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1... Introduetion .

‘ In ea.rher pa.pers 1-5 we outlmed an approach to descrlbe Tesonance spectra of
hadromc resonances havmg strong 2- partlcle decay modes.. Thls approach was sur-;
prlsmgly successful in reproducing the known resonances: . The invariant masses of un-
known hadronic resonances were also predicted. Moreover, it allowed us to get rather
good estimates of widths for those resonance families (including dibaryons), where the
interaction: potential between their decay products is more-or-less well known. :

. This approach was based:on some very general key points: (1) every hadronic.
resonance can be treated as a radiating system confined in the coordinate space within:
a region with characteristic size 79=0.86 fm; (2) when this system has a non-negligible-
2-particle decay mode, it can be considered as a;corresponding binary particle system
~'in final stage of its life; 3) for such: a system the classical resonance (eigen-frequency)-
condition is valid for existence of eigenwaves in an open radla.tlng -Fesonator (a.ntenna)
with the effective size rq: s TPEN T ) R T

e e wene Pro=(n4y); . b e (1)

Here P is the asymptotlc momentum (i.e. the momentum measured in experlment) of
decay products taken in the‘ rest frame of the resonance, nis'an mteger posxtlve number '
and 0 <y <1 is'a number Wthh depends on the boundary condltlons for'a glven "
degree of freedom and on the type ofa dyna.mlcal equa.tlon for the resonatlng system

In refs.1=5 the value ‘of 7-—1 /2 was ‘¢hosen according to the Helsenberg uncerta.mty A
relatlon in‘its minimal versxonPro > 1/2 and’ n=0, 1, 2,... or 7—0 ‘and’'n= 1=1, 2,
3,.... The latter case can be consrdered as the well-known Bohr-Sommerfeld orblta.l
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Note that the wavelength ,\1 = 2x [P corresponding to the first resonance ( n =
for ¥ = 0 and n = 0 for ¥'= 1/2 ) must be of order of ry which can be seen from
dimensional considerations (see for details ref. 2), but on the other hand, in deriving
the Bohr-Sommerfeld quantization rule for the bound states the wavelength A; must
be smaller than the characteristic size of the considered system, as is well known.
In the papers 1-5, in order to calculate invariant resonance masses for given pairs of
decay product (meson-+meson, baryon+meson, baryon-+baryon), a mass formula which
incorporates above-mentioned key points was used with the same fixed value of the
parameter ro. The question is now, is this parameter really an universal one. We have
all the time used the asymptotic values of the momenta in the resonance condition,
neglecting possible interaction between the decay products. We suspect that it is due to
considering "shape” resonances (which carry properties characteristic for the interplay
between the effective size and wavelength of the system) that our consideration must
be independent on a particular form of the interaction.

Thus the suggested mass formula should give almost the same mass of a res-
onance for every of its 2-particle decay modes (and exactly the same mass within a
full coupled-channels treatment) without changing the parameter ry, if the approach is
self-consistent. It is worthwhile to note that multiparticle decays can be considered as a
chain of binary decays: the 2-particle decay of a "primary” resonance into two clusters,
further these clusters again decay into 2-particles and so on. This is consistent with the
observation that multiparticle production processes proceed mainly through resonance
production. Therefore the multiparticle decay can be treated as a tree-like phenomena’
where the intermediate resonances play an essential role. It indicates a way how to use
the suggested approach in studies of multiparticle decays of resonances. Qur approach
was applied to selected resonances covering low and also high invariant masses (includ- ‘
ing bottomonium) as well with low" decay momenta in the rest frame of the resona.nce,
some unknown resonances and decay modes were predicted. :

This approach predicts more resonances than are observed hitherto. The ques-
tion is; which of the predicted resonances exist in nature? "It'is evident that some
of them might be forbidden by selection rules. Therefore some: criteria have to exist
which limits the number of resonances. Someexamples;of our predictions and:some
comparison with recent data were given in refs. 1= in which very exciting correlations
between the calculated results and experimental data were obtained.- The-parameter
19=0.86 fm was'in refs: 172 associated with the first Bohr orbital or with the confine- :
ment radius which is nearly the:same for all hadron:and dlbaryon resonances
within the experimental accuracy. N L S

