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1. Introduction 
_ , ; ... :J 'L·~, .· ·,. , i · - - ·· " -., 

In earlier papers 1- 5 we outlined an approach to describe resonance spectra of. 
hadro~ic reso~1ances having strong 2~particl~ decay modes., This approach was sura., 
prisingly suq:essful in reprodu_cing the known resonances;;The invariant.masses of un
known hadronic resonances were also predicted. Moreover, it allowed us to get rather 
good _estimates of widths for those resonance families (including dibaryons), where the 
interaction potential between their decay products is more-or-less well known. 

This approach ,was based: on some very general key points: (1) every hadronic _ 
resonance can be treated as a radiating system confined in the coordinate space within. 
a region with characteristic size r0=0.86 fm; (2) when this system has a non-negligible; 
2-particle decay mode, it can be considered as a,corresponding binary particle system 
in final stage of its life; 3) for such a system the classical resonance (eigen-fi;equency), 
condition.is valid for existence ofeigenwaves in an open radiating-resonator (antenna), 
with the effective size r0 : ,;,_- ''-' 

Pr:o = (n + -y), (1) 

Here Pis tlie asy~ptotic mo~entiim (i.e. the momen:tum measured1in•experiment) of -
decay products taken in the; r~st frame ~f the res~nii'i.c~, n is an: integer positivJ miinbef 
arid' 0 $ -y ·::; 1 is' a numb~r which depends oii'. n~~ boundary' conditiohs f~r'~ giveri' 
d~gree of f~eedom ancl';;{i th~-typ~ of a dynami~al eqri~tion: for the resonating systerii. 
In_ refs. 1'"'5 ·the·value 'of -y=:1/2- was·chosen according to the Heisenberg uncertainty 
relation in' it; rninimai versioriPr0 ~ 1/2 and n~O, 1, 2, ... ~r '-y:i:o''and"n#l=i; 2, 
3,.... The latter case can· be ~onsidered as the well-known Bohr~Sommerfeid''brbital 
qliantiza.tioii ' · '' ' · , · 

Pro ~ I. (2) -



Note that the wavelength A1 = 21r / P corresponding to the first resonance ( n = 1 
for , = 0 and n = 0 for , · = 1/2 ) must be of order of r 0 which can be seen from 
dimensional considerations (see for details ref. 2), but on the other hand, in deriving 
the Bohr-Sommerfeld quantization rule for the bound states the wavelength A1 must 
be smaller than the characteristic size of the considered system, as is well known. 
In the papers 1- 5, in order to calculate invariant resonance masses for given pairs of 
decay product (meson+meson, baryon+meson, baryon+baryon), a mass formula which 
incorporates above-mentioned key points was used with the same fixed value of the 
parameter ro. The question is now, is this parameter really an universal one. We have 
all the time used the asymptotic values of the momenta in the resonance condition, 
neglecting possible interaction between the decay products. We suspect that it is due to 
considering "shape" resonances (which carry properties characteristic for the interplay 
between the effective size and wavelength _of the system} that our consideration must 
be independent on a particular form of the interaction. 

Thus the suggested mass formiila should give almost the same mass of a res
onance for every of its 2-particle decay modes (and exactly the same mass within a 
full coupled-channels treatment) without changing the parameter r0 , if the approach is 
self-consistent. It is worthwhile to note that multiparticle decays can be considered as a 
chain of binary decays: the 2-particle decay of a "primary" resonance into two clusters, 
further these clusters again decay into 2-particles and so on. This is consistent with the 
observation that multiparticle production processes proceed mainly through resonance 
production. Therefore the multiparticle decay can be treated as a tree-like phenomena 
where the intermediate resonances play an essential role. It indicates a way how to use 
the suggested approach in stuc_iies of multipartide decays of resonances. Our approach 
was applied to selected resonances covering low and also high invariant masses (includ
ing bottomonium) as well with low decay momenta in the rest frame of the resonance; 
some unknown resonances and decay modes were predicted. · 

This approach predicts more resonances than are observed hitherto. The· ques
tion is: which of the predicted resonances exist in nature? It is evident that some 
of them might be forbidden by selection rules. Therefore some criteria have to exist 
which limits the number of resonances. Someexamples·of our predictions and·some 
comparison with recent data were given in refs. 1- 5 in which very exciting correlations 
between the calculated results and experimental data were obtained. The parameter 
r0=0.86 fm was in refs; 1- 5. associated with the first Bohr orbital or with the confine-, 
ment radius which is nearly the same for all hadron and di baryon resonances, 
within the experimental accuracy. 

