


Introduction

There is a significant difference between the description of Yang-Mills
field ground state and that of any other fields for which the conventional
methods of quantum field theory work. The instability ‘of the naive per-
turbation theory (for example, see ref. [1] and review [2]) is one of the
crucial problems in application of the non-Abelian field theory to hadron
physics. .

Efforts to understand the problem of the QCD vacuum give rise to
a huge number of speculati‘Ons connected with the nontrivial topologicaf
properties of gauge fields [3-8]. We want to continue these attempts from
a different point of view.

In this article , we would like to underline the significant role of zero
modes of the secondary first—class constraints [9, 10] in the quantiza-
tion procedure of gauge theories. We will demonstrate that the presence
of zero-modes reflects a global structure of the initial gauge symmetry
group. These zero modes can i)e also treated asvso.‘me‘ collective éxcitaf
tions of gauge fields. An example of that type zefo mode is the Cole'—‘
man electric field in the twb—dimensional QED 11, 12, 13]. It is welI
known that the local U(1) in the two-dimensional space time and the
non-Abelian compact groups in four dimensions have the same topolog-
ical properties. Therefore, before the consideration of the non-Abelian
gauge theory we study a simple example, ‘électrodynamics on a finite line
and emphasize the nature of these zero modes as remaining quantum
mechanical variables. With this experience we proceed to investigate
the four-dimensional SU(2) gauge model where in direct analogy with
the previous example we introduce the same type residual variable de-

scribing the zero mode of the secondary constraint. On the basis of this,
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we speculate on a possible folg of these collective excitations for the
Yang-Mills ground. state and stable perturbation theory.

The paper will be organized as follows. In section 1 , we present a
systematic analysis of electrodynamics in two-dimensional finite space
time in the Lagrangian and Hamiltonian forms. Section 2 is devoted
to the (1+3) dimensional SU(2). Yang-Mills theory. We prove a no-go
theorem about the local realization of the representation of a homotopy
group without the collective hode, and show that the presence of a zero-
mode of the first—class secondary constraint leads to another realization

different from the ”instanton” one [3-5].

1. Electrodynamics in the two — dimen-
sional finite space — time

1.1. Zero mode of the Gauss equation

 Let us start with the Abelian U(l) gauge theory action in the two-
dimensional finite space time -

3T 3R
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In the (141) space time we have énly electric tension £ !

Foyi= Ay —dAy = E. (2)

1Below in the text we will use the following notation f:= %}t’ af : =
af
dz*

The action is invariant under the local gauge transformation -

Audtr2) = A7) = gt o) (AL 2 + 20097 (ka) ()

affected by an element of the gauge group

ot 21) = exp(+ A(1,2) W

with an arbitrary function A(¢,z) . (The constant e/% has the dimension -
of mass and A/l is dimensionless.) |
The Euler - Lagrange cquations for the gauge field follows from the

action (1) by varying A,(¢, )
P Ao(t,z) — DAL, 2) = 0, -~ (5)
Ai(t,x) — dAg(t,z) = 0. -~ (6)
The Gauss equation, (5) does not contain a time derivative of the time
component Ag and is considered as a constraint.
The general solution of the Gauss law (5) with respect to the time

component can be represented as a sum of a general solution of the

homogencous equation

82(P0(L5$) = 0’ (PO(tal) = Cl(t) + C-)(t)'.l‘,

and a particular solution of the inhomogeneous one constructed with the

help of Green’s function G(z,z'):

iR
Ao(ty2) = golt,2) + | d'Gla ') (04t ) (7)
_%n
PGz ,2') = Sz —2"). (8)
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To specify the zero mode c,‘oo(t,.:z) and the Green function G(x , &',
we need a boundary condition for the gauge field A,(¢,z). The usually
exploited-boundary condition ‘

Ault,z) =0 (9)
::=:t-12—R ‘

leads to the well-known result for the zero mode
SOO(ta I) =0

and the Green function

' no_ 1 ' (‘T‘TI) R
G(I,I)‘—QII—Il-{-'—R—- - 4
Substitution of the solution (7) with these quantities into (6) leads to the

identity

Ai(tz) = At z). (10)

Thus , as have been expected , we do not get any restriction on Ai(t.z).

Due to the gauge invariance (3) only transversal components are dynami-
cal. In the two-dimensional space we have only a longitudinal component.