" -The quantization condition (l) of the asymptotic momenta for resonatmg system
was obtained.in the cited papers in a heuristic way. Here we would like to derive
equatron (l) from general quantum mechanlcal arguments starting from the well known
R (P) -matrlx theory of the resonance reactlons The aim of this article is to get some
common propertres of the resonatmg system, havmg waves with the wavelength of |
order ro or Pro ~ 1+ 1/2 well localized ‘near its surface This phenomenon is in"
a full analogy (m the correspondence pr1nc1ple sense). with the "whispering gallery
phenomenon in acoustics, which was first observed by Raylelgh 6 in 1910 year, with
the open radiating resonators in classical electrodynamxcs7 with the rainbow and glory
effects also (ref. 16). The same phenomenon was observed in the consideration of the

"stadium billiard” problem in- classrcal mechamcs (ref. - 14 15 29) It is lnterestlng to
mention, that in nuclear physrcs the significant non- unlformlty of the distribution of
single-particle energres (gross shells properties of magic nuclei, non-sphericity of nuclei,
gross structure of resonances in the optical model and etc.) is a result’of semiclassical
quantization of motion-along many-dimensional closed orbits (see refs 8,9. for” detalls
and bibliography). * S : ;

The question of what are underlying reasons for such surface localization is out
of the scope of this paper; still it is. worthwhile to note that it is effects of refraction
of inner waves which are responsrble for emergence of the Tocalized surface-like waves
in the examples mentioned above. Therefore we would like exploit the wave nature of
particles at low energies when their Lui de Broglie wavelenghts are 'of the same order
as the radius of strong interactions. Our general physical conception of resonances is
as:follows: it is the periodic motion and refraction’of .waves in the restricted region of
space which are responsrble for the creation of resonances in any resonatlng system

b

, Quantization of'the aSymptotic momenta of resonances

The asymptotrc quantization condltron (1) can be obtalned by applylng the R-
matrix’ 10 o, equrvalently, the P-matrix formalism to partlcle reactions 11~ Accord- '
ing thése papers, one can assume that the resonatmg system having several two—partlcle'
decay channéls is free at ‘relative separation >"rg in the center of mass, hence the’
logarlthmlc radlal derlvatlve of the mternal wave functrons can be mtroduced
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which should be calculated in the framework of some modern quark models
For simplicity, let us consider only the systems with one dominating open chan-
nel. As was mentioned in the previous section, the decay of hadronic resonances can
be considered in a full analogy with open classical electrodynamic resonators’ ‘and the
mathematical formalism given in this excellent monograph can be used. Therefore the
boundary conditions for the emitted waves must be ‘written as follows (tbe conditions
of radiation): " L
) .. r  dR{(Pr) .
(h(l)(P )T—)r—ro £y (4)
where h(l)(Pr) are the spherlcal Rikkati-Hankel functions which are equal to ezp[z(Pr—
In[2)] at Pr>> 1.
*"77 Rikkati-Hankel functions can be expressed via the Aery functions 28 at large
positive T values - s Ty el

N dhgl)(z) B h(l)b’

e = i), ===k () = (DR, 6
where', + 7 /7 T R T SR o SR
w(r) = u(r) +iv(r), Wty =v(r)+i'(7), . - - - (6) u

u(t) = ‘r’%e%’m, u(r) =737,



v(T) = %T *6_57312’ v’(r) = —%T%e_%":h’ (7)
1+1/2 - .
=(’+1/2)('I—'thfl), chy = +:/ , z=Pro. ®

Ignoring the imaginary part of the w and ', taking into a.ccount eq. (3) and
dema.ndmg X > 0 one obtains:

B f e o
) h“)(( ). shn,(shn—-—P—EX o
Usmg eqs (8) and (10), we ﬁnd
oo A2 o (10)
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Finally, we note that X= 0 for the well isolated resona.nces by deﬁnltlon 10, hence
eq.(10) becomes ~ S , R SRR I
Pro=I+l/2 o L oy

Tlus is the resonance condition for ‘asymptotic deca.y momentum P which is
valid for large positive value, of 7. Note that the quantization of asymptotic momenta
is not typical for the standa.rd quantum mechanxcs but is rather common in the physxcs

_of open resonators. The strong agreement: between our calculated asymptotic decay
" momenta of particle resonances and experimental data mentioned above indicates an
existence of a common. base in physics of open classical electrodynamical resonators
-and particle resonances. :
Considering the special case

Proml+1/2, |7|< 0, o (1)

one obta.ms w1th use of eq.(5):
M) = i), MY () =i, L (19)

where

’ Pro=1+1/2—-vr, u=(I+1/2)1/3 (14)
Usmg egs. (3) 4) and (13), a characteristic equation for elgenva.lue P can be obtamed
W (T) —vXu(r) =0. ' o , (15)

From the asymptotic expressions (6) we ha.ve

‘Z((l VAl = et 4 2 --*”’1-' VAl —ient a6

It follows from (15) and (16), that the solutlon of (15), in first a.pprox1ma.tlon onvX =g
at the condltlon g> 0 is equal to v

To=92, 3/ —g, ‘ ' (17)

Sl e - . 2 L 2ﬁ2 pe e

This solutlon can be taken asa ba.sxc one 1f g > 1, then in the second approx1ma.t10n
—g[1+21e L T (18).