The quantization condition (1} of the asymptotic momenta for resonating system 
was obtained in _the cited papers in a heuristic W!J:Y· Here we would like to derive., 
equation'(!) f;om ge11eraf quantum :'11e~hanic'.1f argu~e~ts starting fr~~ the ~ell-known'. 
R (P)-matrix theory of the resonance reactions: The aim ofthis article is to get 'soine 
comriiori properties of the re~onat.ing system, having waves with the wa:velei{gth o( 
ord~i r0 or Pro~ l. + 1 /2 well l~calized. near its su;fac~.' This phenomenbn i~ i~ 
afoll'analogy (i~ the correspond~nce pr1n~iple sense}, with the "whispering gallery" 
phenomerion in acoustics, which was first. observed by ,Rayleigh 6 in 1910 _year, with 
the open radiating ~esbnators in classical 'electrodynamics7, with the rainbow and glory 
effects also (ref. 16). The same phenomenon was observed in the consideration of the 
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"stadium billiard" problem in dassical mechanics (ref. 1~•. 15, 29). It is interesting to 
mention, that in nuclear physics the significant non-uniformity of the distribution of 
single-particle energies (gross she!J_s, properties of magic nuclei, non-sphericity of nuclei, 
gross structure of resonances in the optical model and etc.) is a result' of semiclassical 
quantization of motion-along many-dimensional closed orbits (see refs. _8, 9:for'details 
and bibliography). 

The question of what are underlying reasons for such surface localization is out 
of. the scope of this paper; still it is worthwhile to note t_hat it is effects of refraction 
of inner waves which are responsible for emergence of the localized surface-like waves 
in the examples mentioned above. Therefore we would like exploit th~ wave nature of 
particles at low energies when their Lui de Broglie wavelenghts af~ 'ofthe sanie order 
as the radius of strong interactions. Our general physical conception of resonances is 
as follows: it is the periodic motion and.refraction'of.waves in the restricted region of 
spa~e which are responsible for the creation of resonances in any resonating system. 

2. Quantization or' the asymptotic momenta of resonances 

· The asymptotic quantization condition (1) can_ be obtained_ by applying the R
matrix lO or, equivalently; the P-matrix formalism to particle reactions 11- 13. ·Accord
ing these papers, one can assti~e that the resonating system having several two-parti~le 
decay channels is free at ·relative separation r ~ ·ro ·in the center of mas~;·heiice the 
logarithmic radial derivative of the internal wave functimis can be introduced: "' '

1 

. ~ . . 
, ' ' r • '-· ~ 

(
.!:._ du;n) .. _ f. ~ L~ p ,(;} 

d 
r=ro - - - , 3 

Ujn r R :.;"," . .,• 

which should be calculated in the framework of some modern quark rii~tlel;. 
For simplicity, let us consider only the systems with one dominating open chan

nel. As was mentioned in the previous section, the decay of hadronic resonances can 
be considered in a full analogy with open classical electrodynamic resoriators7 ;and the 
mathematical formalism given in this excellent monograph can be used. Therefore the 
boundary conditions for the emitted waves must be ·written as follows ( the conditions 

of radiation}: 
r dh(1l(Pr) 

(h/1)(Pr)' I dr }r=ro,= f, (4) 

wher~'hl1l( Pr} ar~ the spherical Rikkati-Hankel functions which are equ.\.1 to e~p(i( Pr-
l;ir /2)) at Pr ~ 1. , , •. 
' : .· Rikkati-Hankel functions can be expressed via the Aery functions 28 at large 

positive T values: 

'/11 i 

where. 

· h(l. l('. ·)' .... ( T:·· )! (. )·, : dhj1>(x) _ h(I)'( ) .(sh
2
1/)!' _;( ) 

1 •. x = -i -h
2 

•w T , -d---= 1 x = i -- •w T , 
·.· S 1/ X T · ' , 

w(r) = u(r) + iv(r); w'(r) = u'(r) + iv'(r), 
_! 1 3/2 

u(r)=T •ea' , 
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'( ) 1 2 3/2 UT=rieJT' 

(5) 

(6) 



1 l _'!T3/2 v(r)=-r-•e 3 , 
2 

~T
3

/
2 = (l +1/2)(11 - th11), 

3 ,. 

I 1 I 2 3/2 
V (r) = - 2rre-•T : 

ch11 = l + 1/2 
.:,.x ' x = Pro. 

(7) 

(8) 

Ignoring the imaginary part of thew and w', taking into account eq.(3) and 
demanding X ~ 0 cine obtains: 

hfll'(x).•. ·• f _ 
-<1->- = -sh11, sh11 = --p = X, 
h1 (x) · · ro ·.· 

(9) 

Using eqs; (8) and (10), we find 

. , · l +i/2 
Pro= Jl +x2· (10) 

Finally, we note· that X=0 for the well isolated resonances by definition 10; hence 
eq.(10) becomes 

Pro= l + 1/2. 
• • • - I ' • • 

' (11) 

This is the resonance condition for asymptotic decay momentum P which is 
valid for large positive value.of T. Note that the quantization of asymptotic momenta 
is not typical for the standard quantum mechanics.but is rather common in the-physics 

_of open r~sonators. The strong agreement.,between our· calculated asymptotic decay 
· momenta of particle resonances and experimental data mentioned above indicates an 

existence of a common base in physics of open classical electrodynamical resonators 
and particle resonances. 

