracting scalar field we show the differences of the 

symmetry breaking pattern in the ground and de Sitter invariant states. It is shown that 

in (he ground state a discrete symmetry of the classical theory is always spontaneously 

broken, whereas at the Hawking temperature it can be restored at a certain value of the 
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spare radius acr. Conclusions and remarks are then presented. 

Technical details needed for the explicit evaluation of the zeta-function near 0 = /?# 

and in the ground state are reported in Appendix A and B, respectively. The results of 

Appendix Л can be used to eslimatc the temperature corrections to the potential near 

the dc Sitter invariant state. 

2 Stat ic de Sit ter Space-Time at Nonzero Temper­
a tu res 

2.1 Quantization in the static de Sitter space 

I)e Sitter space-time is a solution oF the Einstein equations with a positive cosmological 

constant. In the static coordinates (ire line element can be written in the form 

= gttdt2 - ,M-rV.r J (*,./ = 1,2,3) , (2.1) 

and —oo < t < -f oo, —л- < \ < 7Г, 0 < 0,£ < л, « is the radius of space. The properties 

of the static coordinates are discussed in [10]. One has to mention here that they cover 

only pari of the space-time and thnt the regions | \ | < тг/2 and | \ | > т< j'l aie separated 

hy the surface В = S2 and are causally-disconnected. 

We can always choose in de Sitter space a Killing vector field generating one-parameter 

group of isometrics, a subgroup of SO{\,-J\). The coordinates (2.1) correspond to the time-

like part of a Killing vector field associated with translations along the time /. These 

coordinates are restricted by the bifurcate Killing horizon [11] on which the Killing vector 

field is null. It coincides with the event horizons of oservers with traectories being com­

pletely inside the static frame (2.1). The two-surface В is the bifurcation surface thai is 

left unchanged under the action of the given one-parameter group. 

The quantization procedure for a real scalar field in the curved space-lime is given in 

terms of the commutation relations for the field variables [5] 

|« . r ) ,0(y)] = O , (2.2) 

[f„(.r)</rr ' ' ( .r) ,^, .( ' /) '^"(.v) |=0 , (2.3) 
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[ /ШМ*),ФЛУ)№''(У)->ЯХ) , (2.-1) 

where the points x and у belong to a space-like hypersurface S , such that the Cauchy 

data on £ define uniquely a solution of the classical equation in the whole space-time. 

For the static spaces we can introduce the energy operator H which is associated with a 

generator of the unitary transformations of the field ф under translations along the time 

coordinate (. In the static de Sitter space (2.]) H depends on the lime component T, ' of 

the energy momentum tensor 

H= f ^cPxft' . (2.5) 
Jt^consl 

'I is splitted into two parts Ну and # 2 depending on the field variables and acting in 

the regions | \ | < ?r/2 and |x | > т / 2 respectively (g is the determinant of the metric 

(2.1)). For the model of the real self-interacting scalar field with the action and the 

energy momentum tensor given respectively by 

S = jd*x v ^ (\д^фд"ф - У{ф]) , (2.6) 

and 

T,u, = 2(-g)-44S;6g"' , (2.7) 

from (2.2)-(2.4) it follows 

{Hufh}=l-jd<r°Jg7,(dtj>Z>J + dJdli) = 0 , (2.8) 

where da" is the surface element of 8; the operators Hi ana Hz commute because the time 

component of the metric tensor gtl vanishes on the bifurcation surface. In particular, the 

last equality shows explicitly that there is no energy exchange between the two causally-

disconnected regions. 

2.2 Functional integration formalism for the averages 

We can choose now (in an oscillator approximation) the creation and annihilation oper­

ators of particles associated with the Hamiltonian (2.5), this allows us to construct the 

representation of the commutation relations (2.2)-(2.4) given on the corresponding Fock 

space. 
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Let us consider a canonical ensemble of such particles at temperature /3 in one of the 

causally-connected regions, when | \ ' | < 7r/2, for instance. The thermally averaged value 

of a physical variable О measured in this region reads 

<d>0=Z^Tr(de-0"') , (2.9) 

where Z/y is the partition function determined by the eigenvalues E„ of the operator Hi 

Z„ = Tr(e-e*) = Y,c-»E" . (2.10) 

The parameter / i _ 1 coincides with the local temperature measured by the observer being 

at the origin of the static coordinates at x — 0 and the average (2.9) does not depend on 

the behavior of the system in the rest of space. 