The 1mag1na.ry pa.rt of T is exponentla.lly sma.ll That leads to the pecuhar elgen-wave
(Pr>1 + 1 /2)

, " ezp (%lpr - u— 1/2]3/2) /(Pr —-1- 1/2)‘l4’ 'S( n ; ; (19)
‘loca.llzed on the surfa.ee at’ r = rn, its exgen~frequency is: ‘ I e )
v Pns o+ 121 - -X’% B (205
which occurs st condltlons & fl/ oA : - : l ,7 V e
17 |<< v? X <L e (21)

Such surface waves locallzed at r= ro ha.ve exponentla.lly sma.ll a.bsorptlon in
full analogy with the waves in the whlspermg ga.llery This phenomenon is very close
to the phenomenon of the full refraction of the waves on the boundary separating two
media with different refraction propertles Rambow eﬂ‘ects and open resonators 7 can
be considered as another examples of such kind. It means that nuclear and hadronic
resonances have the same physical ongm emergence of well locahzed surfa.ce waves
w1th wa.velengths of order ro. F o :

~<*The method of R—ma.tnx allows to estlma.te w1dths of resona.nces as well 1t is
known that (for detalls see’'18 ) -

s Sl
aiE e

r= M,Pro, or. P_IZMrOVV' RO (22)

for 1=0 and Prq = 1/2 according eq. (11), or

= Provl (Pro) (23)

21 + 1
for I > 0 and Prg < I*/2. Here u(Pro) =| BN (Pro) |72 is the. ”penetration factor”.

Strictly speaking, the condltlon (20) is_inconsistent with Pro < 13 still (23) is in
practice valid at list approxxmately One ca.n see that the w1dths of resonances ha.vmg
low decaying momenta depends only upon qua.ntltles ro, P and M. R.oughly spea.kmg, ,
I‘ocla.ndl‘ocM‘lm o , . y

3. Resonances decaylng wnth small momenta

Let us consnder a ha.dromc resonance as a bma.ry system a.nd use the results of.
the prekus sectlons Accordmg to 1,2 the invariant mass of the resonance at its peak

can be, wntten as follows

nl ) = T F Pl T P4 A = \/nii%("f")’. \/ m+ (P )’+Amn,_
3N : o EPRRRT ¢ T i ro,.

5,



where R labels the resonance, while the indices 1 and 2 refer to the constituents 1 and
2 observed in the 2-particle decay of the resonance R — 1 + 2 respectively. As already
mentioned, the "main” quantum number n is equal to 0,1, 2... while v is equal to
0 or 1/2, so n +1/2=0,1/2, 1, 3/2, .. The‘paramaer ro = 0.86 fm is fixed in"all
calculations presented below and in refs -5 as well.

Formula (24) describes the gross structure of the resonance spectrum with rea-
sonable accuracy because of the relation Am, < T which is valid in all investigated
cases of strong decays R — 1.+ 2. -The leading term: of the mass formula describes
only the "center of gravity” position of the corresponding multiplets and thus the gross
structure of the hadron and dibaryon resonances.. The fine structure in each multi-
plet is determined by residual interactions and correspondmg quantum numbers which
are not contained in the approach 12, Therefore the condition Am,.< T is to be
considered as an empirical fact. .

Neglectmg the last term in (24) and subtractmg my + mg, we obtain under the
condltlons m1 > [(n + '7)/1"0]2 a.nd m2 > [(n+ 7)/r0]2 that the excrtat)on energy” E,
is’

2 n+'72_ ~ 1 n‘+’72 2

BB \/ (2 \/ + (T sz(——‘,o P @)
where m12“= mim; /(ml + mg) ‘This expressmn is completely the same as the well
known formula for the rotational energy of a diatomic molecule 19 1ni quasrclasswal

approach Indeed, the quantity myare plays a role of 2 moment of inertia of a molecule

while n + v (if y=1/2) is a quasiclassical analog of total angular momentum of the

molecule. This gives us an extremely useful tool for interpretation of the spectra of
hea.vy resonances We will return to this point somewhere.
If m§ < [(n+7)/ro]*and m} < [(n + ’7)/7”0] , then
n+ '7
To

E(R)~ 27 T (2'6()

which is in full analogy with the formula for vibrational energy of nuclei within the
molecule.

