


1 Introduction

Since Woronowicz formulated the general scheme for constructing differential calculi
on quantum matrix groups [1}, the most publications on this theme have appealed
more or less to it (see e.g. [3]-{17]). This scheme has the following structure: the first
order differential calculus is defined in axiomatic way and, once it is fixed, the higher
order differential calculus can be constructed uniquely. The underlying quantum group
structure is taken into account by the bicovariance condition.

The principal problem of the Woronowicz’s approach that has been mentioned
already in [1] but still remains unsolved.is that the scheme possesses a variety of
differential calculi for each quantum group, and there is no criterion to choose the
most appropriate one.

On the other hand, the R-matrix formalism (see [2] and references therein), initially
motivated by the quantum inverse scattering method, appears to be an extremely useful
tool in dealing with quantum groups and essentially with differential calculus on them.
So, it is not surprising that there have appeared some papers relating the Woronowicz’s
scheme and R-matrix formalism [3}-[5). Based on the differential calculus on'a quantum
hyperplane and using the R-matrix formulation one may hope to construct ﬁnally the
most- natural differential calculus on quantum group (see [6]-[9]). This program has
been realized for the GL,(N)-case in [10]-[L5], but being restricted to SL,(N), the
calculus obtained reveals some unfavourable properties (see the discussion in Section
5), which forces us to search for other possibilities. Thus, the classification of differential:
calculi on linear quantum groups remains an actual problem up to now.

In the present paper we make an attempt to approach this problem from an opposite
direction, i.e. to construct firstly the higher order differential calculus. Here, the key
role is played by the conditions:

a) Cartan’s 1-forms realize the adjoint representation of GL,(N);
b.) all higher order invariant forms, being polynomials of the Cartan’s 1- forms can be
ordered (say, lex1cographlcally) uniquely.

The paper is organised as follows: all the preliminary information and notation
are collected in Section 2. In Section 3, developing the ideas of Ref.[14] we consider
GL,(N)-covariant quantum’ algebras (CA). Arranging them into two classes, the g-
symmetrical (SCA) and g-antisymmetrical (ACA) ones, we then concentrate on study-
ing the homogeneous ACA's, that could be interpreted as the external algebras of
Cartan’s 1-forms. We find four one-parametric families of such algebras. Section 4 is
devoted to the construction of differential complexes on the homogeneous ACA’s. In
doing so we admite the deformation of the Leibnitz rule and, thus, extend the class
of the permitted complexes. We conclude the paper by consuiermg how the known
GL,(N)-differential calculi are included into this scheme and by discussing the prob-
lems of the SL,(N)-reduction.
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2 Notation

We consider the Hopf algebra Fun(GL,(N)) generated by elements of the N x N
matrix T = ||T3], 4,5 = 1,..., N obeying the following relations:

RIT = TT'R . (2.1)

Here T=T =TI, T'=T,=1I0T, lis N®@N identity matrix, R = Ry = P12R12,
Py, is the permutation matrix and R is the GL o(N) R-matrix ! satisfying the Yang-.
Baxter equation and Hecke condition, respectively,

RR'R = RRR’, ‘ . - (22)

-MR + 1=0, o (2.3)

where A = ¢~ ¢}, R/ = Rys = PpRys and 1 is the N? x N? identity matrix. lxyl
accordance with (2.3); for ¢2 # —1 the matrix R decomposes as

i =Pt P, | (24).

=(q+q7") ‘{q“I +R},

where the, prolectors Pt and P~ are quantum analogues of the antnsymmetuzer and
symmetrizer, respectively.

The comultiplication for the algebra Fun(GL (N)) is deﬁned as AT,-J- = T;k Ty

and- the‘antlpode 5(.)2 obeys the conditions S(T3)T5t = T:;S(Ty) = bal , so in: what
follows we use the notation 7'~ instead of S(T'). Lo
3 GL,N)-covariant Quantum Algebras

Consider the N2-dimensional adjoint Fun(GL (N)) comodule A. We arrange its basic
elements into the N x N matrix A = [|4;ll, ¢,J = 1,..., N. The adjoint coaction is,

A TES(TY © Al = (TAT™:, @)

where the last part of the formula (3.1) is the standard notation to be used below. -

The comodule A is reducible; and the irreducible subspaces in A can be e)\tracted,_

by using the so called quantum trace (¢-trace) [2, 19] (see also [5, 13, 20}). In the case
of Fun(GL,(N)) it has the form:

N ’ . ’
i i . - - N—
TroA=Tr(DA) =S ¢ ¥W5AL, D =diaglg™ ¢, d" ) (32)

i=1

1For the explicit form of GL,(N) R-matrix see Refs.[18, 2.
2Gtrictly speaking, to define the antipodal mapping on Fun(GL(N)), we must add one more
generator (det,T)~? to the initial set {Ti;} (see [2]).

and possesseé the following invariance property: 7
Tr(TAT™Y) = Tr,(4), - -

ie. Try(A ) is-a scalar part of the comodule A, while the g-traceless pa.rt of A forms
the basis of (N2 ~ 1)-dimensional 1rredumble Fu11(GL (NV))-adjoint comodule. Let us
note also the following helpful formulae: : :

Trqm(RAR") =' -Trq(z)( ‘AR) TTqA I(l) N
T’_‘q(z)Ri =gV Ly, Trel= (Mg,

where A= A= AQI, [N], = 9—:;1_—,—. and by X(;) we denote quantities (operators)
X living (acting) in the i-th space.

. Consider now the associative umtal C- algebla C < Aj; > freely generated by the
basic elements of A. As a vector space, C< Ay > naturally carries the Fun(GL,(N))-
comodule structure. Now we introduce GL L,(N)- covariant quantum algebra. (CA) as
the factomlgelna of C< Aj;>, possessing the following properties [14]:

(A) The multiplication in this algebra is defined by a'set {a} of polynomial identities
quadratic in A;;:

CS'HAijAkl = C.'(;Aij +C°, o (3.3)
In other words, CA is the factor algebra of -C < A;; > by the bi-ideal generated by
(3.3).