To obtain the functional integral representation for the average values (2.9), let us 

make the coordinates x' discrete (with intervals Да;') on the surface t = const. Then, in 

the causally connected region |x | < т / 2 , the transition amplitude from the state \ф' > to 

the state \ф > for the infinitesimal imaginary-time e turns out to be 

1/2 

иЛф.ф') =< , | e - V >= lim П ( v / ^ g ' ' ( ; ) A * ' A * M * 3 I e-«"> 
(2.H) 

where 

(2.12) 

According to this definition the functional Ф(б, ф) = f d<)i'c/e(qS, ф')'Ф(ф') has the following 

properties: 

Ф(«,4)|«=о = « ( * ) , (2ЛЗ) 

-деЩ',Ф)\.=а = &ЩФ) • (2.M) 

Hi is the Hamiltonian in the region |x | < т / 2 

Я, = / V4 d?x (\tP + ^ Й (ЭД 2 + V{})) , (2.15) 



connected with the stress tensor via the formula (2.5). On the surface t — const (that is 

on S3) IT = (gu)~'^2dt<i> is the quantity proportional to the canonical momentum in the 

coordinate representation 

The transition amplitude for the final imaginary-time interval /J is given by the integral 

ир(ф,ф')= f Г^е ' 5 » 1 * '* ' 1 , (2.17) 

where 

»-A. П П(^; д ,1ГТ*-' • •"» 
0<T,<ff X Ч ' 

- W , 0')дг,л,-о = / vV« <fet№ i <frrf3i [ ^ " ( < З Д 2 + ^ " ( < З Д 2 + W ) ! , (2.19) 
JO<T<0 I* * J 

with the boundary condition $(х ,т = /?) = <£(д:), <£(х,т = 0) = ф'{х). The representation 

for the average value of an operator О follows from (2.9) and (2.10) 

<6>0=Z^ J ОфОЩе-5*™ , (2.20) 

• / ' 
Офе-Ы® , (2.21) 

where Пф ~ (1фОф and 5#(<й) = 5р(ф,ф). From the definition (2.19), the integration in 

(2.20) goes over the field variables placed on the compact space Op with line element 

ds2 = cos 2

 Xdr2 + a\dX

2 + sin 2 X<102 + sin 2 ,V sin 2 Qd?) , (2.22) 

which is the Euclidean form of the line element (2.1), and the periodic parameter r ranging 

from 0 to 0. 

When 0 = f}n the space Op is the four-dimensional hypersphere S4. The twc. noint 

thermal Green function defined in agreement with (2.20) at /3 = /3// coincides with the 

Green function of the de Sitter-invariant quantum state that also turns out in static 

coordinates to be periodic analitic function of the imaginary time [6] with period 2тга. 

This state is the vacuum, but its field excitations, which are defined in a de Sitter invariant 

way |5], cannot be interpreted as particles of a certain energy. All observers moving freely 

register this slate as a thermal equilibrium at the same temperature /3^ ' = (27га) _ | [6]. 

Let us point out that thermal equilibrium at the Hawking temperature only in the given 
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pari of static frame (|\{ < ж f'l) does not mean the de Sitter-invariant vacuum because the 

quantum state of the system in the other casually independent part of space (\\\ > ж/2) 

can be quite arbitrary. 

If/i = jt~l:i/t (n ~ J, 2, ..J, the integration in the representation (2.20) for the averages 

goes over the fields on the hyporspherc S4 on which the points (т ,х ' ) ;md (r + /?,x*) are 

idrntilietl. Such space is an orbifohl [12]. At zero temperature Op = 0^, and is an 

infinitely-sheeted sphere S4. For the arbitrary temperatures Op is the factor space of O^ 

over the ciclic rotation group with period ft leaving the two-surface В unchanged. In all 

the points out of В it has the geometry of an hypersphcre hut in the domain of B, when 

| \ I —* тг/2, it looks like the product spare cone 0 .S'2. The volume of Op is ;1V where V is 

the volume of the spatial part of space-time (V — 1 тго'^/З). 

3 The Effective Potent ia l 

3.1 Basic formalism 

Phase transitions in curved spaces at arbitrary temperatures can be investigated as in the 

flat one applying the effective potential method. The effective potential V{*p i) in our case 

can be introduced via the path integral representation for the partition function (2 21). 