As a consequence , we obtain
E = 0.
Now let us suppose a more subtle than (9) condition

= Aut, z)
r=+;—R

At z)

ta (D)

I:—f
with an arbitrary time- dependent vector a,(t) and

Ai(t, z) = At z) (12)

T4 %R == ;—R

9 Ao(t, z) = 9Ao(t,z) (13)

=+ ;—R r=— %R

¥
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These conditiqns mean for the physical quantity E the following:

= E

. —_1
o lw=—g R

E.

z=t+3R .
It is evident that for this case we have zero mode

ao(t)
R

Z.

polt,z) = ailt) +

Due to the presence of this zero mode of the opefator 3%, we face the
problem of the correct definition of Green’s function with the boundary

conditions

G(z,z') = G(z,z')

s=tiR e=-4n

= 0G(z,z")

(14)

" 0G(z, ") (15)

z=+l;R 1‘=—%R

To solve this problem , we exclude the zero mode from the Green

~function spectral representation

o0

Glaa) = Y mleil) (16)

P

n=-o00,n3#0
where the function u,(z) is an eigenfunction of the one-dimensional

Laplace operator with boundary conditions of the type (14), (15)

Fun(z) = Mun(a), exp(i2"a)

1
un(z) = ﬁ

“with an eigenvalue A, = —(%2)2.

The representation (16) leads to the foHowing équationﬂ
o ) "
2 noo__ LA N
'G(z,z') = Y uu(a)ul(e’) = 6z ') o
n=-—o00,n#0 } ) =
instead of the conventional one (8). Nevertheless , it is easy to check the

representation (7) with this solution of the Gauss equation (5) because

A; satisfies (12). The explicit form of the Green function (16) is
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’ ‘_ I"v(x"—xl)2 R
Giz-2') = ]a:-—:v|— SR T3
After substitution of the solution (7) into the equatlon for Ay(z) in-

stead of identity (10) we’ get

S iR e
dgo(t,z) — % / dz' Ay (t,z") = 0. (17)
TS LR W '_AI—R ‘ ‘ P

" 'This is the crucial point. We obtain the remaining variable depending’

on the zero mode and on the functional Ni[A]
Ni[Ay] = % / dz' A, (¢, z'). (18)

It is useful to introduce the following notation for remaining variable

Ne(t) = No(t) + NilAd,  (19)

V\;h_e:fe ¥ . '
No(t) = % / dt'dpo(t, ). - (20)
_ i , _

In terms of Np(t) eq.(17) has a simple form
Ne) =0 (2

and for electric tension we get v

27rh

E = ——Nr(t
7 Vr(t)-

It is eaéy to see that the new variable Nr(t) is connected with the

two dimensional topologibal'inklariant , the Pontryagin number functional

v[A] = = dre,“,F“" = C /dt | dz(A, - 040)

47rh oh ,
-iTr -ir
in a simple way
T T
v[A] .= Nyp (—) N. (—— - : (22).
constraint 2

. Now, we can sec the double role of the remaining Variable Nr(t) in
diflerent gauges. In the gauge A, = "0 it looks like a zero mode of the

Gauss equation for electric tension

82Ao(t,1‘) = 0. .

In the temporal gauge Ay = 0 Ny = Ni[Ay] is the topblo«rica]

variable which transforms under the residual statlonmy gauge t.mnslm-

matlons

| i, VLIV
At ) — Ayt z) = g(2)(Ar(@1)+—0)g7 (2), 9(x) = exp (3 A(z) )
in the [ollowing way:

NilAi) = Nl + o [/\({,3) =Pl e

Recall that the functions g(x) represent maps of the line (—R/2, R/2)
with the identified ends g(—2~) = g(—’~7) onto the U(l)—group space. All
these maps are split into the classes characterized by the integer index n

pointing out how many times the closed line turns around the U(1)-space

circle. The quantity g0 is called the large gauge transformation; while

J(n=0) ; the small one. .