(B) Considered as a vector space CA is a GL,(N)-adjoint comodule, so the coef-
ficients Cfy, in (3.3) are g-analogues of the Clebsh-Gordon coefficients coupling two
adjoint representations, and the set of the relations (3.3) is divided into several subsets
corresponding to different irreducible Fun(GL,(N))-comodules in AQ A. Parameters
Cf; are not equal to zero when ('} couple A® A into the adjoint G'L (N) comodule
agam while C* # 0 only if Cf;,Ai; Ay are scalars.

(C) All the monomials in CA can be ordered lexlcograplucally due to (3.3).

(D) All the nonvanishing ordered monomials in CA are linearly independent and
form a basis in CA.

Now we recall that for the classical case (¢ = 1) the dimensious of the irreducible

Fun{GL(N))-subcomodules in A ® A are given by Weyl formula [21]:

dim AQ A= (N -1 +1P =2-W @B +0n2)- [V ~1] @ (34)
2‘— 2. 2 —_ re 7 AT
I [ 1)4(N 1)] ® [N (N+z)(N 1)] @0“3'.[1\ (N fi)(x\ » D

where Onpar = {1 for N > M; 0 for N < M}. Thus, AQA splits into 2 s(alal

“subcomodules, 4 (3 for N = 2) adjoint (traceless) subcomodules and 4 (1'for N = 2 and

3 for N = 3) higher-dimensional mutually inequivalent subcomodules. Tt the quantum
case according-to the results of Ref. [22] the situation generally is not changed (the
exception is for ¢ being a root of unity). Below we emiploy the g-(anti)symmetrization



projectors P£ and g-trace to extract the irreducible subcomodules in A @ A, thus,
supposing from the beginning that ¢ # —1 and T'r,J = [N]; # 0.

First, we shall obtain the sets of combinations quadratic in A;; that correspond
to the left hand side of (3.3) and contain four higher dimensional Fun(GL,(N))-
subcomodules (see (3.4)). Let us start with the N? x N? matrix ARA  containing
all the N*independent combinations quadratic in A.] and having convement comodule
transformation properties:

ARA — (TT)ARA(TT)" . (3.5)

From (2.1), (2.4) it follows that PETT' = TT'P*, hence we can split ARA into four
independently transforming (for N > 3) parts: -

X*t = PEARAPY, X*% = P*ARAPT. (36

Namely the g¢- -traceless (in both lst- and 2nd- spaces) parts of Xt*, X7~ and X*%
‘are the four higher dimensional subcomodules in A® A with dimensions: Mﬁ’l@-_l’
Nz(N_:’)(N“) and (Nz_”(u respectlvely » '

\Iow actmg on X’s by Tr,-operation we obtam (for N # 2 and ¢ not being a root
of unity) four independent combinations transforming as adjoints:

A%, (Tr,A)A, A(Tr,A), AxA=Tr(R'ARAR™). (3.7

The g-traceless parts of these combinations correspond to theirreducible adjoint subco-
modules in A® A. Applymg Tr, to Eqs.(3.7) once again we arrive at two mdependent
expressxons
(TrqA)Z ’ Trq(A ), ' ' (3.8)

corresponding to the scalar subcomodules. We refer to the expressions (3.6), (3.7) and
(3.8) as higher-dimensional, adjoint and scalar terms respectively.

As it was argued in [14], to satisfy the condition (C) for CA, the left hand 51de of
the relations (3.3) must contain independently either X** with X=~, or X*~ with
X~*. One can combine these pairs into single expressions: .

(q+¢)(X* —X~") =RARA + ARAR™, (3.9)

(¢+¢ ") (X~* - X*") =RARA - ARAR. (3.10)

The way of combining the quantities (3.6) is not important. We choose the concise

forms (3.9), (3.10) because in the classical limit they are nothing but the anticommu-
tator [Az, A1} and commutator [As, A]-. So it is natural to call (3.9) and (3.10) the

g-anticommutator and ¢-commutator, respectively. In view of this all the CA’s ‘with

the defining relation (3.3) are classified into two types depending on whether their
defining relations contain the g-anticommutator or g-commutator. The first .will be
called antisymmetric CA (ACA) and the last — symmetric CA (SCA).

~r

At the moment we still fix the higher-dimensional terms in a quadratlc part of the'
relations (3.3), but there remains an uncertainty in the choice of the adjoint and scalar
terms. Let us show this explicitly. First of all we employ simple dimensional consid- |
erations. To satisfy the ordering condition (C) at a quadratic level, we must include
at least N—z(@ independent relations into (3.3) (e.g. for the classical case of gl(V)
this corresponds to the number of commutators [A;j, Ax]). Since the h-dimensional
terms (3.10) for SCA contain wz—_ﬁzwﬂ‘independent combinations, we must add to
them at least 2- (N?—1) independent combinations, i.e. two ¢-traceless adjoint terms.
Actually, the estimation is precise: including any other additional adjoint or scalar
terms into (3.3) would result in a linear dependence of quadratlc ordered monomials
and, thus, would contradict (D). As regards the ACA’s, from the _Iy_(ﬁz__)_ indepen-
dent combinations, contained in h- dimensional terms (3 9) the N? combinations lead
to the relations (3.3) of the type: A2 =0 (i #9)A% = Ty fPAuAw (where fH
are some oonstants) i.e. they are useless in the ordering procedure. Hence we have a
deficit of the 2N¥? independent quadratic combinations in N > 3 case (5 combinations
for N = 2) and are forced to include in (3.3) 2(1 for N = 2) independent g-traceless
adjoint terms and a pair of scala.r terms Wlth thls 1nclusxon ACA’s are deﬁned by the
set of N—(-w relations. ' ‘

Thus, we have determined the number of independent: adjoint and scalar terms in
symmetric and antisymmetric CA’s. Note that the g-commutator and g-anticommutator
themselves contain the true number of adjomts and scalars, which is demonstrated by
the followmg symmetry properties:

P*{RARA — ARAR}P*=0, (311
P*{RARA + ARAR"}P*—O (3.12)

But there is an opportunity to change the form of quadratic adjoint terms in the left-
hand side of Eq.(3.3) without changing their number. Indeed con_slder the quantities

| 8+(Ues(4)) = RUW(ARH £ Uns(d), (3.13)
Uwa(4) = v!(R)- A? + (u? —e)( ) (Tr., )AL
+ (= e)(R)- A(Trd) + w'(R)- (A 4), (3.14)

.