For tin's purpose. let us consider in (2.21) the "static" part tp = {0V)~l f0 ^fg </''x<£(.r) 

of the field variables on Op (<y is the determinant, of the metric (2.22)} 

= N f <l<pc-fiVV^ , (3.1) 

where N is a normalization constant. The potential (' is defined by the integral 

r - w v < » j i ) = / o^' f - • •>(*+* ' ) t (3 2) 

over the fields obeying the condition 

Jo. 
^И<тф'(т) = 0 . (:U) 

If V(ipt ft) is a known function of î >, the partition function can he found from (3.1) by the 

method of stationary phase. The points у, of minima of V(ip, ft) correspond to various 



field configurations with the average field strength in the considered volume V equal to i^, 

in the one-loop approximation. The real part of V(ip, ft) is a sum of the classical potential 

energy V(ip) and of the quantum corrections to it. ff a field configuration <̂>, is unstable, 

then V(ip,,/3) has a nonvanishing imaginary part determining its decay-rate [13]. 

To calculate the one-loop effective potential, one has to expand the functional Sp(<p -f-

ф') in (3.2) on ф\ taking into account the condition (3.3), and to approximate it by the 

expression 

SB(4> + Ф') = (V0)V( V ) + \ I JgdAx ф'(х)<2(<р)ф'(х) , (3.4) 

where Q{p) s — D + V"(ifi) ( • is the Laplace operator defined on Op). The integration 

in (3.2) can be performed as usual if we use the completeness of the eigenfunctions ii„(z) 

of D, so that the field ф(х) can be expanded as 

#*) = £>„*.„(*) , (3.5) 

where the eigen functions are normalized as follows 

y/g d*x ф„(т)фт(т) = S„,m , (3.i.) / 
JOe 

V{V, 0) = V(V) + ± - [ log(de t ( , r 2 Q)) - l o g ( ^ 2 n v ) ) ] • (3-7) 

and change the measure (2.18) by the measure Оф = J7 n(2jr)~'/ z/i<i^„ vvith /i a normal­

ization constant . Integrating over фп we get from (3.2) 

J_ 
2,9V 

According tu (3.3), we eliminate from V(ip,fS) the contribution of zero mode of the Laplace 

operator. The last term is important for analitical properties of the effective potential 

when the space-time curvature is large. 

If all field configurations are stable, the one-loop partition function can be derived 

from (3.1) considering the minima with the zero imaginary part Im V(v5;,/3) = 0. In the 

given approximation it turns out to be 

Zg = V f _ M L V e-fivvM) . (3.8) 

Taking into account the normalization of the zero mode <p in (3.1) and (3.5),(3.6) and 

(3.7) we can substitute N with ,u(/?V)'' 2 and represent Zg in the form 

2, = £У<"*<л,Л , (3.9) 
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V(<p,f>) = VM + щ; log (det(p-2Q)) . (3.10) 

It is obvious that in the flat-space limit, when the radius and volume of space tend to 

infinity, both the quantities V(y>, f3) and К(у>,/7) coincide. 

The field average < ф{х) >р in the one-loop approximation can be found from (2.20) 

in a similar way, and is 

<#*)>„=£/*(/?)¥>.• , (З.П) 

where the coefficients 

in the equilibrium state are the probabilities for a given field configuration y?, to appear. 

From (3.9) we can also obtain the average energy as the sum 

< Я > 0 = - ^ l o g Z 0 = £ > ; ( / ? ) V f i t y ^ ) , (3.13) 

where the quantities 

E f c D I ^ ^ f l ) , (3.U) 

are the energy densities of the configurations <̂ ,-. 

In the trivial case of a free scalar field the effective potential V(io,/?) has only one-

minimum at ifi = 0, as in the classical theory, because the determinant in (3.7) does not 

depend on the field y?. 

3.2 Zeta-function 

To regularize the determinant in Eq.(3.7), the zeta-function method [8] can be used be­

cause the eigenvalues A„ i m of the operator — О -f- V"(}p) on Op can be found exactly. They 

are characterized by two nonnegative numbers n and m and depend on the temperature 

KmUi) = a--(n-m + (0H/p)m)(n-m + (PH/0)m + 3) + V"(V) , (3.15.1 

n = 0,1,2,. . . . ; m = 0,1, . . . ,n; 
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The multiplicity s„,„, of the eigenvalue A„m is (n — m + l)(n - m + 2) if m ^ 0, and 

(" -f l)(ii + 2)/2 for m = 0. In the case of the Hawking temperature /3^' this operator 

turns into the operator on the hypersphere S4 with An = a~2n(n + 3) + V"(^) a , K i the 

multiplicity 
" 1 

9» = ]Ts n,™ = jj(n + l)(n + 2)(2n + 3) . (3.16) 

The rcnormalized log det(Qy.~2), the effective potential V(tp,fi) and the average energy 

E{^,fi) expressed in terms of the generalized zeta-function 

С(^/3) = £ Х > „ , т ( а

2 Л „ , т Г . (3.17) 

now read 

log (det(,T2<>)) = - [C(O,0) + log(MV)C(0,/?)] , (3.18) 