Consid,~ring the special case 

Pro :::::: l + 1/2, lrl<v2, (12) 

one obtains with use of eq.(5): 

h/1>(x) = -i(v)lw(r), hP>'(x) = i(v)-½w'(r), . ,, (13) 

where 

Pro= l + 1/2 - vr, V = (l + 1/2 )1/3. 
2 

(14) 

Using eqs:(3), ( 4) and (i3), a c~aracteristic equation for eigenvalue, P can be obtained: 

w'(r) - vXw(r) = 0. (15) 

From the asymptotic expressions (6) we have 

w'( T) C[l i _1T•12)[l + i _1T•121_1 . C[l . -. 1T•121. --=vr --e • -e • :=:::yr -ie-• .•. 
w(r) 2 2 .. · 

(16) 

It follows from (15) and (16), that the solution of (15), in first approximation on vX = g 
at the condition g > 0, is equal to 

To= Y2
, 

3/2 3 To =g, (17) 
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This solution can be taken as a basic one if g > 1, then in the secon~ app~oximati<?n 

T1 = g2(1 + 2ie-lr]. (18) 

The imagihary part of T is exponentially sm~ll. That leads to the pec~liar eigen-"wave 
(Pr > l + 1/2) . . . 

exp G[Pr - ~ - l/2r2) / <.Pr - l - 1/2)1/4, ,' (19) 

· localized on the surface at· r = r0 ; its eigen-frequency is: 
, c' ( 

,,·. Pro= (l + 1/2)(1 - -X2), 
' ,. .;, ' 2, ' 

(20) 

' ' 

which occurs at conditions·· '· 
I To I< v2,X < 1. (21) 

Such surface waves localized at r =.ro have exponentially s~an absa'rption in 
full analogy with the waves i~ the "whispering gailery". This phenomenon is 've~y close 
to the phenomenon of the full refraction of the waves on the boundary separating two 
media with different refraction properties. Rainbow effects 16 and open resonators 7 can 
be considered as another examples of such kind. It means that· nuclear'and hadronic 
resonances have the same physical origin: emergence of well-localized surface waves 
with wavelengths of order ro. . . ' . 

' J { ,The method of R-matrix allows to estimate widths' of resonances as well; it' is 
knowrithat .(for 'details see 18): ·. . -' . . : ' 

. ,J·; r,:q r-

' 21i.2 ·, 21i.2 ' 
r = MriPro, or. ,!' = 2Mri (22) 

for 1=0 and Pro= 1/2 according eq.(11); or 

21i.2 ' ' '21-1 
r = Mri Prov,(Pro) 21 + 1 , (23) 

for 1 > 0 and Pre,< 11/2. Here v,(Pro) =I hf1>(Pr0 ) 1-2 is th~ "penetration factor". 
Strictly speaking, the condition (20) is.inconsistent.with Pro < 1112, still (23).is in 
practice valid at list approxi~ately. On~ can se~ that .the widths ofresonances having 
low decaying momenta depends only upon quan:tities r0 , P, and M. Roughly speaking, 

, ,·· ' ' ; - .. 1 ""·'. ' .. ': , ' . ; , -'.· ., ' . . 
r ex: l and r ex: M; . . ' . . . . . . . . , 

3. Resonances dec;a;r,ing ;with small momenta . 
' ' 

Le.t us consider a hadronic resonance as a binary system and use the results of 
the previous sections~ A~cording to, 1• 2, the invariant mass of the resonance a.t its peak 
can_ be,writ,ten a:s foll~ws:· ·.· . 

mn(R)~{mf +P2+Jm~+P2 +A~n = ,/ml+·(n~~)2 +Jm~+ (n~.'rp+Amn, 
. . . (24). 

5, 
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where R labels the resonance, while the indices 1 and 2 refer to the constituents 1 and 
2 observed in the 2-particle decay of the resonance R _. 1 + 2 respectively. As already 
mentioned, the "main" quantum number n is equal to 0, 1, 2 ... while I is equal to 
0 or 1/2, so n +' 1/2=0, 1/2, 1, 3/2, .... The parameter r0 = 0.86 ·rm is fixed iri all 
calculations presented below and in refs.1- 5 as well. 

Formula {24)" describes the gross structure of the resonance spectrum with rea
sonable accuracy be~ause of the relation Arnn < r which is valid in all investigated 
cases of strong decays R _. 1 + 2 .. The leading term of the mass formula describes 
only the "center of gravity" position of the corresponding multiplets and thus the gross 
structure of the hadron and di baryon resonances .• The fine structure in each multi
plet is determined by residual interactions and corresponding quantum numbers which 
are not contained in the approach 1, 2• Therefore the condition Am,. < r is to be 
considered as an empirical fact. 