where u*(R) = u¢ + uiR,; a=1,2,3,4, and e(R) = [N] (u‘(R) + q“N 4(R) ~1). We
make the e(R)-shift of the pa.rameters u%(R) and us(R) for the sake of future con-
venience. Expressions Ay are the most general covariant combinations which contain
only adjoint and scalar (for A;) terms and satisfy. symmetry. properties

P*A_P¥'=P*APF=0. (3.15)

Therefore we may use Ay and A_ in varying the quadratic part of the defining relations

. 3) for ACA’s and SCA’s, respectively. Note that in principal one could add to the

. h s. of (3.14) the scalar combination U,, = h(R)Tr.,(Az) + g(R)(Tr,A)?, where b



and g are arbltrary functions of R. Thls addrtlon, obviously, does not -affect A_.
As concerns A,, remember that defining relations for ACA must contain a pair of
independent quadratic scalars represented generally as:

Tr.,(A ) = CiTry(A) + Cy, (T A) = C3T1',,(A) +Cs. (3.16)

Here C; are some constants. Thus, even changing the form of A4, the term U, cannot
change the content of the bilinear part of defining relations for ACA and we will omit
this term in further considerations. , :

Now we shall concentrate on studylng the homogeneous (pure quadratic) ACA’s,
which possess the natural Zp-grading and may be interpreted as external algebras of
the invariant forms on GL,(N): To emphasize this step, we change the notation from
A to Q. All the other cases can be considered following the same lines.

As we have shown, the general defining relations for homogeneous ACA look like

RORQ + QROR™ = A, . (3.17)

These relations contain 8 random parameters u¢, (¢ =1,2,3,4; i = 1,2), but actually
this parametrization of the whole variety of homogeneous ACA’s is redundant. To
minimize the number of parameters in (3.17), let us pass to the new set of generators:

w = Tr,, o 4 (3.18
“"{(2 Q-gl, Trft=0. 6B

Using these new variables one can extract the first scalar relation w? = 0 and (3.17) is
changed slightly to

RORO i’+ GRAR" = ALUQ)), (3.19)
w’l = 0, i : o t (320)
:where A.,,(U) = RUR + U and - v

U(Q) =o' (R)Q + uz(R)wQ + ua(R)ﬂw +u'(R)(* Q). (3.21)

Here, as usual, Q= Q; =0l
Applying the operations Tryl...}, TTq(g)[R -1..), and then Try)f...] to Eq (3 19)
we extract adjoint relations and then.obtain the second scalar relation

Tr,,(nf) =V Tr@x =0, "(”3',22)
The ad_]omt relatxons are represented in the form: ‘
AR)Q + v (R)ws? + v3(R)Shw + o' (R)(2+ D) =0, (3.23)
where . . . 4 :
(R)=vf +viR = z(R)u*(R) —&ig" R —diel, (3.29)
sR)=z0+ R = (¢¥ +¢7 ") + (N, + 2" )R. (3.25)

oy

Here we arrange the pair of adjoints into a single matrix relation. Expandlng (3.23) in
a power series of R one can obtain both the adjomt relations explicitly.

Now we can reduce the number of cocfficients parametrizing ACA’s. Namely, we .
use Eqgs. (3.23) to represent some pair of adjoint terms (3.7) as linear combinations of
the other two adjoints. Let us denote 2 x 2 minors of the system (3.23) as

a b
3
a

vy

7% = det (3.26)

Note, if 73 ='9** =0, then we get from (3.23) that Q12 must be proportional to either
wQ, or Qw, which contradicts the condition (D). Hence, there are only two variants of
solvmg (3.23) with respect to either {2 * 2 and Qw (if 4 # 0), or 2 *  and W (if

75 0) Both the choices are quite natural since, first, we eliminate the cumbersome

‘ expresswn 2% from further consider ations and, second we fix the order of quantltxesr_

w and € in their monomials (turning w, respectlvcly, to the left, or to the rlgllt) In fact,
as we shall see further. (see remark 3 to Theorem 1), both these variants are equivalent
and. conditions 7 # 0, v** # 0 are necessary in obtaining consistent ACA’s. So, we
suppose from the beginning ‘that both 7 and ~4?! are not equal to zero, and choose
solving (3. 93) w.r.t. Q * Q and Qw The result is

Q*Q—-6Q2+‘rwﬂ Qw———pwﬂ+aﬂ o (3.27)
where 13 3 24 ' M
7 7 7 e
5=;774, =l P='§7é0, 7==5

are namely that minimal set of parameters, we are searchmg for. In this parametriza-
tion the defining relations for ACA look like

RORS + QROR™ = #(R) {(6 + " R})(RO'R + ©°) 4 rw(ROR + m} , (3.28)

o = —pwll + 0, | , (3.29)

W=0, ' (3.30)

where . ' '
R = (R)}‘ e {mteR) . (@3

lN"l“)l lN_{)lq
-l'o+)\$1 = qN(q 24+4%).

1l

T2

. To get the relations (3.28) we solve (3.24) with respect to u®(R), substitute the resulting

expressions into (3.21),(3.19), and then use (3.23) and the first of Eqs.(3.27). The’
systems of relations (3.28-3.30) and (3.19-3.21) are eqiuvalent if the matrix a(R) is
invertible (i.e. if [N + 2], [N—2], #0 & [N],#+£[2);, & V¥ £13) lurtller

3Cf. with the remark in the brackets above Eq. (3.7). -




we shall consider this nonsingular case. The case N = 2 w1ll be treated in detail in the

next Section.
Now let us discuss the symmetry propertles of Eq.(3.28). Conside,rl the following

transformation

{ q — g hence, Ry—Ri, z4()— 200 (3.32)

8 - Q'=0=I190.

Here in the lower indices we write values of the quantization parameter for the consid-
ered quantities. Note, that using the symmetry property of GL,(N) R-matrix:.
R: = PR Py

q
one can find that (3.32) is a product of two symmetrxes the mvolutlon transformation
of the operators B'— P]zBPlz and discrete symmetry

-] . A —l “ s
(1,7 0, RSy

Q! — remains unchanged.