V(f,0) = I ' M - ^ [C'(0,/3) + log( / (

2a J)C(0,^) + log ( Г ( ^ - ! ) ] , (3.19) 

E(^/3) = V(V) - i ^ [C'(U, 0) + log(^' a

2)C(0, /?)] , (3.20) 

where <'(_-,,:!) = £« ; , / ? ) . 

bet us find a more suitable form for the zela- function (3.17). If we express (« 2 А„ т )~ г as 

яп expansion with parameter Д = 9/4 — a2V"(<p) and point out that £)Г=о £щ=о / ( , n - n) = 

Si7=oSm=o/f'"'" + '")> W I ' c a n immediately perform the summation on the n index in 

(3.17) obtaining 
r «, 

dzji) = ^ C t U ) A 4 ^ [ C f i ( 2 . ' + 2fc-2,(A;//3)"i + 3/2) 
Ji=0 l m = 0 

- 2(/)„/1))тСп (2г + 2* - 1, (Д,//3)т + 3/2) 

+ ((»>/W/3)2 - j ) Ся (2г + 2A, (/?H//J)m + 3/2) 

- Мся(2г + 2 * - 2 , 3 / 2 ) - 1 с я ( 2 * + 2г,3/2)Н , (3.21) 

where the coeffirients '^(г) are defined by 

Willi the following integral representation for the Riemannian ^-function 

^ • 0 ) = вд1 7 Т 7 Т * • <3-23> 
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we are able to sum up over m. For instance, one can get 

t <**' WP)m + 3/2) = ^ £ ^ L e - | . ^ _ _ 
for Re s > 2. Thus, inserting (3.24) in (3.21) we have 

dy , (3.24) 

roth ( ф ) 

!'(•->-- + 2 A - I) Г(2.- + 2k) 
(3.25) 

Note thai from (.4.25). if the variable ; is close to zero, ((:,(!) is determined by the 

behavior of lite integrand only in the vicinity of I he lower limit of integration. In this case 

one can use in (3.2Г)) the definition of the Bernoulli numbers Д , 

•Г _ у, Д, 
(3.26) 

(valid for |.r| < т.). to pet a representation for (,'(;.,'?) as a series of odd powers of the 

tempeiaturc 

Г(2г +2А----2» - 1) 
I '(2; + -J/.-) 

C„(2; + ->k + 2n - 3. 3/2) - io?(2= + 2A- + 2» - 1. 3/2)1 

(3.27) 

This representation holds for - close to zero «ml can be applied to compute ((0.,l) 

l i» ' s - .of ( ; .^ ) and its (irst derivative, obtaining for (,"(0./tf) the exact sinipk' expression 

<(0,ii) = 
(51-(iO(ft,//J)2 - < ( Ш L ( 2 ( . ^ , / , J ) 2 - 3 ) 1 , 

!.4.2S) 
2880 21 ~ ' 12" 

At the Hawking temperature this result coincides with the expression obtained by other 

authors [2]. To compute the first, derivative of (3.27) we observe th':t 

— (zC.R(z + i, f ].«)) 
dz 

( - D " + l <ln ., . (3.29) 
n\ ttan 

with it integer > 0. Unfortunately, as far as ('({),'!') is concerned, it can only be expressed 

in terms of an expansion 

™ я . -£[ ь (-*0-!ф-9]-г[ 6 (-.§)- fa.(-.|)J 



1 

_ I V 4 f — Д , + ЛТ' й г " + 2 +9T< ^ 2 п + 4 1 v 
Г ^ [12 2 " T (2n + 2)(2n + l ) i " (2n + 4)(2n + 3)(2« + 2)(2,i + l)J 

x 5 [ ( 2 n + 2)(2n + 1)^.g)_^g)] 
4 f £ B - ^ £ fa +" •• - 2 « 2 n + 2 * - з)^ + »- 4 > ( I ) 

_ l0(*+*-4 Q J ( (3.30J 

where Г = ft;//?- The last equations (3.28) and (3.30), once inserted into (3.19), define 

explicitly the effective potential as an expansion in the temperature /3~ ' . This expansion 

is especially useful to investigate the potential V(<p, /3) at the low temperatures. Another 

expansion of V(y>,/3) around the Hawking temperature can be found in Appendix A. 

However, in the most interesting cases we are going to consider, the potential can be 

written in a more suitable integral form. 