The factor-space of all stationary gauge transformations with respect
to the sma.ll ones G/Go comc1des w1th the homotopy group of all one-

dlmensmna.l closed paths on the’ U( )——c1rcle
m W) =2 | @

where Z is the group of integers. The new variable Nr(t) is invariant
under the small gauge transformations and changes by an integer under

large transformations

Ng(t) —» Np+n. (25)

The invariance of the theory under the large gauge transformation
means that the points Nr, Nr + n are physically identical. The configu-
ra.tions NT = 0 and Nr. = 1 are the same; s0 the manifold {NT} is a
c1rcle of the length of unity. o
Thus the exphc1t solution of the constrained equation (5) leads to

some reduced theory, effective action for which can be obtained after

substitution of the solution: (7) into initial action (1)

1 o)

The gauge field theory in the 141 space time reduces to a simple me-

WA, = WR[N,

constraint

NH

chanical system . The reduced action with the deﬁmtlon of the mamfold‘

{Nr} describes a plane rotator with the mass [ :};

To get a physical consequence of the new vqnable , we should quanti‘ze.

our reduced theory\Thus , the next goal is-the consideration of this zero

mode in the Hamiltonian form of gauge dynamics.

1.2. Zero modes in the Hamiltoniah approach. Pri-
mary and secondary reduction

It is easy to get the Hamiltonian form of the reduced theory starting
from the reduced action (26)
o : | o
Whed — / dt [PNT - = P2I—1] , (27
-T/2 2
where P is canonically conjugate to NT For the generalization to the
non- Abelian case , it is useful to obtain thls actlon and to elucidate the
status of Z€ero modes in the canonical Hamlltoman scheme.

For our purpose it is conveniént to use first order formalism action

1[E, A“ / dt/_%_ dz( ;'“‘9A°)’— _E2>_ | (28)

where the time component Ap plays the role of the Lagrange factor. The

momentum canonically conjugate to Ag(t,z) is equal to zero

. wo(t,z) = ——-—aL — =0 (29)

(9A°(t :1:) :
Equation (28) is the primary constraint and its Poisson bracket with the
canonical Hamiltonian H leads to a secondary constraint for. the electric
tension '

{0, H} ='6Et= 0. (30)

These two constraints aecofding to Dirac’s definition [9] , form the first-
class ones. Equations (29) and (30) mean that the time component is
not physical and can be removed from phase space by the gauge trans-
formation. The removal of nonplfysicél componen{:s by explicit solving
of primary and secondary constraints will be called the primary and sec-

ondary reductions resoectively. To remove the time component-, it is



ehough to choose the gauge Ao = 0. The primary reduction of the
action (28) gives ’ »

Whed = / d’z [EA1 - %E’] ~(31)
with the Gauss law
‘ dE = 0.

‘This first-class secondary constraint should be accompanied by the

second -class constraint (gauge condition). Let us choose the gauge

This gauge is diéting_uished by the equation of motion following from the
action (31) i '
and by the constraint (30) .

The secondary reduction of the Hamiltonian scheme action (28) evi-

dently, coincides with the action (26) obtained from the Lagrangian ap-

proach. To verify this , let us write down the explicit solution of con-

. straints (30) and (32) in the form’

= —_— 34
E P27I'7i _+ E 2. . ( )
. .h . ) .
A = g(No)(AT + Z0)g™ (No), (35)

where the gauge transformation -

9(0e) = exp {255 Mot} (36)

and AT and ET . are the transversal v;iriablgséqualto zero in the two-

dimensional case.-

10

' Thus, a global sub«rloup of gauge symmetry leads to collectlve exci-
tation P of the type of a zero mode of the first class secondary constraint
(30) which is the remammg longltudmal part of the gauge field momen-
tum. This zero mode is accompamed by the zero mode of the’ radlatlon

gauge \‘Vthh is well known as ‘the Gribov ambiguity {14].

e

1.3., Quantization of the reduced theory

F()‘lr"qlla.li!}ll.n"l description of the reduced theory we will use a fixed time
Sch;ﬁdingcrhxjcprcsentf"ttion.Thg canonical variables I\AfT(t), Ia(t) are fixed
at time ¢* : . :
Nr = Ne(t*), P = P(t)
and satisfy the commutation relation
i[f’,NT] _y o (37)
The stationary Schrédinger equation
HU, =W, : (38)

should be complcctcd by Lhe constxamt of 1dcnt1ﬁcat10n of the pomts

N, N + 1 on the cucle

lv|>1

xpc(_zv{r_i):e“’q;((zv) (ogvo"g ) (39)

The solution of these equations is the.Bloch plane wave

Y, = eklN, P = (2xk + O)h, o (10)

11



where & is the number of the Brillouin zone. The spectra of the electric

tension and the energy have the fdlIO\Ving forms

E=e<k+%>‘. ; ‘_ ;(41)

Ce=RE}/2 ()

which coincide for the ground state (¢ = 0) with the Coleman constant
electric tension [11]. The nonzero tension (or the collective persistent

current in the functional space) appears here as a pure quantum effect

(of the type of the JoAsephson one) due to the jump of the phase of the'

wave function (40).