Thus, the Lorenz- 1nva.r1ant mass formula (24) obtamed from the resonance . con-’
dition't ‘using’ Helsenberg uncertalnty relatlon, conta.ms two llmltlng cases: l) the rota—‘

tlonal spectra and 2) the vibrational’ spectra

Tt is well-known in nuclear physics that pure elementary states (say, rotational;
v1brat10nal etc.) are model concepts in nuclei, and are only approximately realized for:

the ground and low-lying parts of spectra in nuclei having large spectroscopic factors
(branching ratios, see for details; ref. 18) Such states played a decisive:role-in the
development of modern nuclear phys1cs Srmllar situation could take place in particle
phys1cs B
“Let us restrict ourselves by resonances with large branching ratios for decays in

two- clusters and small values of the decay momenta P in the rest frame of the decaying

resonances. *These restrictions correspond to conditions of validity of the relations
obtained in section 2. ‘In calculating: the invariant-masses for:clusters consisting of N
physical particles, the formula (24) can be used in the following way: (i) the invariant
mass for two particles in their lowest state is to be calculated; (ii) a third particle

6 L

~ ‘”"' e ‘;“w«f'fl

mass is to be combmed w1th the obta.med value thus glvmg the mva.rla.nt mass for the
cluster (again in the lowest state for the three particles) and so on.” Some results of such
calculations are presented below. All masses and widths are given in MeV, momenta
in MeV/c. When references to the experlmental ‘data are not quoted, they are taken
from ref. 17. We choose here ‘only*well-established (according to the compilation!?)
resonances except the case of dlpron system A

Table lf ’il‘-';‘
The invariant 1 masses of ground state resonances (n + =1/ 2)

(1r+1r ), m—388:!:2 MeV <1148 MeV. 2
Decay modes - Fraction I'; /F P(exp) - P(theor) m(theor) n 47

FAZ 115 - . 361 1/2
n(547) IS(JPC) . 0+(0-+), T = 1.19 keV
atr=x0 23.6% 115 556 -1/2
3n° 389% 115549 1/2

’(958) IG(JPC) = 0+(0-+), I=0.198 MeV
wtrn 441% 115 938 12
1r°1r°17 20 6% 115 -933 -1/2

(1020) IG(JPC) =0" (o--), = 4.43 MeV
K¥K~- 491% 127 115 1014 1/2
KPK§ 34.4% 110 115 1007 172

K,(1270) IG(JP) =1(1%), T = 90 20 MeV
Kp 42% 71 115 1286_1/2

D*(2010)* IS(JP) = 1(1"),T < 1.1 MeV
TDn* 55% 40 115, 2049 1/2. . . ... .
D*x® 21% 39 115 2050 1/2

. D010 IS(JP) = 1(17), T <21 MeV
"D0 0 55% 44 115 2045 . 1/2

,1(2536)* IG(J") = 0(1+), T < 4.6 MeV. ’,
D‘(2010)+1\ seen - 153. 115 = 2524 1/2

A1r 120-30‘7 143 115 1418 - /2

N(1535) sll IG(J”)— l(‘ ), = 150 MeV
“Np - 30-50% 182 115 1505 1/2 L

N(1440) Py IS(JF) = ( *), T = 350 MeV. .



N(1720) Pis IS(JP) = 1(3"), T =150 MeV. .
N(1440)p 25-75% 104 115 1724 1/2 .

1(37), T'= 300 MeV, -
151728 12

>  A(1700) Dy IG(JP)
. . "Np 3050%.

A(1116) I°(JP) =0(% ),1-_2632*10'” i
Cpr— 641% 102115 1125 1/2
“nr? 35.7% 104* 115 11123 1/2

A(1405) Soi IS(JP) = 0(47), T = 50MeV.
T 100% 152 115 1376 1/2

A(1670) Soy I6(JF) = 0(%7), T’ = 35MeV
Ap 15-35% 64 115 .1681 1/2

5(1750) Sy I8(JP) = 1(17), T = 90MeV
“Xn - 15-55% 81 115 1753 1/2° .