3.3 Vanishing temperature and Hawking temperature 

The effective potential for the space of raaius a at the Hawking temperature /3J,1 can be 

found from (3.19) substituting in it the expressions of £'(0,/?//) obtained in [2], and of 

C(0, A J ) from (3.28). It reads 

V(<p,M = V(4>)-
(4я)*а4 

1 / / ? + , / S / * " ^ \ 1 

+ 1 д 2 + 1 Д + I o g ( , V ) ( g - £ - j g j ) + log ( П , И ] + cons. , (3.31) 

where ф(и) is the psi-function. We can also derive the average energy density (3.14) in 

this state by an expansion of ((z,0) in powers of (A/ — /?)//? given in Appendix A 

E(<p,0H) = VM + - 3 1 . , 41 . 973 
- - Д 2 + — Д 
8 144 5760 (4jr)2a« 

+h (i " 0 (l ~ Л ) (* ( 3 / 2 + ^ + +W2 -"/*)- lo8(A2))] • (3-32) 
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From (3.19),(3.20) and (3.27) the effective potential a t zero temperature coincides with 

the vacuum energy density. A connection between zeta-functions at ft = oo and ft — ftn, 

described in Appendix B, implies 

v{v,oc) = v(v) ~ j ^ [ Ц + ^ + / ^ j « (« - j - VS) (« - IM«)A 

+ &A' + 27 A + ' 0 g ( " V > ( S - ? + Й)] + CW,e'' ( 3 S 3 ) 

At the points of minima the imaginary part Im V(y>, oo) gives the decay probability Г of 

metastable vacuum configurations calculated in the quasiclassical approximation Г = 

- 2 / m V(v>,oo). When VE > 3/2 or if V"(ip) < 0, the integrand in (3.33) has the 

simple poles due to the psi-function and integration contour should be chosen so that 

Im V(ip,oo) < 0. This can be achieved simply by changing V"(ip) with V"(tp) — ic/2 

(( > 0), which corresponds to go around the poles in the lower part of the complex plane. 

A similar way to regularize the integral part of V(tp,ft) can be taken at ft = fta, but 

here the situation is different. The vacuum energy (3.33) is singular when V"(<p) — 0 

where both E(<p,ftn) and V{<p, 0н) are finite. The singularity and imaginary part coming 

from the integral in (3.31) when 3/2 < \fK < 5/2 are totally cancelled by the last term 

Iog(V"'(y>)/i_ i i). Consequently, in the vacuum state one has instability when V"(ip) < 0; 

whereas at the Hawking temperature, when V"(ip) < - 4 a " 2 (or \/Л > 5/2). 

Asymptotic expressions for V(tfi,oo), V(I/>,/3H) and E{y>,fti{) at the large radius a 

are written in the Appendices. One can thus show that all three quantities in the limit 

a —» oo coincide with the vacuum effective potential in Minkowski space 

VuM = V(V) + - ^ (V\v)f (helVMlT1) - I ) • (3.34) 

This property can be easily explained observing that the Hawking temperature ((2ica)~l) 

vanishes in the flat-space limit. On the other hand, the effective potential calculated at 

ft = ft}i coincides with the one in a de Sitter invariant state and can be turned, when 

a —t oo, only into the potential in the Poincare-invariant vacuum state. 

To complete the calculation of the renormalized V(ip, ft) we have to add to it finite 

counterterms and express the parameters through the measured quantities. It will be 

done for a particular model in Section 5. 
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4 Scaling and the Trace Anomaly 
Let us consider the conformally invariant scalar field theory with the potential V(<j>) — 

(ff/12) d 2 . where Я is the scalar curvature, R = 12a" 2 for de Sitter space-time. The 

energy operators Я of conformally related static metrics 5„„(x) = а2(х}9иЛ*) have the 

same eigenvalues [14]. In this ease, the scale invariance of the unrcnormalizcd partition 

function Zp follows immediately from the definitions (2.18),(2.19) of the measure Оф and 

i he Fuclidean action Sf){4>) in (2.21). 