There is another way of describing this zero mode where'it is rep-

resented as the functional of the local variable [4,5]. However, different
" (equivalent for the considered model) ways of introducing the zero mode
lead to different results in the non-Abelian theory. The reader can see

this fact in the next section.

2. The SU(2) Yang-Mills Theory in Four

Dimensions

~ 2.1, Primary reduction

W

We start with primary reduction of the Yang - Mills theory with the

local SU(2) group

wiet < [z prde -3 (e 87 (43)

12

IR Vet

where the electric tension Ef satisfies the secondary constraints

VEE = (80 +ee A B} = 0, (44)

and magnetic tension B /
B,é = € (a,-A;:+ %abc A A;) . (45)
Below we will use the gauge
Ve (A)AL =0 | | (46)
which is corklsist‘ent’ with- the equations of motion ‘
EX = AL . o7 @

1. 1

This theory has the topological nontrivial gauge symmetry group
381 "

o S - 2 eTt A5, '
Ay o Al=9(Au+8.) 97 Au= % (48)
All stationary transformations with the boundary conditions
limg.(F)=1 |Z] » oo (49)"

represent the manifold of thre&diméﬁsioné.l closed paths on the three—
dimensional sphere SU(2), and can be split into the classes characterized
by the integer index of a map (n) of the space {£} into the SU(2) group
space:

= 1
T 24x2

[ e citun [ttt Gi=gos™ o0
As in eq.(24), we can speak here about the homotopy group

IL(SU@) = 2 | C(s1)

13:



There is a topological'irariable Ni[A]

NL[A]

162 3

which realizes the representation of the homotopy group [6]

NL[AAT] :bNL[A] + n S (53)

2.2. No-Go Theorem for the Local Quantum Rep-

‘resentation of the ‘Homotopy Group

Apart from the experience obtained from the above considered two-

dimensional theory there is one more mathematical argument in favor
of the existencefc.)f the independent collective variable N7 of the type of
(19).

" The exact formulation of the problem of quantization of the Yang-
Mills theory with the nontrivial homotopy group is given in refs. [4, 5]

.and consists in solving of the set of equations

HLY, = eV, L (51)
CVEY, = 0 : (55)
T, = &0, o (56)

A first equation is the stationary Schrédinger eQuation with the Hamil-
tonian

A B = [ o3 (5 + B, (57)

14

, X -
/dsxfijk.(f_l? 8; Af + 7 € AT A% A3) (52)

Eq.(55) reflects the invariance of the theory under the small gauge trans-
formations, and Eq.(56) describes the covariant properties of the wave
function under a large gauge transformation. The topological shift oper-

ator Ty, has the form

TL:exP{ﬁm},’ )

where Ny, is the functional (51). This form is justified in refs.[4, 5] by
representing the solution of (54)-(56) in the form of the Bloch wave

function
W (N, AT) = erP N g (A7)

and by the exact ll()lll)ll\b]Cdl soluonn with cnergy ¢ = 0

2
‘\I/o = exp{:i:si? NL[A]} .
€

No-go theorem: '.I‘here',are no physical solutions of equations (54)-
(56) - |
" The Proof: It is easy to check that the operators Hy, Ty, do not coni-

mut:e
[Hi, TL) # 0;  [[Ho[Hy, T)| # 0 ;

therefore they cannot have a complete system of physical eigenstates.

In the two- dimensional Abelian case , this local realization works

due to the absence of a transversal variable. There is only a planc wave

excitation, In the-threc- dimensional casc , these transversal variables

describe the oscillator- like local excitations in the Schrdédinger equation

15-



due to the magnetic field potential while (56) means that the wave func-

tion is simultaneously a plane wave, which is impossible.