Neglectjng the last term in (24) and subtracting m1.+ m 2 , we obtain under the 
conditions mi> [(n + ,)/r0]2 and m~ > [(n·+ ,)/r0)2 that the "excitation ene;gy" En 
is 

En(R) =. ,Jrn~ + t~ 1 
)2 + 

:· . n + 'Y 1 n+ 'Y 2 
m~ + (--)2 - m1 - m2 :=::: --(--) , 
. ro 2m12 ro 

(25) 

where ~12 = m1m2/(m1 + m'2)- This expr~ssion is completely the S~!:1-e as the wen 
known formula for the rotational energy of a diatomic molecule ~9 .. ,in quasiclassical 
approach. Indeed, the quantity m12r6 plays a r~le of~ moment ·of hiertia of a ~olecule 
while n + 1 (if ,=1/2) is a quasiclassical analog of total angular ~omentu~ ~f the 
molecule. This gives us an extremely useful tool for interpretation of the spectra of 
heavy resonances. We will return to this point somewhere. 

If mi< [(n + ,)/r0]2 ·and m~ < [(n + ,)/r0]2, then 

En(R) :a::: 2n+, .. ' ro 
(26) 

which is in full analogy with the formula for vibrational energy of nuclei within the 
molecule. · 

Thus, the Lorenz-i11variant mass formula:(24) obtained from the resonance con
dition using Heisenberg uricertainty relation,.contains tw~ limiting cases: 1) the rota-
tiorial spectra and 2) the vibrational spectra: .·· · , ·. > . . . . . 

: r · •· It is well-known in ni'i.dear physics that pure elementary statensay; rotation~( 
vibrational etc.) are model concepts in nuclei, and are only approxim~tely realized for 
the ground and low-lying parts of spectra in nuclei having large spectroscopic factors 
(branching ratios, see for details, ref.18). Such states played a decisive· role in· the 
development of modern nuclear physics. Similar situation could take place in particle 
~~ . . . . 

Let us restrict ourselves by resonances with large branching ratios for decays in 
two-clusters and small values of the decay momenta P in the rest frame of the decaying· 
resonances. ;These restrictions correspond to conditions of validity of the relations 
obtained in ;ection '.2. In calculating the invariant masses for. clusters consisting of N 
physical particles, the formula (24) can be used in the following way: (i) the invariant 
m~~ for two particles in their lowest state is to be calculated; (ii) a third particle 
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mass is to be combined ~ith'the obtained-value thus gi;ing the invariant mass for.the 
cluster (again in the lowe~t state for the thre~ particles) and so on.' Some results of such 
calculations are presented below. All masses an~ widths are given in MeV, momenta 
in Me V / c. When references :to thc:i'. ~xperimental data are not" quoted, they are taken 
from ref. 17• We choose here 'onlywell~established (acco_rding to the compilation17) 

resonances except the case of dipion system. 

.. . · Table •1<. 
The invariant masses o~ ground state resonances (n + ,=1/2) 

(,r+,r-:), m=388±2 MeV, r=ll±8 MeV 20 

Decay modes Fraction r;/r · P(exp) P(theorf- m(theor) 

1\·~ 

,r+,r- 115 · 361 

77(547) J0(JPC) = o+(o-+), r = 1.19 keV 
1r+1r-1r6 23.6% 115 556 1/2 

31r0 38.9% 115 549 1/2 

771(958) [ 0 (JPCf= o+w-+), r = 0.198 MeV 
,r+,r-77 44.1 % 115 938 1/2 
7rO,r077 20.6% 115 · 933 · 1/2 

i,6(102O) J0 (JP0 ) = o-(o--), r = 4.43 MeV 
[(+ [{-:- 49.1 % 127 115 1014 1/2 
[<£Ki . 34.4% 110 115 1007 1/2 

K1(127O) J0 (JP) = ½(1+), r = 90 ± 20 MeV 
[{p__42% 71 115 1286. 1/2 

n·(2O10)± J0 (JP) = ½O-),r < 1.1 MeV 
D6,r+ 55% 40 115 . 2049 1/2 
D+1r0 27% .39 115 2050 1/2 

. ..•. D·(2010)°'i0 (JP) = ½(l.:.), r < 2.1 MeV 
D61r6 55% 44 115 2045 1/2 , 

. D,1(2536)± J0 (JP) = o(l+), r < 4.6 MeV. 
D•(2010)+ [(6 seen )53 .. 115 2524 1/2 

N(l440)Pn I 0 (JP) =d(t),'r = 350 MeV 
· .A1r ;i20-30% :143- · 115 1418 · 1/2 . 