In Iho conformally invariant scalar field theory, the logarithm of the renormalizcd 

partition fund ion is defined by (3.9),(3.18) and reads 

b g Z f l = ^ [C'(0,/?) + log(,,V)C(0,/3)] . (4.1) 

For the constant scale transformations of the metric ди„{х) ~ а2д^„(х) we have A„,m = 

^~"2A„> j n i£iz-,fi) — °' 2 гС( г-/^) a n < J therefore the following equality for the partition func­

tion, as a function of gltlr and the renonnalization parameter/ i , liolds 

Я,з(о 2 Я„, ,о- ' /0 = % . , , , / * ) . (4.2) 

In static space-times the thermally averaged energy momentum tensor does not depend 

on lime and can be determined by functionally differentiating the free energy F(ft) = 

- r f - M o g ^ [ M ] 

Tllu(ft,x) =—j= (4.J) 
v/=ff(5s'"'(.r) 

i.r' are three spatial coordinates). Thus, one can write for the integral of its trace (71 "(ft)) 

over the spatial volume V the following ecpiation 

/ Л - v/=?/'„ "(ft, .r) = | / Л - ^ ^ - Г М = - / Г 1 A log Z,(a\j^ , , ) U , . 
Jv P Jv °9'' (*) Oa 

(4,1) 

Finally, Kqs.(4.1) and (4.2) give 

j d\ s/^7/r„ '(13,x) r-. -r '^logZe^.a/OI^, = -ir\(0,ft) • (-1-5) 

Substituting here the derived expression (3.28) for ((O.fi) in the conformal case (Д = 1/4) 

we get tin* trace anomaly at the temperature ft~l 

Jv 
14 



- / - 1 -1 
Remarkably, it is a function of /•) and leads at the Hawking temperature ft, = (2ira) 

to the correct trace anomaly and energy-momentum tensor of the de Sitter-invariant state 

Т'„ЛА/,.г) = (960>г 2 а ' ) - |

г „Лг) . (4.7) 

It is ordinary believed that the trace anomaly does not depend on the quantum state 

in which is the system [15] because it is determined by the ultraviolet divergences and is 

sensible only to the space-time geometry and to the possible boundaries. 

The general finite-temperature quantum field theory in static space-times has been 

investigated in [M]. It has been shown there that infinities, renormalization, and the 

trace anomaly arc the same as at zero temperature. However, the effects of horizons that 

can be crucial for our analysis were ignored ;., that work. 

The divergences arising in the case of the static do Sitter space can be investigated 

for the thermal two-point. Green function. Considered as a function of the imaginary 

time ranging from zero to ft it is given on the compact space 0$ (see (2.22)) with the 

conic singularities near two-surface B, which may effect its unusual thermal properties at 

short distances. Analogous thermal Green functions, corresponding to the Rindlcr and 

Scliwarzschilil metrics, are defined on the spaces with the same conical structure near the 

horizons. This is probably true for the case of every space-time with the bifurcate Killing 

vector field. However a detailed analysis of the dependence of the anomaly on the thermal 

state, and of the role of the horizon is outside the aim of the present work. 

We should also mention the calculation of the average energy according to (3.113) in 

terms of the renormalized function /-'(<^,ft/), F.q.(3.32). In the conformal case we are 

interested in , it is simply equal to VA'(0, ft;), with A = 1/-1 and the average value of the 

field ^ = 9. Tlit- energy thus obtained does not depend on the scale parameter /i. There 

is a discrepancy between it and the quantity < II >ц= J<Px y/^Jj T, ' ( f t , , . r ) defined 

through the anomalous energy momentum tensor ('1.7). However, whereas the first one, 

/•,'((),ft,), is defined up to finite rcnormalizalion terms, the quantity < // >/t is totally 

anomalous and consequently is оГ a pure geometrical character and independent of the 

rcnormalization procedures [15]. 

15 



5 The Model 

We study here, as an example, the mode] of a real quantum scalar field with symmetrical 

potential 

V(<*) = - ^ V + ^ 4 , (5.1) 

(<т2, А > 0) and compute the effective potential in the ground and de Sitter-invariant 

quantum states. 

The discrete symmetry ф —> — ф inherent in the classical model (5.1) is known to be 

broken in the ground state in fiat space-time; in this case the zero-field configurations 

are unstable. The symmetrical phases correspond to the configurations with zero field 

strength and their relevance at nonzero space-time curvature may be found from the 

results derived in Section 3. 

From these results we draw immediately (he conclusion that there cannot be stable 

symmetrical phases in the ground state at any curvature because V"(0) = —а1 < О and 

the effective potential has a non-zero imaginary part at ф = 0. On the other hand, 

symmetry can be restored at the Hawking temperature /9^' at a certain value of a if the 

following conditions hold: 

V'(0,I3„) = 0, V " ( 0 , / ? H ) > 0 . V"(Q) > - 4 < T S . (5.2) 

The first condition is always true for this model as far as V(c') depends only on the square 

of the field. To investigate the second one we have to fix the meaning of the constants a 

and A in terms of the measurable quantities, obtained for instance in fiat-space. 