2(1321) I9(JP) = 1(1¥), r ='1.639 % 1019
Az 100% 9 115 1302 /2

“(1530) P13 I5(JP) = ;(g“), _10 MeV
=r 100% 152 115 1480 -1/2

5.(2455) I5(JP) = 1(3*)
Afrr 100 93 115 2468  1/2

One can see from table 1 that the calculatlons reproduce the experimental data
(the invariant masses of resonances and decay momenta of two clusters in the

rest frame of the resonance) with rather high accuracy which increases with increasing

invariant mass of the resonance. This means that the suggested clustenng effects and
the shape resonance (in terminology of Landau and Lifshitz characteristic waves) seem
to be adequate for the physical content of the particle resonances. It is worthwhile
to note that the calculations. reproduce the masses of the stable partlcles as well. We
expect that the most stable resonances have minimal total angular momenta (which is
-equal to Pro=1/2) and zero value of the orbital part. The qua.ntlzatlon of the angular
momenta leads to the quantization of the; Lo;entz-mvanant mass. The most stable
state (independent of the nature of the state) ‘'of the rotating ‘system is the ground
state which has the minimal allowed angular momentum Pro=1/2, minimal invariant
masses and also minimal decay momentuin of the clusters. (Below such resonances will
be referred as the ground state resonances to.). We would like to point out that one cuts
out the low momenta of registered particles in modern high energy experiments. That

8 -
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means that in such cases one looses signals from the very interesting.low momentum
resonances. As one can see from the table 1, the cut should be made at a rather sma.ll
value of P (say, lower than 100 MeV/c) X - )

*We used the same value of the parameter ro (ro-O 386 fm) for all resonances w1th
remarkable success in description of the existing expérimental data.. This indicates on
a fundamental role of the parameter rq in particle physics.

Here we described a well established resonances 17 having large values of the two-
particle branching ratios. Our approach gives a method for calculating and prediction
of invariant masses of resonating clusters, that may consist of N-particles of different
physical nature, as we demonstrated above. Predictions for the resonance production
of clusters sllghtly above threshold are 1mportant due to the scarf 1nformat10n about
them.

Let us consider the dipion system.: Qur model predicts. the ground state reso-
nance for dipion system at 361 MeV. It is important to note that this meson cannot be
accounted for by the quark model.” The search of this meson gave no well-established
results up to now, although there were several experiments in'which some evidences or
indications for this object were obtamed Nevertheless the common opinion is that its
very existence cannot beconsideredto be finally established. Below some references
on expenmental data without discussions are given. Dipion resonance was claimed in
ref. 20 at m(n7) = 388 + 2 MeV: with the width T’ = 11 £'8 MeV, in ref. 2 5t 371
MeV. The narrow resonance structure with width of about 5-7 MeV in the excitation
function of pion productlon by protons at proton. energies near, 350 MeV has been
reported on cooper target in-different laboratories during last years (see for references
and discussions paper ) “This resonance decays mainly by emitting two pions.

- *The way which was chosen to present the decay channels for the decaying reso-
nances !7 indicates a physical language for the explanation of the decomposition over
résonating clusters of different type. Therefore heavy resonating clusters again consist
of resonating clusters of ‘smaller invariant mass and so on. - This multicluster nature
of resonances must display itself in a resonance productionat lowest invariant mass
(nearly above threshold) for different clusters. Indeed such type significant enhance-
ment of events has been observed 23-26 i the mass spectrum from T(35) — #xT(1S)
(the invariant dipion mass is equal to 340-440 MeV). - : : .

It is interesting to note’ that the invariant masses of resonances decaymg into
three particles (say, n — 7tn~ 7% and ' — 7¥17n,; see table 1) were calculated in

" the following way. First, we calculate the dipion invariant-mass in the ground state

(m(7r+7r") 361 MeV) according to the formula (24) than we exploit again this formula

“using m(7*r")=361 MeV and mass of third-particle. The agreement observed be-

tween the calculated results and experimental data-indicates.the way of experimental
research of the dipion (or any pair partlcles) invariant mass near the resonance thresh—
old. This can be done for example, using the followmgs reactions:  — w¥r—7° or

'fq = 1r+1r " etc.

