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Here we present a method which allows one to obtain the results for the massive 
diagrams without calculating the complicated D-space ( in case of the dimensional regu
larization) Feynman integrals using the rule of integration by parts [1,·2, 3] . Throughout 
the article we use the following notation. The use of dimensional regularization is assu~ed. 
All the calculations are performed in momentum space of dimension D = 4 - 2E. The 
dotted and solid lines of a diagram correspond to the massless and massive (for simplicity 
eu~lidean) propagators, respectively, · 

l al. 1 d.. 
fp2]" = ._ - - - .. --.,. , (p2+m2]" = 2. p p M . , 

a and m are called the index and mass of this line, respectively. Further ( except specially 
described places ) ali' the solid lines contain the same mas$ m . Index of a \ine is equal to 
1 and masses are not marked. - · · 

Let us consider the rules of the Feynman diagrams calculation. 
Rule 1: Massless loops are integrated due to the graphical identity 

-- - ........... <. ,,, ---
where 

( )
_r(D/2-a) 

a Ct' - r(a) , 

r is the Euler r - function 
Rule 2. Massive tadpoles are integrated due to the graphical identity 

J.. i ( ) J.. < - B( a,'"'\ m')"• ~.,-DJ, ' 

where 

( ) 
_ n/2r(D/2 - a2)r(a1 + a2 - D/2) 

B ai,a2 - 1r . r(a)r(D/2 -1) 

Rule 3. For a triangle the following recurrent relation is valid (here the line with 
index Ct'i also contains the mass m,) 

ol, /\•:,"' (D - 2a, - a, - a,) - a,[ d,+iA,J? - J,•i /\ ,, -

~~K1-K~ ~ --~ 

'••-•<~l+ml)J)J +(a,Ha,)-::~, i.; ~, 



We should stress the fatt that the lower line of the triangle is distinguished and two other 
lines are similar. The lower line is called "distinguished line". 

The rule 3, i.e. the rule of integration by parts, can be obtained multiplying the 
subintegral magnitude by number D = _dd (q - p)" and using the relationship 

q,_. 

f dDq div ( ) = 0 for the regularized Feynman integrals. 
The key idea of this method: using the rules 1-3 the results for different massive 

Feynman dyagrams are obtained without the complicated D-space integrals calculation . 
Notice that all the information about the D-space Feynman integrals structure, is already 
cont;ined in the rules 1 and 2 for the massless loop and massive tadpole, respectively. 

Consider a few specific examples. 

A. Propagator-type diagrams. (see also [4]) 

We divide all the diagrams into three types: 
- the master diagrams which can not be obtained as loops and chains combination, 
- the diagrams which are the combination of loops and chains, 
- the diagrams which contain only loops. 

1. As the master diagram example we consider 

,, ' -- -1-( \ = /1 
CJ, ...... / - ,., 

Applying sequentially the rule 3 to the right triangle with the vertical and sidelong dis
tinguished lines, we get 

J1(D-4) = 2 [()-' .. \-P ~\ ~m2 {1-\-m2(-~'\j 
- \ I '-. / - ,,; ,1.<: ✓ 

- l -2 Z . . - 2--[ 2, ..... , ' , ' 
I1(D-4)=~ }-m2<. }i )-q2<_ } ,_ / ....... / _...... .., 

Combining these two eq.s, we obtain 

- -, .. , {J' ~-, -E, m2 , , ' , ' m2 / m2 , 
/ 1(D-4)(1-22 )=2[\ ,\ ,-__: ,J-2-2 ,-2m2(1- 2 H, 2 \ 

q .... ,, ,.. ' /. q ' ,, q ..... ,, 
Z - 2 - · 

The last diagram in the right hand side (r.h.s.) is the differential with respect to m 2 of 
the initial diagram / 1 : Hence, the r.h.s. has the form · 

2 2 2 d 
2ft + 2m (1 - m /q ) dm2 I1, 

where the function f 1 does not contain master diagrams. 
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1 

i 

Thus,we get the differential equation with respect to m 2 ·(DE) for the initial diagram. 
The result for / 1 is · 

[ 
t2 ·1· r #Ji(1p) q2 

Ii(t)= (1-t)(l-2t) (ci+ lo 1p2'(1-1p)1-•(l-21p)1-J, (t= q2+m2) 

The constant G1 can be obtained by comparison with massless limit t = L 
2. As the example of the second type of diagrams we consider the diagram 

C:>=12 
Applyi~g rule 3 to the loop with the massless distinguished line, we have 

l 2 

I2(D_-·3)"=b- G 
3. The examples of the third type of diagrams. 

a}. A simple loop with one massive line. 

-q, 
~ - - ...... 