Following the standard renormalization procedure we can eliminate the scale parame­

ter fi from \'{<р,0ц), Eq.(3.31), by absorbing it into the definition of the finite countert­

erms that should be added to the effective potential. These counterterms have the same 

structure as the initial potential (5.1). Thus, the renormalized V(<P,J3H) turns out to be 

VM'Wa* 
1 

~3 

1 , J 1 л +—A + —Д + 12 T 7 2 log 

/ /*W5 fh-rt\ i 
\Ji +J> ) "(u - r2)(u - W(")du 

; ( K ' W ) l + А<рг + Bv* + const, (5.3) 
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In the limit of asymptotically small curvature (a —> oo) (5.3) takes the form 

\'м(Ч>) = V'(v) + - j ^ (V'Mf hog(V"(V>y) - | ] + V + #¥>" + canst, (5.4) 

and the renormalization conditions for it can be chosen as 

VM(¥>)I„ '=<. 'A = °- КЫ\^^'1\ = 2<r2 s ra2. (5.5) 

They just define the positions of minima of the asymptotically flat V ( I ^ , / 3 H ) and the 

physical mass m of the field as in the classical theory (5.1). Moreover, they fix the values 

for the constants Л and В 

Л = ^ ( 3 1 о е ( 2 Л 2 ) + 6 ) , S = _ J J L l o g O V ) . (5.6) 

The flat-space potential (5.4) so obtained recovers the already known result reported in 

II] 
1 2 J _, A . (ЗА*,2 - Л2 V(M^ = -^V + у + ^ ^ ^ i o g (Щ^1) + 

2 U < r V 27AV 4 

+ . . - r - - j ~ - + cemsf. (5.7 64ir 2 1287Г2 

The same renormalization conditions (5.5) and constants (5.6) can be chosen at zero 

temperature because V(<p,со) and V(<P,0H) have the same flat-space limit. 

We can now investigate the second derivative V " ( 0 , / 3 H ) that follows from (5.3),(5.6) 

and takes particularly simple form at sufficiently large curvature, when a2 < < cr~2, 

H O , fe) = - » * + j g ^ i U + 67) + U (2 + log(2o-V)) , (5.S) 

where 7 ^ 0,577... is the Euler constant. As one can see V"(0, /Зц) changes sign and 

becomes positive at some critical value of the radius a ~ a C T . It can be found neglecting 

the last term in (5.8) with respect to the second one and reads 

0 + б т ) ^ 
SV m 2 ' { ' 

The third condition (5.2) holds if m2alr < 8, which is true for not very large values of A. 

As a conclusion, we have shown in this paragraph that , while in the ground state the 

symmetry is always spontaneously broken, the stable symmetrical phases can appear at 

the Hawking temperature at some finite values of the space-time curvature. The natuie 

of the given phase transition can be understood by considering the global structure of the 

effective potential with the help of the expressions (5.3),(5.6). 
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6 Conclusions and remarks 

We have evaluated the finite-temperature elective potential for a scalar field theory in de 

Si Iter красе-time. The expression found enables one to study the symmetry breaking in 

two of the most interesting cases: at low temperature, and at a temperature close to the 

Hawking one. The analysis is explicitly performed for the bare scalar potential reported in 

(b.l) and shows how strongly (he presence of the temperature affects the phase transition 

of ) he system. 

Il is well known that in Minkowski space-time the classical symmetry of a scalar puten-

lial under the discrete transformation ф —* ~ф is spontaneously broken by the quantum 

effects. Remarkably, at low temperatures the symmetrical phase under th's transforma-

i ion i.s instable for every value of the radius a, whereas at the Hawking temperature, this 

symmetry can be recovered for some finite value of a. 

For a generalization of these results to more realistic gauge theory, one has to find 

the eigenvalues and multiplicities of the corresponding wave operators of the bosonic and 

fermmuic fields on the compact space 0$, which appear in the integral representation foi 

thermal averages. 

Finally, we also study tile stress tensor anomaly for the confonnally invariant case and 

find thai it is a function of the thermal quantum state of the system. The. reason of this 

interesting fact and the possible role of the horizon here will be investigated separately. 
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Appendix A. Zeta-function at /3 ~ (5ц 

To discuss the expression of the effective potential near the Hawking temperature, it 

is useful to represent C(z, /?) as an expansion in powers of (&ц — /?)//?. In fact from (3.15) 

and (3J7), we can write 

C(c,/3) = CU,/3H) + i £ A ' j ^ i I { ^ ( 2 2 + 2 i _3,g 

(„-. _ ( l _ t~>) B,) + ,0, (2. + П + , + г - 2, §) (-(^jy) 

^ ( 2 - ^ + " + "-4)((^7Tl)) 
- 5 r ^gV + ' + , ) ( - , ) ' e , : i ' ( 2 ' + 2 t + t - 1 ' i ) ( ' 2 , " , - ( I - 2 , " , ) e , ) } 

(A.l) 

where we have used the well known relation 
E » • ' ' = — UVnfn + l W W , (A.2) 
m = l * 

where Bn{x) (Bn) are the Bernoulli polynomials (numbers). It is worth pointing out 

that the expression (3.28) for ("{0, ft), derived from another expansion (3.27), can be also 

obtained from (A.l). 