S

4. Bohr orbltal quantlzatxon thh l_

In the prev10us sectlon we dlscussed the radlal qua.ntlzatlon of resonances. It
is well-known in the nuclear physics, that the phenomena of pure states is very seldom.;



Nevertheless one can speak about ‘dominant channels having large spectroscoplc factors
(see for details’ ref. 18y ‘'and these channels play a prominent role in description of
investigated states. Let us restrict ourselves with resonances which we can mterpret as
candldates for Bohr s orb1ta1 quantlzatlon with 1=1. ’

i

“Table 2 ~ R
The mvarxant masses of resonances with l-- )

f,(1285) IG JPC) = 0+ 1++) r 24 +3 MeV
: Decay modes - Fraction T P(exp)  P(theor) m(theor) n+ 7
“ao(980)r  37% 933 929 751

£o(1590) IS(J7C) = 0+(0*+), T = 175 + 19 MeV
‘1717 (958) dommant 241 229 1578 1

L70) I5( JPC) =7%( l"‘), =236 MeV
: DD dommant +242 229 3766

T

(4040) IG(JP") ?"(1--), = 52410 MeV

=0

DD _seen 777 803 4059 3+1/2
D*(2010°D° ' seen 577 574 40407 2+1/2

D*(2010)°D(2010)° 'seen 228 2294040 ' 1

" A(1232) Py IG(JP,)‘— 33ty 1 ="1"20 MeV.
"N .99.3-99.5% 21229 123 1T

(1520) Des IG(JP) = 0( ), = 15. 6MeV
NK 45% 244229 1510 1

(1385) P,3 IG(JP) 1(2%), T = 40MeV
Tr 12% 127 115 13757:1/2
" A 88% 208 2291407 1

Q(1672) 1(JP) = 0(2"), 7 = 0.822 + 107
AK— 67.8% 211 229 1683 1.

Z(1690) I5(JP) ='1(7%), T < 50MeV .
AK seen 240 229 1683 1

One can see from table 2 that calculations made for this section descrlbe the

experimental ‘data much better then in previous section.: Strikingly high-accuracy was .

obtained for the A-isobar and (3770, 1(4040) mesons in particular.

‘We can ‘calculate widths in the framework of proposed approach However such
calculations can put’ only upperlimit ‘of the Tesonance width corresponding - to the’

10
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so called ”single particle” limit which ignores interactions between different channels,
phase space etc. The A(1232)-isobar is a good candidate for the "single particle” reso-
nance, so our calculation gives I'=126 MeV while its experimental value is equal to 120
MeV. We calculated also the Ps3 np phase shift; the agreement with the experimental
data’! is surprisingly, good (see Fig.1).

In the framework of our approach the quark degrees of freedom’ do not appears
explicitly inr the mass formula (24). This fact can be easily explained, because inverse
R-matrix vanishes at the resonance by .definition. We are in need of quark models
to calculate the spectroscopic factors, reduced width, selection rules etc. for correct
evaluation of resonances widths and Am,, in the mass formula (24).

5. Diproton and proton-antiproton resonances

It was shown in the previous sections that the same quantization rule and the
same mass formula can be used for resonances decaying as via strong as through weak
mteractlons (the description of invariant masses has about the same order of accuracy
in all cases: see Tables 1 and 2, for example Z(1690) and Q- in Table 2). Other
examples can ‘be: found in ref. °% the.narrow. enhancements have been observed at
almost the same masses (3060 + 5 (stat) + 20(syst ) MeV) in. the invariant mass
spectra of the different final states with dlﬂ'erent strangeness (Ap7r* Ap7r1r*) and :
(Apr*, Aprn%). The invariant masses of resonances in our model are 1ndependent on
strangeness. Therefore, the systems Ap7r* Apr* and Apr* must have almost the same
invariant masses. The predicted mass for these systems in our model is equal to 3030
MeV which is close to the one reported in ref.39: 3060 + 5(stat.) + 20(syst.) MeV.

" Let us to return to the systems (pp) and (pp) which must have approx1mately
the same masses according to above-mentioned arguments.  Of course, their widths can
be different because they are determined by the number of* opened channels and by the
particular form of the interaction potential between the resonance decay products -4,

The present status of the diproton resonances was discussed by. Yu. Troyan in his
review papers? where he analysed experlmental evidences on existence of 15 resonance
diproton states in the region of invariant masses up to, 2300 MeV. Other details about
the diproton problem one can find. also, in refs.2033=35 and reviews 3% 36,37 The
situation is rather controversial; here we use the experlmental data comlng fromn Dubna
collaboration 20:33, The peculiar property of the diproton resonancesis thelr small
widths (I’ <10 MeV) which stlmulates rather exotxc explanations beyond the traditional
picture. ~ - ;
Below we present results of our calculations for diproton resonances and recent
experimental data’3. One can see’ very excltmg correlal.lons between the calculated
results and experimental data’ 33; our estxmatlons ‘of their width are made within
rather traditional approach based on the analogy with the a-decay of atomic nuclei. It
is interesting to note that the diproton mass spectrum have.a "rational-like” behaviour,