<..______> 
H·Cl.t 

= /3 

Applying rule 3 with the massless distinguished line, we get 

Q
Z+A.£.. 

h(l - (a+ 2)t) = (1 + at) [ -(q2 + r;i2) 

By analogy with subsect.l we have 

,,-;-,_, 

'--J l 
Z+ll.t 

( q2)(a+l)<J (t) = (l/t)1-(a+2), ft d1p (1 + at)B(2 + UE O) 
3 lo 1p'(l-1j,)(a+1), , 

Notice that sometimes this is a more convenient form of the diagram / 3 

,, - ... ' - f I d1p . 
~ -}0 1p<>+l-D/2(l -1/•)' aB(a + 1,0) 

o(, 

.ol•i- '.Z,'i 

WI~ 

(I) 

It is clt~ar to see that rule 3 allows us to reduce L-loop diagram to the (L- I )-loop diagram 
with one propagator which contains the integration parameter in its mass. 

b). A;T;;,1ple l~~p with two massive lines: · 

C:=:> =f, 
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By analogy with the prJvious subsection we get 

- ft dip 
14 == (4'/2)B(2,0) lo tp'(l - ip)I/2 

£ 

~m½, 
(2) 

c). The two-loop diagram 

--+~==ls, 

i z 

which appears in the r.h.s. of the DE for many complicated diagrams. 
Differentiating eq.(2) with respect to the mass and applying this result along with the 

eq.(l) to the diagram ls, we get 

fl dip 
ls== 4'f(l + E) lo tpI+'(l - ip)I/2 

,- .... 
~== 

-4m% 
'¥ 

[1 dip f 1 . dcrcr-' 
4T(2

E) lo ip1+<(1 - tp )112 lo [q2(1 - tp )er+ 4m2]2' 

After the integration we have 

r2(1 + f) [ 1 1 + 01 1 + P 1 + 01 2 · ] q
2 

ls== (l-E)(m2)2< 2f2-l-pln(l-Jp)-~(ln(l-Jp)) +0(E)' (p== q2+4m2) 

Thus, the usage of the integration by parts rule allows one to obtain the DE for the 
massive diagrams with r.h.s. containing more simple diagrams. 

B. Vertex-type diagrams. (see also [5]) 

4. Consider one-loop vertex-type diagram with one massive line. 

, 
IC-\,,/ ,,;t 

I 
/ 

Atr-1( 
\ 

\ 
\ 

, ':il i-r 
== h u· 

Applying rule 3 with massive and one massless distinguished lines, we have 
;__,r-1( ~ ~ 

I \ I ,,Z I I \ 
(D - 4)16 == 1 12 -((p - q)2 + m2) I \ + (p +-> k) - 2m2 

/ \ . 
\ 1 I \ \ 
' .I \ / -~ 

t.-i.r x-.\_-y r ' r i. "\ 

4 

(3) 

1 
) 

:1 

it._P-k A; '\ f'""K _2 I"' 
,V-.._'. 2 21 

1 ' \i' _,\ · )2 .i; ' (D - 4)h ==I'-._,/\ -[(p - q) + m I \ + I'-.__./\ -(p - k I \ (4) 

{ 2 / \ I \ 
\.o-r / 'h:-G \.i,-p I \ ic:4, .. y 2. y 

Combining three eq.s (3), (4) and ( 4) with substitution (p +-> k) and putting q == 0 without 
the lack of generality, we get 

• d 
(D - 4)h1P6 :== <1>6 - 2cp6 dm2 h 

Here 

1P6 == l - (k2 + p2 + 2m2)/(k - p)2, cp6 == m2 + (k2 + m
2)(p~ + m

2)/(k - p)2 

and 
<1>6 == f2(p- k) -{(k2 + m 2)f1(k) + (p2 + m2)f1(p)]/(p- k)2, 

where 
2 --

/ ' / --...._ , , ' 
fi(p) == 2 ( ) - ,J1(P) ==--•<-° ) + < } -. .... i ,, p . p '---./ ~ p 

Defining the variable x == m 2 / (p - k )2 for the initial diagram in the symmetri~al point 
k2 == p2 == (k - p)2 == µ2, we get 

cp3(x) == (1 + x + x2)µ2 

h(x) - h(O) == [J1(x, 0) - 2J1(x, 1)), 

where 

f" dip 
J1(x,a)== lo l+t/J+it,2 ln(t/J+a) 

The value of diagram h(O) is found in papers [6, 5). 
5. Here we consider the diagram 

A 
I \ 

I ' == h, 
/ \ 

1----c).. 

which is contained in the ghost-gluon- ghost vertex in QCD. 
Applying rule 3 to diagram 11 with massive distinguished lines we get 
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A° 
I \ 

J;(D- 3) = / \ 
I \ 

1---z) 
.· Z•· 

A [ A \ · . · A ,, ,, ·'\ ,, 
1, I ,, I\ 6-2m' ;! __ \-26+0] 

2 -« 3 2 

(5) 

The first and third diagrams in r.h.s. of eq.(5) cari be expressed by rule 2 in the form 