It must be stressed that the replacement ¢ — ¢! doesn’t concern the definition of w,
i.e. of the quantum trace. Otherwise, we would obtain an algebra with different covari-
ance properties, namely, the algebra of left-invariant (w.r.t. transitions in underlymg
quantum group GL,(N)) objects.
Now using the identity
NRZ _ —NR-2
z,,(R.,)Rq" = 2_._‘1__)‘2__"
we deduce the following properties of the matrix function Z(R):

iq(Rq)
Z,(R,)

and, then, it is no hard to check that Eq. (3.28) is invariant under the substitution
(3.33) and, therefore, under (3.32). In the classical limit ¢ = 1 this transformation
reduces to the identity, but in the quantum case we get the discrete Z;-group of sym-
metries of Eq. (3.28). Namely this symmetry produces the doubling of differential
calculi on GL,(N) observed by many authors ( see e.g. [13]).

R?71(R;"),
g R;’:E,,(R,,) +AR;".

Thus, the most general form for the algebras.which admit an ordering for any
quadratic monomial in their generators is (3.28)-(3.30). The next step in finding out

the consistent defining relations for homogeneous ACA’s is to consider the ordermg of

cubic polynomials. Let us present the result of our consnderatlons in

£

Theorem 1: For general values of the quantization parameter q there ezist four
one-parametric families of homogeneous ACAs. The defining relations for the ﬁrst pair
of them look like

[ RORG + HRAR- = £, (@' + RA'R) , (3340)
- ‘ G.
and o
type I: flw = —puf ,‘ p#0; . (3.35)
type II: [n‘w]; = o, o#£0. (3.36)

Here kg = mﬁm, and g # -1, [N]q # {0, —)\q , —-)\[2]qu*1 :{:[2],,} For both
cases the following remarkable relation holds:

Ra,lm - mm?R =0. : - (337)

The remaining pair of }amilz‘esi can be obtained from‘the ﬁrst one by'the involution
(3.32) or (3.33). :
Finally in the classical limit (q = 1) there ezists one more famzly of homogeneous

ACAs

[, )y = T'(Plﬁ—‘ﬁ)w(ﬂx_-i- Qz) ; o
e, =0, R - (3.38)
i =0 . _ I

where 7' = 52 # 0 (see Egs. (3.27),(3.28)).

Proof: We shall prove the Theorem for type I and II algebras. The results for the
second pair of algebras are obvxously obtained by applymg transformatxon (3.33) toall
the formulae below.

“To check the orderiag at a cublc level, it is enough to consider two monomials:
(RQ w and (R’RQ)3 In the classical limit these combinations become 0w and
Q30,Q,, respectively, and for the ordinary external _algebra of invariant forms on
GL(N V) the procedure of their ordermg looks like Qzﬂxw — w0, and 939291 —
0, 050s.

Before ‘establishing the quantum analog of. this procedure we have to choose the
basis of "ordered” cubic monomials. Here the notion "ordered” is given in quotation-
marks since we can’t achieve true lexicographic ordering of monomials without loosing
the compact matrix form of our considerations and passing to cumbersome calculations
in ;;-components. Such in-component calculations, based on the use of the Diamond
Lemma (see [23]), were carried out for the case N = 2 in Refs. [9, 10, 16]. and it
seems doubtful that they could be repeated for general N. So, we use the basis. of
quasi-ordered cubic combinations which are convenient for our matrix manipulations.
In this way, we cannot prove that we have exhausted all the possible types of ACAs,



but the algebras obtained surely satisfy all the conditions for ACA and our conjecture
is that Theorem 1 gives all the possible ACA’s. :
Let us define some new symbols:

(Ao B)jz = ARBR™, (Ao B);s=R'(AoB),R’, (Ao B)ys=RR'(AoB);;R'R,
(An=A, (A)» = RAR, (A)s = R'RARR’.

Here, as usual, B = B, = B ® I. The lower indices in thise notation originate from
the analogy with the classical case (¢ = 1), where (Ao B),; = A1B;, (Ao B)iz = A1 B3
etc. : ’ S

We choose the following basic set of cubic matrix combinations:

(92 0 Q);; ) (002, wof)y, (), “w(ﬁz); s (3.39)

where 7 < j and 7, = 1,2,3. We also imply that these basic cor'nbin.ations can be
multiplied from the left by any matrix function f(R,R’), but expressions produced
from the combinations (3.39) by multiplication from the right are to be; ordered ye!,.
Now in the quantum case we order monomials (RQ)% and (R'R2)% in the following
way: ) } o
RO)’w - —ujQRﬂtR"l + ... v (3.40)
{ (RRQ)P® — —QRR'QRRIQR'R™' 4., .
where by dots we denote some additional terms to be expressed in terms of thf.) basic
combinations (3.39). The point is that such an ordering can be performed in two
different ways, depending on whether we first permute the left Ipair o.f the' gene:rators,
or the right one. According to the condition (D) both results must be 1d<?ntlca], i.e. the
additional terms in (3.40) calculated in two ways must coincide, otherwise the ordered
cubic monomials would not be linearly independent. Checking this condition for the
combination (R{2)?w we get the following relation: - . g :

@08 + @B — o(@ o+ @ol] =
o3(R) [(1 - p)(E + @ RA((@)1 + (¥)a) + ro(@)s + (@)

where o L o - s . ‘

a (@0 )y = RO'RA, (0 %)y = RARSO - (349)
are the\ﬂcomlA)inations tobe expressed in terms of the basic ones (3.39). In doing so one
can start with the relation. .. ‘ :

(3.43)

RO'RO - QRO'R =R(QA, — A Q)R
that directly follows from (3.28). Here Ay is the shorthand notati(?n for the r.h.s.
of (3.28). Omitting the straightforward but rather tedious calcu]af;lons we present
the ’ordered’ expressions for ({0 1)z and (Q 0 %)y in Appen.dlx A (see (A4)‘
(A.6)). Substituting (A.4),(A.5) into (3.41) and carefully considering the conditions

10

for vanishing cbnsequentiy w(f oﬂfl),z, (002),,, (flzo(.l)n;,‘ Q(ﬂz);,g and (), , -terms
there we conclude that (3.41) is satisfied iff - ' : S
a)o = 0; -
© b)o #£ 0Oand 7=0,p=1. ' (3.44)
Now we repeat these considerations for (R'RQ)3. Performing the ordering of this
expression in two different ways we obtain the following condition

AyRRORT'R™' -~ R'RORR'A, + RA,RROR-' -

RORR'A,R™ 4+ RRA,R'RQ - QRRAR-R-! — o (49

Considering (523)1,2,3-§erms in the decomposition of (3.45) over the basic set (3.39) (here
formulae (A.4),(A.5) are to be used) we get the condition on the parameter §

N N
Sl ) P 3 Np2y _ A — ..
=N, & TRIE+¢"RY) = ], 1 g =l s (3.46)

where [N}, # —Ag" is implied. Further restrictions on possible values of the quanti-
zation parameter ¢ follow from the condition. of invertibility of the matrix E(R) (see
(A.6)), the inverse power of which enters, through the formulae (A.4),(A.5); into all
our calculations. These restrictions are

KAl 1+RRIAPE & (N],£0, [N, # ARl

And finally, analyzmg the coﬁdition (3.45) for w(2 0’(1)12_13'23-1,61'1115 we obtain further
restrictions on parameters for case a.) (3.44): :
'.‘ai.)a = Oa.n(i.‘r=0;.'

a2y o = 0 and T#0, p=1,A=0.