N(l535) Sn J0 (JP) = ½(½7), r = 150 MeV' 
N77 .1_0-50% 182 115 1505 1/2 · 
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N{1720) Pia I0(JP) = ½(t), f = 150 MeV 
N{1440)p. 25-75% . 104 115 1724 1/2 

Ll{l700) D33 J0(JP) = ½(~~), :I'.~';= 300 MeV:, 
Np 30-50% . L>l15 ,r 1724. 1/2 

A.{1116) JG(JP) = 0(½ +), T = 2.632 * 10-ios 
p7r- 64. 1 % 102 ' 115 1125 1/2 
n1r0 35.7% 104 ;,i15 1123 1/2 

A.{1405) S~i;JG(JP) ~ 0(½-),T = 50MeV 
E1r 100~ 152 115 1376 1/2 

A.(1670) Soi J0 (JP) = 0(½-:-), f = 35MeV 
Ar, 15-35~ 64 115 1681 1/2 

E(1750) Su J0 (JP) = 1(½-), f = 90MeV 
_Er, · 15-55% 81 115 1753 1/2 

3(1321) JG( JP) = ½( ½ +), T = 1.639 * 10-iOS 
A1r 100% 139 115 1302 1/2 

3(1530) Pia I 0 (JP) = ½<t),-r ~~ 10 MeV 
31r 100% 152 115 . 1480 -1/2 

E0 (2455) J0 (JP) = l(t) 
At1r 100 93 115 2468_ 1L2 

One can see from table 1 that the calculations reproduce the experimental data 
(the invariant masses of resonances and decay momenta of two clusters in the 
rest frame of the resonance)with rather high accuracy which increases with increasing 
invariant mass of the resonance. This means that the suggested ~lustering effects and. 
the shape resonance (in terminology of Landau and Lifshitz characteristic waves) seem 
to be adequate for the physical content of the particle resonances. It is worthwhile 
to note that the calculations reproduc~. the masses· of the stable particles as well. We 
expect that the most stable resonances have minimal total angular momenta (which is 
equal to Pro=l/2) and zero value of the o_rbital part. The quantization of the angular 
momenta leads to the quantizati~n of tlie;' ½<:>!entz-invariant mass. The most stable 
state (independent of the nature of the state) of the rotating ·system is the ~ound 
state which has the minimal allowed angular momentum Pro=l/2, minimaUnvariant 
masses and also minimal·decay momentum of the'clusters: (Below such resonances will 
be referred as the ground state resonances to.) We would like to-point out that one cuts 
out the low momenta of registered particles in modern high energy experiments. That 
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means that in such cases one looses signals from the very interesting .low _momentum 
resonances. As 'one can: see from the table 1; the cut should be mad~ at a rath~~ ~mall 
value of P (say;lower tlian 100 MeV /c). . . . . . ,. . ... _ .• 

· ' W~ used the same value of the parameter r0 . ( r0~0.86 fIIl) for all res~nances with 
remarkable success in description of the existing experimental data. This indicates on 
a fundamental role of the parameter r0 in particle physics. 

Here we described a well established·resonances 17 having large values of the two
particle branching ratios. Our approach gives a method for calculating and prediction 
of invariant masses of resonating clusters; that may consist of N-particles of different 
physical nature; as we demonstrated above. Predictions for tlie resonance production 
of clusters slightly above thresho}d··are important due to the scarf information about 
them. 

Let us consider the dipion system.· Our model predicts the ground state reso
nance for dipion system at 361 MeV. His important to note that this meson cannot be 
accounted for by the quark model. The search of this meson gave no well-established 
results up to now, although there were several experiments in which some evidences or 
indications for this object ~~re obtain~d .. Nevertheless the common opinion is that its 
very existence cannot be· considered to be finally established. Below some references 
on experimental data without discussions are given. Dipion resonance was claimed in 
ref. 20 at m(n) = 388 ±.f MeVwith the width r = 11 ± 8 MeV, in ref. 21 at 371 
MeV. The narrow resonance structure with width of about 5-7 MeV in the excitation 
function of pion production by protons at proton energies n~ar. 350 MeV has been 
reported on cooper target in-different laboratories during last years (see for references 
and discussions paper 22). This resonance decays mainly by emitting two pions. 

The wa.y which w~ chosen to present the' decay channels for the decaying reso
nances 17 indicates a physical language for the explanation of the decomposition over 
resonating clusters of different type. Therefore heavy resonating clusters again consist 
of resonating clusters of'smaller invariant mass and so on. This multicluster nature 
of resonances must display its~lf in a resonance production at lowest invariant mass 
(nearly above threshold) for different clusters. Indeed such type significant enhance
ment of events has been observed 23 - 26:in the mass spectrum from T(3S)-+ 1r1rT(lS) 
( the· invariant dipion mass is equal to 340-440 Me V). 

It is interesting to note that the invariant masses of resonances decaying into 
three particles (say, ·r, -+ 1r+1r-1r0 and r,' -+ 1r+1r-r,, see table 1) were calculated in 
the following way. First, we calc~late the dipion· invariant-mass in the ground state 
(m(1r+1r.,.)=361 MeV) according to the fomiula (24) than we exploit again this formula 
using m(1r+1r-)=361 MeV and mass of _third-particle. -The· agreement observed be
tween the calculated results and experimental da_ta;indicates the way of experimental 
research of the dipion (or any pair particles) };1va:riant mass near the resonance thresh
old: This can be done for example, using the followings reactions: T/ -+ 1r+1r-1r0 or 

·'r,'-+ 1r+1r-'11 etc. 