Tt is worthwhlle to mentjon here, that results of rather large number of experi- -
ments can be 1nterpreted as 1nd1catxons on broad dibaryon resonances at masses /s = -
2.4, 2.7 and 2.9 GeV: (see for details review 44).
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\ Table 3. ‘ , .
Spectrum of the mvanant masses and widths for the dlproton resonances.
Experimental data are taken from ref.33

n+y 1/2 1 3/2 2 5/2 3 1/2 4 9/2 5
m . theory. 1890 1932 1998 2088 2198 2326 2468 2623 2788 2961

exp- . 1886 1937. 1999 . 2087 2172 R _
I theory 4 . 9 . 12 17 . 22

©exp - 441 542 - 5+4 4% 043 B

.. The history of narrow pp resonances is dramatic (for details see review38),
Shapiro in his review article?® pointed on 6 possible resonances with small widths
(I' <20 MeV). We would like to remark that the narrow resonance (I = 10.MeV)
with mass 1936 MeV (what is equal to the diproton resonance mass 1937 in' ref.33)
was reported in:ref.39 . This.result was confirmed in a number of papers but further
this resonance was not observed in the pp cross section:.experiments: Nevertheless we-
think that the question of existence of narrow resonances in the pp system is not closed
completely and requires further investigations. : :

--In connection with the question of narrow pp resonances we thmk that an mter-
esting information'can be extracted from data on the real part of the forward elastic pp
scattering amplitude. It is well-known that zeroes of p (the ratio of real to:imaginary
partsof the forward elastic scattering amplitude) are correlated, under-some condi-
tions, with resonances in the corresponding system. The most famous.example is the
A resonance in the 7N scattering. Experimental data on the p for pp elastic scattering
amplitude are plotted in Fig.2 taken from the ref.2l. There are at least two (perhaps
three) zeroes in the momentum interval 0 < Pr, <.0.8 MeV/c or.in:the total:c.m:: en-
ergy interval 1800:< /3 < 2020 MeV. One can see that our predictions of the invariant
masses for (pp) system and experimental data 33 for (pp) system:are correlated with
these zeroes of the p for (pp) system. At the same time the datal for S, P and D phasé-
shifts have very large error bars'and do not dlsplay the resonance-like behaviour. It
is worthwhile to mention here, that authors of ref.. 2 predicted ‘a‘rather wide (I =46
MeV) resonance in' S-wave at invariant mass:1942: MeV..This prediction was argued
from the unusual behaviour of p(PL) s Therefore we can conclude that is-necessary to
carry out new more precise expenments on ‘measurements of p a,nd Otot IN the mterva.l
of laboratory momenta of 0 < Pp,'< 0.8 MeV/ci~i o wtdiil oo Ao

More or less well established broad pp resonances were dlscussed in: revxew38‘
In 1970 several broad pp resonances have been observed. in-ref. 43:. two resonances in
the I=1 channel with' masses 2190 (I'=85 MeV) and 2350 ‘MeV. (I'=140-MeV), one
resonance in the I=0 channel with mass 2375 MeV (F'=190- MeV) Smula.r structures
were observed later by different groups (for ‘references see review> ) Our ‘approach
predicts’ resonances  at ‘masses’2198 and. 2326 MeV; this should be compared with
structure at*2172 MeV in: the data of ref.33 for pp system. Therefore one can:see -
exciting correlations between experimental data for the (pp) and (pp) systems -and
with the theoretical results for this: region of invariant masses. It would be a’crucial
test of our approach, which predicts a similarity of gross'structure in the invariant

gt
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‘mass distributions in (pp) and (pp) systems or analogous partrc]e partrcle and partrc]e-
antiparticle systems.:: » W o :

6. Conclusion L e DR R

The quantlzatron “of" the asymptotlc values of momenta is’ carrled out for the
elementary particle resonances using R-matrix or equ1valently ‘P-matrix formallsm of
resonance reactions. The asymptotic momenta are convenient for the comparison of
the theoretical results with experimental data because ‘one measures’the asymptotic
values of momenta in resonance decay. Physical origin of hadronic resonances is due
to the emergence of the well localized surface-like waves with wavelength of order of
the strong interaction radius. This localization results from refraction effects of inner

waves on the boundary of nuclear matter. This is'the common prbperty of ‘the chaotic”

motion, where some states have regions of high amplitude,called ” scars , near certain
classical periodic orbits (see review paper 29 and references therein).