2.3. Secondary Reduction

As we have seen in two- dlrnensmnal case, there is another way to get

a nontr1v1a.l physical representatlon of the homotopy group (51). For

this goal it is sufficient to introduce an independent collective topolog- .

ical variable Ny, which describes the Gribov ambiguity of the ” motion
equa.tion gauge” (46)
A= fi.’% = gn, (A,T + ai) 9Ne —‘1., | (59)V
and its conjugate momentum
;= gy [BT + Polnle™V: (AT)do| g, (60)

as a zero mode of the first-class secondary constraint (44). Here @ is

- the zero eigenfunction of the Gauss constraint (44)
ﬁ?b(AT) VE(AT) 3 =0 (61)
Ny = T exp ((i)oNo(t)IB“)- ‘ (62)
Ig , Ip are the following surface integrals:
Ig = /d%(v,@)“B;‘ = /di“xa.-(é“(lz“),; 'B ; 86—23 _

Iy = /d3z(v,~q>)°(v;q>)a = -;-'./d3b:6?(<1>“)2."" 7 (63)

16

~ Note that the new va.rla.bles ET and AT satlsfy the same. constralnts
(44), (46) whlle the topologlcal va.rla.ble (50) and actlon (43) acqmre a.d-

ditional terms

NT[AT, No]. = Np[AT™] = N [AT) + Ny + Inv.term . (64)

. WRcd [A, E] : WRed [AT‘, ET] + dt [PN - %'P?pr]g“?:l ’ (65)

s s

Eq.(64) is defined within a term invariant under large gauge transforma-
tions; Eq.(65) is just the secondary reduction action. Let us consider the
51rnplest case when the surface 1ntegrals (63) are tlme 1ndependent We‘

choose them as’

Iy = P Ip =1 ' - (66)
with u being the parameter of the mass dimension. Emphasize that

this condition means a slow i increase in the fields at spatlal 1nﬁn1ty An
example of fields like those is the well known Prasad- Somerﬁeld solution

[15] of the Bogomolny equation

2% ‘
V?C(Aasympt)q)oc :,t',/‘_,Bg(Aaaympt), / L 3(67)
where » ’
a 1 abi__e © l . 1 _ _I_l =
Aasympt,,‘ A [sinh(yr), rl’g m=0T —lxil o
~ 2n 1 ,
((I)")O = '?ma ['u COth ('UT') — ;] . ‘ oo . (68)

For these ﬁelds , he invariant term in Eq (64) has the followmg form

51n(27rN0)

= (69)

Inv.term = —

Thus , we get the non-Abelian analog of the Coleman electric field in the
(1+1) QED.

17



2.4. The global representatlon of the homotopy
group .V

From the reduced action (65) we get the following Hamiltonian:
1 -
Hpeal P, E, AT, B"] = 5= P* + Hi[A", E], (70)
L]
where Hj, is defined by (57) In this case , the Schrodinger equation

'HRed \I’c = E\I}z ' » (71)

admits the factorization of the wave function on the plane wave describing

the topological collective motion, and oscillator like part depending on

transversal variables

U (No, AT) = ex™Mo y [AT]. o (12)

Thus , the representation of homotopy gronp is realized ‘as
Te¥, = e’V T’-ex 1P) = exp(on). -
Tele=e"g To=exp|gh ) = exp ()

Recall that P has a discrete spectrum . -

P = (2rk +0) h.

The oscillator like part of the wave function ¥ L[AT] is described by the

Hamiltonian Hj,.

It is useful to separate the statlonary asymptotic part of the transvcr-

sal varlable Agsympe and the qua51partlcle excitations with the zero bound-

ary conditions

cA A e A

AT (20, %) = Awsympt(E) + &7 (z0; T). ' (74)

18

“In the homogeneous approximation, il we neglectqnasilpérticles

a* (zo; ) we. lTet florn (65) the followmg effectlve action

. _7.‘
Wer —WR“‘[A“ym,,t, _o] / [ P'-’L,,IB-2 / d%B’] (75)
' - =T

For the Prasad Somelﬁcld asymptotlc ﬁeld there are values of the cou-

plmg constant
7o) o (76)

for wluch tl\e eﬂectwe collectwe actxon (l5) 1s cqual to zero.
~We want to empllasu(. the dttlactlve pecuhautles of the consxdeledvﬂ
global reahzatlon zero action and stabxllty of perturbation theow un-

der small defounat]ons (16, 17]. Tlns is jUSt thie main dlfference from

1nstanton contubutlons wltch are supplessed by the actlon factoxs

1

”"ﬁCon'fclu'suilon ‘

,( uwehave discussed the mathcmatieal and physical arguments in the
favour of the introduction of the zero modes of‘the first-class secondary
constraints in gauge theories. ‘ »