4. Bohr. ~rbital quantization with l=l 

; . In the pre;ious secti~n we dis~~ss~d- the "radial quantization~' of resonances. It 
is well-known.in the nuclear. physics, that the phenomena of p~re states is very scldom., 
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Nevertheless one can speak about.dominant channels having large spectroscopic· f~ctors 
(~ee for det~il/ref. 18) ·and these channels play a prominent rol~ in di:scription of 
investigated states. Let us restrict ourselves with resonances which we can interpret as 
candidates for Bohr's orbitaf-quantization with l=l. . ' ~-· ... ' . 

'Table 2 
The invariant masses of resonances with l=I 

!1(1285) J0(JPq) = o+(l++), r = 24 ± 3 MeV 
Decay modes Fraction¥ P(exp) P(theor) m{theor) 

ao{980)1r 37%, · 233 · 229 1275 

fo(l590)J0(JPC) = o+(o++); r = 175 ± 19 MeV 
· _17.77J9_§~) _dominant· 241 · · 229 1578 1 

'f'(3770) JG(JPC) =?1(1--), f = 23.6 MeV 
DD dominant '242 229 3766 1 

'f'{4040) JG(JPC) ::::?7{1--), r = 52 ± 10 MeV 

D015" seen 777 803 4059 3+1/2 
D*{2010)0n° seen 577 574 .- 4040'- 2-tl/2 

D*{2010)0D(2010}° seen 228 229. 4040 ' ·1 · 

6(1232) ,P33 J0 (J~)= ~(t), r = 120 MeV 
N 1r 99.3-99.5% 227 229 1234 .. 1 

A(l520) Do3 JG(JP) = o(r), r = 15.6MeV 
N K . 45% 244 229 1510 1 

E(l385) Pi3 J0 (JP) = l(V), r = 40MeV 
E7r 12% 127 115 1375<)/2 
A1r 88% 208 229 1407 '1 

- n-_(1672) JG(JP) = O(t), T = 0.822 * lQ-lOS 
AK- 67.8% 211 229 1683 l .. 

3(1690)/G(JP) ·~·½(?1), r <' 50MeV. 
Al( seen . 240 229 1683 1 

n+, 
1 

One can see from table 2 that calculations made for this section describe the 
experimental data much better then in previous· section. Strikingly high· accuracy was 
obtain~d for the 6-isobar and 'f'(3770), 'f'(4040) mesons in particular. . . ·.· . 

We can calculate widths in the framework of proposed approacli: 'However such 
calculations. can put only upper· limit · of the resonance width cor~esponding t~ the· 

IO 

so called "single particle" limit which ignores interactions between different channels, 
phase space etc. The ~(1232)-isohar is a good candidate for the "single particle" reso
nance, so our calculation gives f=l26 MeV while its experimental'value_is equal to 120 
MeV. We calculated also the P33 1rp phase shift; the agreement with the experimental 
data31 is surprisingly good (see Fig.I). 

In the framework of our approach the quark degrees of freedom do not appears 
explicitly in the mass formula {24). This fact can be easily explained, because inverse 
R-matrix vanishes at the resonance by .definition. We are in need of quark models 
to calculate the spectroscopic factors, reduced width, selection rules etc. for correct 
evaluation of resonances widths and ~mn in the mass formula (24). · 

5. Diproton and proton-antiproton resonances 

It was shown in the previous sections that the same quantization rule and the 
same mass formula can be used for resonances decaying as via strong as through weak 
interactions (the description of invariant masses has about the same order of accuracy 
in all cases: see Tables 1 and 2; for example 3(1690) and n- in Table 2). Other 
examples can be found in ref. 30; the narrow. enhancements haveheen obseryed at 
almost the sa~e fuasses {3060 ± 5 (st~t.) ± 20(syst.) M~V) in.the invariant mass 
spectra of the diff~rent final states with different strangene~s: (Apir±, Ap;1r,;';) and 
(Ap1r±, Ap1r1r±). The invariant masses of resonances in our model ar~ independent on 
strangeness. Therefore, the systems Apir±, Apir± and Apir± must have almost the same 
invariant masses. The predicted mass for. these systems in our model is equal tci 3030 
MeV which is clos_t! to the one repo;ted in ref.3Q: 3060 ± 5(stat.) ± 20(syst.)' MeV. 

Let us to.return to the systems (pp) and (pp) which must have approximately 
the same masses according to above-mentioned arguments. Of course, their 'Yidths can 
be different because they are determined by the number of-opened channels and by the 
particular form of the interaction potential between the resonance dec~y prciducts1- 4• 

The present status of the di proton resonances was discussed by ;Yu.Tr~yan in his 
review paper32 where he analysed experimental evidences on existence of 15 resonance 
diproton states in the region of invariant masses tip to.2300 MeV. Other details about 
the diproton problerri'one can fi~d,alscj,' in refs.20,33:.. 35 and reviews 32, 35; 37 _ The 
situation is rather controversial; here we use the experimental data coming frtim Dubna 
collaboration 20, 33 . The peculiar property of the diproton resonance~ 'is t_heir small 
widths (f ~10 MeV) which stimulates rather exotic explanations beyond the traditional 
picture. · t ·, 

B~low we present results of our calculations for diproton_resonances4 and recent 
experimental data33 • One c~ri· see \,:ery exciting ~orrelations betweeh the calculated 
results and experimental data.' 33 ; ·our ·e~tir'r1~tions4 of their width are made within 
rather traditional approach based on the anal~gy with the a-decay of atomic nuclei. It 
is int,eresting to note that the cliproton mass spectrum have a "rational-like" behaviour. 