Checking the remaining terms of Eq. (3.45) doesn’t lead to further restrictions.

Thus, we prove the dr(lering conditions for cubic monomials for the algebras (3.34)-
(3.36), (3.38). To conclude the proof of the Theorem, we note that if the ordering
condition is checked at a cubic level, then in accordance with the Manin’s general
remark [7], it automatically follows for all the higher power monomials. Finally, the
relation:(3.37). follows directly from (A.4), (A.5) under the obtained restrictions on X
1,0,6. Q.E.D.

In conplusioillof thefSc;p_tiou we make few comments on the Theorem:
1. The parameters o # 0 for the type I1 algebra and 7 # 0 for the nonstandard

classical algebra are unessential. They can be removed from the defining relations
by simple rescalings of gencrators w or . ° "
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2. Note that reproducing explicit formulas for certain ordering prescriptions from
the covariant relations (3.34)-(3.36) and (3.38) one may obtain some additional
limitations on the values of the parameters p, o, 7 (e.g. see below the N =2
case).

. One can directly check the requirements’(3.44) assuming the following natural
condition:

Trq(fl:’) £0 - (3.47)

(this is true, e.g., for the classical case qg=1). Then Eqs.(3.27) lead to the
relations
[Q,Q,*Q]:'r(aﬂ?—-(l+p)wﬂz), C
(3.48)
Q2w — p? = o(p — 1)2.

Applymg the operation Try(.) to them and using (3.47), (3.22) we deduce
olp—1)=0=r710
which is equiva.lent to (3.44).

. From the relation (3.37) one can deduce that operators Q? commute as generators
of the reflection equation algebra (see e.g. [24]):

RO'RO = Q’RO'R.

. Finally, we present the deﬁnmg relatlons for homogeneous ACA sin terms of s
(see (3.18))

type I : L:‘L)(l'—“’-w (RQR + Q)

typeIl: %—,\;ﬁ%’ (R’R + (:2) )
3.49

RORQ+QROR™ = «, (RQ'R + Q%) +

It should be mentioned that the condition p # 0 appears to be important just -

here, since the relations (3.49) for the type I algebra contain both scalar terms
only under this restriction.

4 Differential :Co'mplexes of Invariant Forms‘: R

As we argued before, among the algebras presented in ‘Theorem 1 there exists the
true algebra (or maybe a set of such algebras) of invariant differential forms on

GL4(N). To make the connection with the differential calculi on quantum groups .

‘more clear, we shall supply the homogeneous ACA’s listed in Theorem 1 with a
grade-1 nilpotent operator d of the external derivation. The definition of d must
respect the covariance properties (3.1) of Cartan 1-forms, i.e. d must commute

12
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R

with the adjoint GL,(N)-coaction on 2. Hence, the following general ansatz is
allowed:

d-w —tw d. : . (4'1)

Here z, y, z and ¢ are some parameters to be fixed below. We stress that the
last term in the right hand side of (4.1) defines the deformed version of Leibnitz
rules for differential forms. The ordinary Leibnitz rules are restored in the limit
z =1t = 1. Note that the different deformations of the Leibnitz rules for the case
of quantum groups have been proposed earlier by L.D.Faddeev [25]. For the case
of quantum hyperplanes they-are considered in [26).

{ d-§ = 22 + ywll — 2§ -d

Now'it is straxghtforward to obtain

Theorem 2: Under the restrictions of Theorem 1 there ezist two distinct ¢ covari-
ant differential complezes for type I algebras, defined by

= 02-Q-d,

fd-Q
typel A : { dw = —pw-d; (4.2)

fd-Q = W -20-d, g
typeIB.{d.w - —w-d. _ 4.3)

The differential complezes for type II and the nonstandard cIasszcaI aIgebras are
deﬁned unzquely :

2 -0-d,

d-9Q = : .

typell : { dow = —w- d ’ . (4'4)

nonstandard d-Q, = u}ﬁ - (4 5)
classical case: | d-w = —w-d. -

Here all unessential paramelers are removed by w- and ﬂi}cécalings.

Proof: These restrictions are easily obtained by demanding d? = 0 and ‘ch‘ecking
the compatibility of ansatz (4.1) with'the algebraic relations (3.34)-(3.36). We
would like only to mention that the relation (3.37) plays an important role when
elaborating the type I and II cases. Q.E. D .

Let us discuss which of the dlﬂerentlal complexes lxsted in Theorem 2 can be
treated as g-deformations of the complex of right-invariant forms on GL(N).
Comparing the formulae (3. 34 3.36) and (4 2-4.4) W1th the conventional classical
relations:

[Q,w], = [nl,nzh_o d-ﬂ:fl’—ﬁ-d,dfwj_-—w-d, (4.6)

we conc]ude that there are two different possibilities to deform the complex of
GL(N)-invariant differential forms. The first is realized by the type IA differential’
complexes with the additional restriction on the parameter limq_,p = 1. Note
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that .in this case the Leibnitz rules are deformed under quantization (for p #
‘1). The second possibility is realized by the type 11 differential complexes with
limy_10 = 0. Here the Leibnitz rules take their conventional form. We would like
to mention that all the other types of differential complexes listed in Theorem 2
also may be interesting as examples of ’exotic’ differential complexes on GL( )
and GLy(N), but this subJect lies beyond the scope of the present paper.:

Now let us treat the SLo(N)-case. The g-traceless generators {);; can naturally
be identified with the (N2 — 1)-dimensional basis of right-invariant 1-forms on
SL (N ). These generators form a closed algebra under external multiplication
given in Theorem 1 (see (3.34)), and, remarkably, the algebra of these generators
doesn’t contain any random parameters. As Theorem 2 states, the action of the
external derivative on these generators can be only defined lll\e in the classical
case: d- 0 =02=Q.d (see (4.2), or (4.4)). So, we conclude that the complex of
SL(N)-invariant differential forms possesses the unique g-deformation. =

In the classical Lie-group theory the differential complex of invariant forms serves
as suitable basis in the whole de-Rahm complex of all the differential forms on
the group manifold.. So, to get the full differential calculi on the linear quan-
tum groups, we have to supply the algebras obtained with the suitable cross-
multiplication rules for T;; and £, and to define additionally the action of the
external derivative on T3;. Note that in the Woronowicz’s sheme [1] these ques-
tions are to be solved in the first place, when constructmg the first order.dif-
ferential calculus. Not trying to solve the problem in general we present here
one example of such construction, and establish the correspondence between our
homogeneos ACA’s and the existing examples of GL,(N)-bicovariant differential
calculi.

For the matrix group GL, of a general rank N two versions of differential calculus
have been considered. They were obtained first in the local coordinate represen-
tation, where the differential algebra is generated by the coordinate functions Tj;,
their differentials dT;;, and derivations D;; (means‘ 3%'_). We present here the
full set of relations between such generators '

RTT = TTR,.
RATdT = _dTdT'R-, ()
" RATT' = TdT'R-, .

RD'D = D'DR, S
DRT = 1+ T'R-'D, (4.8)
DRdIT = dT'R'D'.
Here, as usual D= DRI, D' =1QD,dT =dI'®l,dT = I®dT. ThlS algebra
is checked to possess unique ordering. for any- quadratlc and cubic monom)als

!

4For N = 2 such ’exotic’ complexes have been consxdered in [16].
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The relations (4.7) were obtained in [10] and in the R-matrix formulation in
[11, 12]. The first two of relations (4.8) have appeared in [14, 15]. Note that the
algebra (4.7),(4.8) implies the commutativity of the derivations I and external
derivative d. The defining relations for the second version of differential calculus
can be obtained from (4.7), (4.8) by the symmetry transformation R < R~! of
the type (3.33).

The right-invariant 1-forms and vector ﬁelds are then constructed as
Q=dr-T' [ V=T-D, ©(49)

and they possess the following algebra

"RQRT = T, RVRT =TV'+RT, (4.10)
RORQ = -QROQR', (4.11)
RVRV = VRVR+RV —- VR, C(4.12)
RQRV = VRQR™! + RQ. (4.13)

Here Egs.(4.11) are the commonly used commutation relations for GLg(N)-
invariant differential forms (see [12]-[15]). Comparing:(4.11) wi.th (3.49) we see
that Qs (4.9) realize the special case of type 1l external algebra w1t,.11 o= —rq[N]q-
Eqgs.(4.12) are the well known commutation relations for C‘;Lq(N)-mvar{ant }'ector
fields [3]-[5], but in a slightly different notation. To obtain these relations in the
conventional form, we have to pass to a new basis of gene] ators Y =1 — /\V In
this basis Eqs.(4.13),(4.12) look like

RYRY = YRYR, (4.14)
ROQRY = YRQR™. (4.15)

Note that our commutation relations of V’s. with Q’s or Y’s (4.1?), (Al‘.IS). are
different from those presented in [13, 15] for invariant 1-forms and Lie derivatives.

The operator of external derivation.in (4.7),(4.8) admits the following explicit
representation ‘ .
: d=Tr(QVY™1) = Try(dT'D(1 — AV)™Y), (4.16)
which surprisingly differs from the expected formula Tr(dT' D) = Tr (V). The
operator (4.16) satisfies the nilpotence condition and the ordinary Leibnitz rules.
The form of relation (4.16) suggests us an idea of changing the definition (4.9)
of invariant vector fields. Indeed, consider the new set of generators U;; obtained
from the old V’s by the nonlinear invertible transformation:
Vv U

- . — 1.17)
.U—I—/\V’ k T4+ AU (
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With a lxttle algebra one can check that the commutation relations (4 10),(4.12),
.(4.13) can be concisely rewritten in terms of U’ s

R“UR"T = TU’+R“T, - (4.18)
R7UR'U = UR'UR' +R"'U - UR™!, (4.19)
RQR'U = URQR +RQ. (4.20)

Now, if we consider Ui; instead of V; as invariant vector fields on GL «(N); then
the formula for external derivative takes its standard form: d = Trq(QU )

Finally, let us consider the simplest case of G L,(2)-covariant differential calculus
in more detail. Note that while the proof of Theorem 1 does not work for N = 2,
the resulting formulae are applicable to_this case as well. This can be dlrectly
checked by using only the general properties of R-matrix, namely the Yang-
Baxter equation, Hecke condition, and the g-trace formula. The failure of the
general proof of Theorem 1 is due to the dlfferent structure of Ad®? decomposition
in the case N =2 and is not fatal.

6 6
6 0,
(:xpresc:lslons (3.34-3.36) the following explicit orderlng prescnptlons can be ex-
racte

Denote the components of matrix Q as

vtypeI:Og = 03=0, 036, = —0,0s,
0 = (et + (o - 100}
2 - 1 - _"
04 = m{q 3A92'03 —_ q 2(p f.1)0104} y
“?4‘91 = _q_—Tl;_'; {(14+972p)6:04 + q7'A(1 + p)0265}

o 1 | o (4.21)
036 = 75 {-p(1+¢%)60:165 + (p— ¢*)0ab4} |,

0465 1—31;; {-@ +97)0:0s + (1= g7%p)018s}

il

: B . ) ;
b1 = e (14 7)bi6e + (0~ 1)0264)

040, = mv;{ (1+¢%)0:6, + (¢7% = p)0162} 5

16

). Then from the covariant

typeII: 0 = 63.=0, 030, = —0205,
o? = r}ﬁo?e3,;i 02 ___I‘L_Iiozoa,
0.0, = —6,0, +.A,ﬁq—’£',"—%,"—'10293,

830 =——l—:r{1— 0,8 00},
ath —;l(l+q)( #)13+“%?4 |
1=
00 = - 1 — _ -2
T T A ) { 7060 + (=144 )0103},
00y = —(1— ,;)0,02+,,0294,
'0492‘ = —q’(l— 100+ ¢ =1+ )10 .