* It is shown that the reduced action approacli allows us to take expl‘lic—_
itly into account the zero modes including the Gribov ambiguity mode
and clarifies their double role as independent variable or the \(’iil&ing
number functional. To 1‘01)1'odueev this result in the Dirac Hamiltonian
approach:;, it is uscfullto‘ consider the-procedures of primatr’y and sec:
ondary reductions. The primary reduction has been-introduced by Dirac

to conserve the uncertainty principle for gauge ficld components included:

19



_in the phase space (see discussion of eq.(2.28) in Dirac’s Lectures [9]).
This redoetion is equivalent to the choice of a temporal geuge. The sec-
ondary reduction consists in the fixation of the remaini.ng ambiguity due
the presence of statlonary gauge transformatlons generated by the Gauss
constraint. For this purpose , we explicitly solve the Gauss constraint
and the additional gauge condition that doesrnot contradict the equa-
tion of motion. At this step , to reproduce the result of the Lagrangian
method , it is necessary to introduce the zero mode of the first-class sec-
ondary constraint together with the zero mode of the "motion equation
gauge ” (second- class constraint). These two modes are considered as
canonically conjugate Variablee the vhinding mhnber end its momentum.

The introduction of mdependent modes allows us to con515tently describe

the representatlon of the homotopy group and to construct the quantum

theory with the effectlve finite actlon for the local excitation.

In the Yang-Mills theory the zero- mode dynamics is reahzed in the
presence of a stationary condensate of the type of the Prasad-Sommerfield
"bag” [7,15,18] . Perturbation theory around this condensate is stable
unlike the conventional one. This situation is very similaf to Jthe the-
or'ykof gravity ,where the metric excitation of the type of the Friedmann
expansion leads to the stabilization of the Universe. This metric ex¢ita-
tion is also the zero mode sector of secondary constraint in the theory of

gravity [19].
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Xsememunze A., [lepsymun B. ' ‘ E2-93-439
Hynessie MOBI BTOPHUHEIX CBA3EH EPBOTO POAA '
B KaJHOPOBOUHEIX TEOPHIX

MeTonom peayuupoBaHHOrO ¢)a30BOr0O NPOCTPAHCTBA U3YUaAIOTCA HYJIEBHE
MOJEI BTOPHUHEIX CBA3EH IIEPBOTO POAA B ABYMEPHOM SIEKTPOANHAMHUKE H TEO-
pun Jura — Muwiica B KoHTEKCTe npobsieMs cTabmisHoro Bakyyma. CpasHu-
BaeTCH ONUCAHUE STUX MO B AMPAKOBCKOM FAMIJIBTOHOBOM IOAXOAE M BHISBISI-
€TCS UX CBA3b C TOMOJIOTHUECKON CTPYKTY PO KaJIMOPOBOUHOIA rpynsl, B pam-
Kax «pefylMPOBAHHOIO» KBAHTOBAHMSI CTPOMTCS HOBAS PEaN3ausl TPyNIibl
rOMOTONHH B HeaGeieBoit TEOPHH, ITIE POJIb CTAGHIBHOTO HEaGeIeBOro BakyyMa
€ KOHEUHBIM AeiicTBHEM BrmoOHAET pemenne [Ipacana — 3ommepdensaa.

Pa6ora srmosinena B JJaGoparopuu teoperudeckoit husuxu OMAN,

Tpenpuyt OGbensHEHHOMO HHCTHTYTA SAEPHBIX MCCaeaosanmit. Ny6ua, 1993

Khvedelidze A., Pervushin V. i E2-93-439
Zero Modes of First Class Secondary-Constraints
in Gauge Theories )

Zero modes of first class secondary constraints in the two-dimensional
electrodynamics and the four-dimensional SU(2) Yang-Mills theory are
considered by the method of reduced phase space quantization in the context
of the problem of a stable vacuum. We compare the description of these modes
in the Dirac extended method and reveal their connection with the topological
structure of the gauge symmetry group. Within the framework of the «reduced»
quantization we construct a new global realization of the homotopy group
representation in the Yang-Mills theory, where the role of the stable vacuum
with a finite action plays the Prasad-Sommerfeld solution.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR.
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