· It is worth~hile to iµentj~n here, t~s1.tr~sults ·of r~ther large number of experi 0 

ments can be i~terpreted as indications on broad <Jibaryon resonances at masses ..Js ~ , 
2.4, 2.7 and i9 GeV (see for details review 44 ). 
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Fig.2 The real-to-imaginary ratio, p, of the forward elastic pp scattering as a 
function of the beam momentum. Experimental data a.re taken from compilation 41, 
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Table 3. 
Spectrum of the invariant masses and widths for the diproton resonances. 

Experimental data are taken from ref. 33 

n +-y 1/2 1 3/2 2 5/2 3 7/2 4 9/2 5 
m theory _ , 1890 1932 1998 2088 2198 2326 2468. 2623 2788 2961 

exp . 1886 1937 . 1999 2087 2172 
r theory 4 9 12 17 • 22 

exp 4±1 5±2 5±4 4+1 
-4 0+3 

- -

The history of narrow pp resonances is dramatic (for details see review38). 
Shapiro in his review article40 pointed on 6 possible resonances with small widths 
(r· $20 MeV): We would like. to remark that the narrow resonance (r ~ 10-MeV) 
with mass 1936 MeV (what is equal to the diproton resonance mass 1937 in• ref.33) 
was reported in ref. 39 . This .result was confirmed in a number of papers . but further 
this resonance was not observed in the pp cross section,experiments, Nevertheless we 
think that the question of existence of narrow resonances in the pp system is not closed 
completely and requires further investigations. 

· In connection with the question of narrow pp resonances we think that an inter
esting information'can be extracted from data on the real part of the forward elastic pp 
scattering amplitude. It is well-known that zeroes of p (the ratio of real toimaginary 
parts of the forward elastic scattering amplitude) are correlated, under-some condi
tions, with resonances in the corresponding system. The most famous.example is the 
6 resonance in the 1T N scattering. Experimental data on the p for pp elastic scattering 
amplitude are plotted in Fig.2 taken from the ref.41. There are at least two (perhaps 
three) zeroes in the momentum interval O < PL < 0.8 Me V / c or. in the total: c.m, • en
ergy interval 1800 < ,./s < 2020 MeV. One can see that our predictions of the invariant 
masses for (pp) system and experimental data 33 for (pp) system·are correlated with 
these zeroes of the p for (pp) system. At the same time the data41 for S, P and D phase 
shifts have very large error bars and do no( display the resonance-like behaviour. It 
is worthwhile to mention here, that authors or' ref. ,42 predicted :a rather wide (r ~46 
MeV) resonance in S-wave at invariant mass·1942.MeV.-This prediction was argued 
from the unusual behaviour of p(PL): Therefore we can co-!lclude that is necessary to 
carry out new more precise experiments on measurements ofp·and Utot in the interval 
oflaboratory momenta of O <PL< 0.8 MeV /c>- ·· nE/' ,, • · ·. · ·• .· 

More or less well established broad pp resonances were discussed in review38 .• 
In 1970 several broad pp•resonances have been observed in ref.43: two resonances in 
the 1=1 channel witli masses.2190 (f=85 MeV) and 2350 MeV-(f=140 MeV), one 
resonance in the-1=0 channel with mass 2375 MeV (f=190 MeV). Similar structures 
were observed later by different groups (for references see review38). Our ·approach 
predicts resonances at masses;2198 and 2326 MeV; this should be compared with 
structure at 2172•MeV iri the' data of ref.33 for pp system. Therefore one can-see 
exciting correlations between experimental data for the (pp) and (pp) systems and 
with the theoretical results for this -region of invaria.il.t masses;' 'It would be a· crucial 
test of our approach, which predicts a similarity of gross ·structure in the invariant 
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· mass distributions in (pp) and (pp) systems or analogous particle-particle and particle-
antiparticle systems;· .. ' ' " 

6. Conclusion 

The' q~~ntiia.tion -of the asymptotic values of m~me~t'a is carried out- for the 
elementary particle resonances using R-matrix or equivalently :P-matrix formalism of 
resonance reactions. The asymptotic momenta are convenient for the comparison of 
the theoretical results with experimental· data becaus~ :-one measures'· the asymptotic 
values of momenta in resonance decay.· Physical origi~ ·ofhadroni~ reso~ances is due 
to the emergence of the well localized surface-like waves with wavelength of order of 
the strong interaction radius. This localization results from refraction effects of inner 
wav~s on the boundary of nuclear matter.' This is the common property of:the chaotic• 
motion,'where some states have regions of high amplitude, called "scars"; near certain 
cl~sical periodic orbits (see review 'paper 29 and references therei.n). • ·· 