The zeta-function at /? = ftjj was found in [2] and is given by the series 

= ^ О Д ( Л ) " x fc(2.- + 2 t - 3,3/2) -l((2z + 2h- 1,3/2)1 . (Л.З) 
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Its derivative lias the following integral representation 

С 
,(0'д) = 4 ( / / + л + / / ~ ^ ч u ~ 0 ( " ~ 1 ) * ( u ) A , 

+ ft*' + ~^ + l [Сй(-3,3/2) - i f t ( - I , 3 / 2 ) (A.4) 

From (A.l) it is quite easy to obtain the approximate expressions for (f(0, ft) and (,'(0, /3) 

for 0 =s /?H, in fact we have 

Д 2 

C(0„S)< 12 24-2880+(1-^^4"i2-2i- + 6iJ ' (A.5) 

№/»)> U ( U _ nX U _ 1)^'(")<'" 

Д 2 Д 2 L , „ 3 . 1 ., , , 3/П ,„ ,„ ч Г 41 д Д 2 973 

+ у ^ (16Д2 - 40Д + 9) (v>4 + \/Л) + 1« | - %/Д)) . (А.6) 

Inserting (A.5) and (A.6) in (3.19),(3.20) we obtain the expressions for the one-loop 

effective potential and energy density at a temperature approaching the Hawking value. 

The next temperature corrections can be also estimated. 

The asymptotic behavior of V(v>,/?#) and Е(<р,@н) at large a when —Д Rs a2V"(<^>) S-

1 can be found from (3.19) and (3.20) by the asymptotic form of the psi-function [16]. 

For instance, 

Re M l / 2 + iu)) U^ = log B - ^ ы - 2 - — u - + 0(u- 8 ) . (A.7) 

One can thus obtain 

(A.8) 
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A p p e n d i x B . Zeta-function in t h e g round s t a t e 

The expression for the effective potential in the ground state follows from (3.19) 

3 
V(v,oo) = VM- - 1 [ № Д ) + 1овГУ)/(0,Д): (B.l) 

where f(z.A) = l i m ^ c (0~'((z,j3)). Using (3.27) one can see that 

f(z, Д) = g <?*(? )Д 3 / _ , |<(2г + 2* - 3,3/2) - -<(2г + 2ft - 1,3/2) , (B.2) 

since /(О, Д) can be found using (3.28) we only need to compute the derivative д / ( г = 

0, Д). Remarkably, / (г ,Д) turns out to be connected with the zeta-function (я(г,Д) in 

the de Sitter invariant state. Comparing (B.2) and (A.3) one can see that 

,1г-Г d /( г ,Д)(ч/Д~) = ЗД'- ,Сн(г,Д) , 

and consequently 

t = (-^fifi. A)) = ^ (ЗСя(0, Д) - 2/(0, Д)) dsTE. \VA 
This equation has the following solution 

rs/K 

(B.3) 

(B.4) 

/ '(0,Д) = у/К[ ^ [ 3 ( С „ ( 0 , у 2 ) - С я ( 0 , 0 ) ) - 2 ( / ( 0 , у 2 ) - / ( 0 , 0 ) ) ] 
Jo У 

(B.5) 

(B.6) 

- (3C„(0,0)-2/(0,0)) . 

To find /(0, y2) we take into account (3.28) and (A.5), so obtaining 

/'(о,д)= (£*" + £ "|иГ«-^-\/д)(«-1Ж«)«(« 

4 Д 2 + 2 ? Д + 4Ж- 2 [ С « ( - 3 ' 3 / 2 ) -^ - 1 ' 3 / 2 ' ' 
where in (B.6) we have integrated by parts to eliminate one integration. This result can be 

inserted into (B.l) and V(tp,oo) takes the form (3.33). The asymptotic form of V(9,oo) 

can be obtained using (A.7). It is 

"<"~> = VM + (5&? [*№*)•*) ( £ - f -Й) -T + f]' ( B 7 ) 

where - Д и а 2 у " ' ( ^ ) » 1. 
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