. , (422)
Here we use the parameter uo= 9%_*_[1[\,1—]&—1 |N=2 1nstead of o for convenience.

In this notation the case {4.11) corresponds to g = 0. Obvious restrictions
p#{1,(1+¢%)'}and p # {—1,—¢~% —¢~*} arise when passing from covariant
relations to formulation in components (see remark 2 to Theorem 1).
Let us compare these results with those presented for the GL,, ,,(2) case in Ref. [ 16).
First, we note that by assumption the left-invariant 1-forms in [16] admit the de-
composition = 7! - dT, and. the external derivative satisfies the undeformed
version of Leibnitz rules. Hence, the formula d - Q@ = —Q2 — Q - d is postulated.
Moreover, the relation d§? ~ [w Q] is also implied. Hence, the differential cal-
culi obtained in [16] must be of the second type. Indeed the relations (8.5) of
[16] can be transformed into the form (4.22) if we note that due to the condi-
tions (6.25) [16] the parameter N (see (8.1-3) [16] ) obeys the following quadratic
relation:

(1+r2)(2+N(1+r—(1+r'2)s))=(1+r‘+'rN)~. (4.23)
Here r = pq (see Eq. (8.5) [16]) is the only combination of deformation pa-
rameters that enters into the external algebra of invariant forms. This is not
surprising since the GLL,4(2) R~matr1x, when sultably normahzed satisfies the

Hecke relation
R’=1 + (ri —_ f—i)R‘. : (4.24)

Hence, we expect that the parameter r# of [16] corresponds to our ¢~ ( the
inverse power here is due to the substitution ¢ «+¢~* that should be done to pass
from the right-invariant forms of Eq (4.22) to the left-invariant ones).

The - variable s of (4.23) parametrlzes different external a.lgebras in [16] and it
should correspond to our u. Actually, using (4.23) it is strightforward to check
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that Egs. (8.5) of [16] are equwalent to (4. 22) with the fol]owmg substitutions
to be made:
-2 ~1-rN _,

regtt T B

Summarizing all the above, we conclude that our type II differential complexes,
on the one hand, generalize formulae given in {16] to-arbitrary N and, on the
other hand, include the bicovariant calculi considered in [10]-[15].

5 Conclusion

Here we make some comments on’cohstrlicting&'t»hé differential (':alc:ull for type II
complexes (3.34),(3.36),(4.4), and briefly dlscuss the problem of S, (N) reduction
of the GL,(N)- differential calculi.

Since all the type II differential complexes are lsomorphxc (see the first 1emark
to Theorem 1), we expect that ¢ = —&,[N], differential calculus’ (4. 7),(4.8) can
be transformed to the case of any o. To realize this transformation, we consxder
the new set of generators {T(” } of the algebra Fun(GL; (N)) s ‘

TP =975, ()

where z = det (T) and g(z) is -an arbxtrary function of z. It is clear that
det,(TW) = zg(z)N, and therefore the choice g(z) = 27!/ leads to the SL,(N)-

case of [13, 15] -Using commutatlon re]atlons (4.7) and (4 10) one can deduce
2dT = ¢*dT z, \"dT = [T, w] = AN dg(z) = w(g(q z) — g(2)) - (5. 2y

Now we introduce new Cartan 1-forms (9 = dT9)(T®)! related to the old ones \'

via the followmg formulae

G(Z)_'l,, .

0 = gdI T 4 dg g™ = 96() + Y

Here G(z) = g(q’z)g™'(z). Note that eqs.(4.7) and (4.11) give the fo]]zoﬁ"irigh

formulae

Aqun =—{20} =" ' (54)

Using these equatlons énd relations (4. 7) and (4. 11) we obtam the set of GL (N)
differential calculi parametrized by the function G(z): ~

RT(g)T(y)’ T(a)T(g)’R
RQ”RQg + QgRQ”R“ = RU5R+ U” (5:5)
5.5
T = RQgRT(g)G(z) + WITEN(G(2) - 1)+

w9 (1 = R?G(z))T® ([N],, + thifll) .
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(53)

where 2 e ‘
U? = (9)%(1 - G(2)) + wnﬂ%—%—@ . (5.6)
W@ =Tr W =w (G( ——————[N ls P 1)) (6.7

Let us consider the case when the function G(z) is a constant. For example
for g(z) = 2z we have G(z) = ¢** and Eqs.(5.5) give the one-parametric set of
differential calculi which can be naturally related to the set of type II differential
complexes (3.49):

" RT(@)T() = TETE@'R

RO@ROE 4 Q@ORAOR? = 1, (R(Q))2R + (2=))?)

(5.8)
T = RQ@RTE(1 — p,) - Q(é)T(a)#a_ :
(a’i—)) R(1 + LR )w()TE),
where ji; = 1‘— ¢%, &(pta) = ¢V (1 — po) — 22[N]y and ‘
W = Tr, 0 = ¢ NE(po)w . . (5.9)

Now let us explore the possibilities of SL,(N)-reduction of these calculi. First,
if we put a = —1/N (as it was done in Refs.[13, 15]), then in the commutation
relations (5.8) we have the unavoidable additional 1-form generator. w{-1/N) and,
thus, the number of Cartan’s 1-forms is N? but not N? —1 as in the undeformed
case of SL(N). Second, one could try to put w(®) to zero choosing parameters o
and q as

q%¢(pa) = ¢"*N + [aly[N]; = 0. , (5.10)
In partlcu]al this equation is fulfilled for q bemg a root of umty R
g%, which doesn’t contradict the condition a = —1/N. However, for the case of

(5.10), in the third equation of (5.8) we have ‘Lindefiniteness, that is solved as
P (@ eV e (1))

and we cannot put it to zero having in mind that ,\quT("’) = [T(") w] and
[det,T(), w] # 0. Therefore, the differential calculi (5.8) do not admit the
correct SL,(N)-reduction even for special valugs of the quantization parameter
Now, how one may hope to construct the consistent bicovariant differential cal-
culus on SL,(N)? The nice way of making the reduction from the GLy(N)-case
doesn’t work for type II differential calculi (5.8). May be, the cross-multiplication
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presented in (5.8) is not the unique possibility of construsting the differential cal-.

culi starting with the type II complexes. May be, the difficulties will be overcome
if we use the type IA complexes instead of the type Il ones. But here for p £1
we meet serious problems when constructing the local coordinate representation
of the type Q = dT' - T, So, only the type IA differential complex with p=1
seems to be a good candidate'for the construction of consistent differential cal-
culus on GL,(N) with its possible reduction to SL,(N). We hope to revert to
these problems in further publications.
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A Appendix-

Here we present the ’ordered’ expressions for qua.dratlc combinations (€ 0 92),
(92 o () (see (3.42)), and collect some formulae used in the derivation of these
expressions.