The Balmer-like mass formula obtained from the first principles iri refs. 1- 5 

was applied for systematic·analysis'ofgross structure of all known hadronic resonances 
starting from·· di pion and' ending· with charmed hadronic· ·resonances. The accuracy 
of the mass formula is· surprisingly high and unusual for this branch of physics. It 
means that equation (24) could be useful at least for prediction and estimation'.of the 
invariant masses.of unknown resonances. -This observation requires further systematic 
investigations. We can only say that the correspondence principle between old classical 
and quantum theories played· an· outstanding role· in the interpretation· of the results, 
and this ?'correspondence"· allows one to go•even into fine details. 

The upper ~single-particle"-liinit of the resonance widths can be estimated in the 
suggested approach., More accuratl calculations have to be done taking into account 
the quark'degrees of freedom of resonances say.within the R or P-matrix formalism. 
The .6.(1232)-isobar is a good candidate for the "single particle" resonance; in this case 
we obtained,rather,good.agreemenro{the'calculated width and the·phase shift with 
the experimental data.: . 

The _parameter,r0 in the .mass formula {24) is the ;am·e (at least we used 
the same value)Jor alLresonanc_es"~onsidered here and in refs. 1- 5 and plays the role 
of an elementary "size"- for the resonating radiating system. This parameter r0 and the 
corresponding minimal decay momentum of the resprian~es, determined by the minimal 
allowed'ang;lar momentumRro=l/2, determine the minima!' allowed Lorenz-invariant 
mass of the resonance;. Further the resmi.ince condition gives.the quantization.of the 
mass for resonating system. •,··· . ,,.c, .' . 

ln·the approach presented here, the problem of diproton resonances.is strongly, 
correlated with the problem of resonances in the pp _system:'.:their masses must be
almost the -same ;while widths can be. rather different. We .think- that experimental, 
confirmation o( such correlation would. be decisive for both _of these problems. 

, , 1 Our model predict. the similarity of the gross structu,re in t,he invariant. mass, 
distribution in any pair ofa particle-particl~ and particle-antiparticle system; it ,seems: 
that this.similarity does not coritr~dict with the existing experimental data.'. ·;••, 
· ;,' .··· Finally, all arguments given in this paper and refs. l; ~ bring us to tJie conclusion 

that _the gross stru_ctme and also_ fi~e d~_tails of the resonance spei:;tra .ca~ ~;,understoo_d, 

in full analogy with the modern nuclear structure concepts. 
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rapeeB <I>.A., PaTHC IO.JI., CTpoKOBCKHii E.A. 
KBaHTOBaHHe no Bopy B MHpe 
pe30HaHCOB SJieMeHTapHI:,IX 'laCT~ 

E2-93-426 

Ha OCHOBe o6m;mc KBaHTOBO-MeXaHH11ecKmc coo6pa.xceHHii npoBeAeHO 
KBaHTOBaHHe AJI5I aCHMilTOTH'leCKmc BeJIHlJHH HMnYJThCOB npoAYKTOB pacnaAa 
aAPQHHhlX peaoHaHCOB. Mcnom,ay.s1 nony11eHHoe yCJioBne KBaHTOBaHH51, YAa
JIOCb HaiiTH MaccoByIO q>opMyny AJI51 aAPQHHhlX peaoHaHCOB. Ilony'leHIIIile cneK
TpbI HMeIOT CTPYKTYPY, HanoMHHarom;yro CTPYKTYPY cepHH BaJibMepa. IlpoBo
AHTC51 cpaBHeHHe BbllJHCJieHHhlX cneKTpoB C SKCnepHMeHTaJibHbIMH AaHHbIMH; 
Ha~eHHa51 MaCCOBa51 q>OpMyna MO)KeT 6bITb npHMeHeHa AJI51 npeACKa3aHmi 
HOBhIX B03MO.XCHhIX pe30HaHCOB H AJI51 HX IlOHCKa. 

Pa6oTa BhlnOJIHeHa B Jia6oparopHH TeopeTH11ecKoii q>H3HKH ORSIM. 

l1penp1mr O61.e,nHHeHHOl'O HHCTHT)'Ta SIJlepHblX HCCJie,nOBaHH~- ,lfy6Ha, 1993 

Gareev F.A., Ratis Yu.L., Strokovs~y E.A. 
Bohr's Quantization Rule in the World of Resonances 
of Elementary Particles 

E2-93-426 

Quantization based on general quantum mechanical arguments is carried 
out for asymptotic values of momenta of decay products of hadronic resonances. 
Mass formula for hadronic resonances is obtained with making use of the 
above-mentioned quantization conditions. Calculated spectra having a structure 
similar to that of the Balmer series are compared with the experimental data; 
the corresponding mass formula can be used for predictioris of new possible 
resonances and their searches. 

The investigation has been performed at the Laboratory of Theoretical 
Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research. Dubna, 1993 