‘The Balmer-like mass:formula“ obtained from:the first pr1nc1ples in refs
was applied for systematic analysis of gross structure of all known hadronic resonances
starting -from-dipion and’ending- with charmed hadronic resonances.’ The accuracy
of the mass formula is surprisingly high' and unusual for ‘this branch of physics: :It
means that equatlon (24) could be useful at least for prediction and estimation‘of the
invariant masses .of unknown resonances. :This observation requires further systematic
investigations.: We can only say that the correspondence principle between old classical

and quantum theories played'an:outstanding role'in the interpretation-of the results,‘i

and this ?correspondence”- allows one to go'even into fine details. ;
- The upper "single-particle™ limit of the resonance widths can be estlmated in the

suggested approach.. More accurate calculations have:to be done taking into account.

the quark:degrees of freedom of resonances say: within the R or P- -matrix formalrsm
The A(1232)-isobar is a:good candidate for the "single particle” resonance; in this case

we obtained:rather:good. agreement of the calculated width and the: phase shrft w1th»

the experrmental data. o e

-The parameter, ro in the mass formula (24) is the same (a.t least we usedr
% and plays the role:
of -an elementary "size” for the resonating radiating system. This parameter ro and the
corresponding minimal decay: momentum of the fesonances, determined by the minimal -
allowed angular mornentum Pro=1/2, determine the minimal allowed Lorenz-invariant .
mass of the resonances. Further the resonance condltlon gives-the quantlzatlon of the:

the same wvalue) for all resonances’considered here and in refs. -

mass for. resonating. system R TRt DR RO

. In-the approach presented here the problem of dlproton resonances. is. strongly:
correlated with the problem of resonances in the pp system:. their masses -must be-
almost. the -same :while widths can-be.rather different.. We: think that’ experimental ,

confirmation of such correlation would.be decisive for both of these problems.

- +Our model predict the srmxlarlty of the gross structure in the invariant; ‘massy
distribution in any,pair of-a partlcle-partlcle and partlcle-antlpartlcle system, it seems.

that this similarity ‘does not contradict with the existing experlmental data.™

--Finally, all arguments given in this paper and refs.. "5 ) bring us to the conclus1on,,
that ‘the gross structure and also fine details of the resonance spectra can be understood.

in full analogy with the modern nuclear structure concepts.
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Tapees ®.A., Patuc }0.JI., Crpokosckmii E.A. E2-93-426
KsanTosanne no Bopy B Mupe

PE30OHAHCOB JJIEMCHTAPHHX YaCTHI]

Ha ocHoBe O0mHMX KBaHTOBO-MEXaHMUYECKHX COOOpaXeHMH MPOBENEHO
KBaHTOBAHME IS ACHMIITOTHYECKUX BETHYHH HMITYJIBCOB IIPOAYKTOB pacnana
afpOHHHX Pe30HaHCOB. Mcnosb3ysa MmosyyeHHOE YCIOBHE KBAHTOBAHMS, YHa-
JIOCh HAaHTH MACCOBYIO (DOPMYJTY A1 ANPOHHEX pe3oHaHCOB. [loyyeHHEE criek-
TPHI MMEIOT CTPYKTYPY, HAIIOMHUHAIOIIYIO CTPYKTYpy cepun Bansmepa. I1poso-
AWTCH CPaBHEHHME BHUNCICHHHX CIIEKTPOB C SKCIEPUMEHTAIBHEMH JaHHEIMA;
HaiifileHHad MaccoBas (opMysa MoXeT OHTh IpPUMEHEHA IUIsS MPENCKA3aHMi
HOBHIX BO3MOXHKIX PE30HAHCOB U JUId MX IIONCKA.

Pa6ora suinosnHeHa B JJaGoparopun Teopernueckoit pusuku OUSH.

IIpenpuHT O6beAMHEHHOrO MHCTHUTYTA SiEPHbIX McCaeRoBaHmit. dy6Ha, 1993

Gareev F.A., Ratis Yu.L., Strokovsky E.A.

E2-93-426
Bohr’s Quantization Rule in the World of Resonances
of Elementary Particles ,

Quantization based on general quantum mechanical arguments is carried
out for asymptotic values of momenta of decay products of hadronic resonances.
Mass formula for hadronic resonances is obtained with making use of the
above-mentioned quantization conditions. Calculated spectra having a structure
similar to that of the Balmer series are compared with the experimental data;
the corresponding mass formula can be used for predictions of new possible
resonances and their searches.

The investigation has been performed at the Laboratory of Theoretical
Physics, JINR. .
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