Consider the sequence z; defined iteratively

To = qN + q‘N., LT = [N, + )\qN 3 e = Ti 4+ Az A (A'l.)

Define '
‘ iT1miTL = Toily itk Clmich Uk — Tiokask D
Yi= (—'1) _l____ll?l__Z y Yik = (—1) 'H, 1 1 |z| - 2 X (A2)

where |z| = [N + 2],[N —2],. It is strightforward to show that y;; = y; for a.ny i
and k, and y; are calculated by the following simple iteration:

Yo = 1.-, n=>X, Y= vi+ )\y.-+1 o L (A3)

When simplfying the final expressions for () o flz)z_l and (92? 0 0);; we use the
following properties of the matrix functions z(R), Z(R):

(=

RkI(R) = Ikl + Ik+1R Rk (R) To— );1 + Z] kR)

1)
; ER
RFz; a:( )= ( 1)k (y_, ¥l =z R 'I(R))
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together with (A.1)-(A.3). The result is
(@2 0 O) = ETY(R) [e(R) { 1+ f-{}ﬁa(R)} (€0 (2)1
#R {e(R) (3 - S=) + 5 (), + RAR)} (@0 B
[E]]

—7R%(R) {2(R) + 5 R L w(@ 0 s .

+ {_~6=n+|;’{=—1 R*(1+ R%Z(R)) + R (V] + A" (1 +R) + (1 + Az)R«S(R))} ()

{5n+q LR SUESY YL R%z (R)) + % e (q (1+ Rz + /\R&(R))} (93)2
+{r2(R)e(R) (AR - ftirz=2) — mRA(R) + Aq”{;’lR—lF(R)} (@),
+{—rER)(R) (1 0+ E0tgz=2) 4+ Hme(R) + AV ERF(R) (@]

(A.4)
({2 0 12),, = E-(R) [{Rc yemteleas _ re ()\q”R3 —z R+ R26(R))} (€ 0 2),,
+{R2e(R) (1 - i(R)&(R) 4 roz=ite —2+’°) + 70(R* + RS)S(R)Z(R)
iﬂLPJ} (@20 D) — R (3(R) + pil;llR-z) (e(R) + mR?z(R)>w(ﬁo Mo
4 (e RaG(R) + 7oR? (f + BR2(RISR)) — G+ VIR?} (@),
- {2fr==RG®) + roR (f + HRER )6(R)) RO} (@),
{,-,B,RQ( R)(-z2 + (14 ¥ — 22 (RIR)S(R)) + 7o (1 + 7))

+72(R) ((R) (108 + R?) - AroRE(R)) }w(@):

+{ 8 (Re(R) (1 + (esRatR) ~ V3(R) oo

+72%0%(R) (III e )+R75(R))}w(ﬂ7)2] .
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where ] . . .
6R) =64 ¢"R?, (R)=1+R(R)K(R),

F(R) =1+ R-”I(TPI‘)(S(R) [ G(R) = (R) + roR%(R),

bzo+qNz_,

_ ¢ 70 N NR?) | o
ER)= (l+ ] ) (R)+|~Tl (7" +¢"R?) (A.6)

Note that these expressions are signiﬁcé.ntly simplified under the restriction
To = 0.
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Wcaes A.IL., [aros ILH. ' E2-93-416
Kosapuantuse guddepeHunanbube KOMILIEKCH
Ha KBAaHTOBHIX JINHENHEIX TpyIHax

PaccMaTpuBaoTCd BO3MOXKHEIE KOHCTPYKLIMH BHEIIHUX aare0p g Kapra-
HOBCKHX (hopMHa GL(N) 1 SL (N). cXOXHEIMH Iy HKTAMH aHATN3A SBJISIOTCS
TIOJIOXKEHHS O TOM, YTO ]

1) 1-¢opMHu peamu3ytoT HPUCOEAMHEHHOE MPEACTABICHNE KBAHTOBOM TPYIIIb;

2) cocraBaeHHHEE U3 1-(OpM MOHOMEI AOIYCKAIOT EANHCTBEHHOE yIIOPSNO-
yeHue. ) '

Ilnst monyyeHHHX BHEIIHUX aareOp onpeaesieHo muddepeHinaIpHoe 0To-
OpaxeHHe, XapaKTEPU3yeMOe CTAHAAPTHRIM CBOMCTBOM HIUIBIIOTEHTHOCTH, H,
poobie rosops, nedopMupopaHHEM npasuwioM Jieitbuuua. O0cyxnaerca Mecto
‘U3BECTHHIX NpUMeEPoB auddepeHIMaNTbHEX UCUHCICHWI Ha GLq(N) B npeasia-
raemoit KJ1acCH(UKALMOHHON CXEME, a TakXKe npobeMul SL (N)-penyKim. ‘

PaGoTa BHIIO/NHEHA B JIa60paTop1m Teope'mqecxon (puamm uM. H.H.Boro-
sobosa OUSU.
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Covariant leferennal Complexes on Quantum Linear Groups

We consider the possible covariant external algebra structures for Cartan’s
1-forms (€2) on GL(N) and SL (N). Our starting point is that Q s realize an
adjoint representation of quantum group and all monomials of 2 s possess the
unique ordering. For the obtained external algebras we define the differential
mapping d possessing the usual nilpotence condition, and the generally
deformed version of Leibnitz rules. The status of the known examples of
GL,(N)-differential calculi in the proposed classification scheme and the
‘problems of SL,(N)-reduction are discussed.

The investigation has been performed at the Bogoliubov Laboratory of
Theoretical Physics, JINR.
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