) ;.. 
I \ 

I \ 
I \ 

1-- -z1 
2 

I \ f(l + f) (1/f + 2)h(O) 
-4m

2 

/ \ = (m2)' 

I 1---;1 
These diagrams contain ultraviolet jnfinity of the initial diagram. All the other diagrams 
in r.h.s. of eq.(5) are ultraviolet-finite. Using eq.(2) we get that three other diagrams 
from r.h.s. of eq.(5) give the following contribution: 

1
1 dr 

- -0=-ih(4xjr) 
0 7 

The full contribution of the initial two-loop diagram can be presented in the form 

r(l+f)[•' jldr ] 
I1(x) = (m2)' (1/f+2)h(O)- Jo 70=-iI6(4x/r) 

Thus, the usage of the rule of integration by parts, allows one to obtain the DE for the 
massive vertex-type diagrams with r.h.s. containing the propagator-type diagrams only. 

C. N-point diagrams (see also [7]) 

Consider of N- point diagram ( here the line with momentum k - k; contains also the 
mass m;) \\ 1(1 -lC~ _,,, 

-/ KcK",v 

K3 -l(z. .,__ 
-#. K-K1 

V K-1<.z. 

~ K-1<3 
~ 1<-1(~ -

K.t,-k'.3 / 

\ 

\ = V(N) 
\ 

\ 

'--.. ~ ks--K't 

Applying rule 3 with the distinguished line with momentum k - k1, we get 

V(N)(D - N - l) =· vP>(N - 1) - [ (k1 - k2) 2 + mf + m~] ½(N)+ 

(2 <--> 3) + ... + (N - 1 <--> N) - 2m~½(N) 

6 
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Hereafter the upper symbol (in brackets) marks the initial diagram line which is canceled 
by the application of rule 3. The lower one marks the line which has index 2. Applying 
also rule 3 with the' other distinguished lines, we get the matrix equation 

½ 
AV(N) = c, (v(N) = 1 l) 

½v 
(i) 

where C; = E#i V; (N - 1) - (D - N - l)Y(N) 

a;,= 2mf; ll;j(i c/= j) = (k; - kj) 2 + mf + mJ 
The solution of eq.(6) is a standard one 

½(N) = det~; 
' detA' 

(6) 

where the matrix A; equals to one A with respect elements a;1 which are replaced by 
elements Ci· We have 

A d - ~ A d (.) 
-detA -d V(N) = L....detA;, C; = --d V' (N -1)- (D - N - l)V(N) 

a 1 a 
(7) 

It is clear to see that the eq.s (7) allow us to reduce the N-point diagram to (N -1)-point 
diagrams. 

Resume. The usage of the rule of the integration by parts allows one to obtain the 
DE for the massive diagrams with r.h.s.containing more simple diagrams. Using this 
procedure several times one can get the loops with some number of lines. These loops 
are integrated either by means of eq.s (1) and (2) decreasing step by step the number of 
loops, or using the method of Feynman parameters for a more complicated case. 

The main difference from the massless case is the necessity to integrate the final result 
with respect to the mass several times. Thus, this method ( at least, in principle ) is as 
powerful in the calculation of massive Feynman diagrams as the rule of integration by 
parts in the massless case. 

The essential property of the massive case is the continuous application of the rule of 
integration by parts to the both: complicated and simple diagrams. In the massless case 
rule 3 is used only with master diagrams. 

The essential difference from the ordinary methods ( for example, Feynman parame
ters method ) of calculation of the massive Feynman diagrams is the appearance of the 
complicated functions in the final result only. Hence, these functions do not interfen~ the 
process of calculation. 
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KOTHKOB A.B. E2-93-414 
. Mero,o; AH<p<pepeHIJ;HaJibHhlX ypaBHeHn:u. 
Pac11eT N-To11e11HhlX ,o;narpaMM 

.ZJ;aH HOBhlll MeTO,ll; Bhl'IHCJieHHSI <pe:UHMaHOBCKHX ,o;narpaMM, KOTOpbIH SIB

JISieTCSI ,o;oCTaTO'IHO npoCTo:u npou;eAypo:unoJiy11eHHx pe3yJihTaTa 6e3 Henocpe,o;
CTBeHHoro Bhl'IHCJieHHSI D-MepHbIX (B paMKax pa3MepHOH peryJI51pH3au;Hil) HH
TerpaJIOB. B Ka'IeCTBe HJIJIIOCTpa:u;nn npoBe,o;eH paC'IeT HeKOTOpbIX ,o;narpaMM. 

Pa6oTa BhlITOJIHeHa B Jia6opaTOpnn cBepxBMCOKHX ,mepm:u OM.5.IH. 

IIpenpHHT 061.e,1111HeHHOro HHCTHT)'Ta ll,!lepHblX HCCJie,110BllHHH. J];y6Ha, 1993 
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Differential Equation Method. 
The Calculation of N-Point Diagrams 

A new method of massive Feynman diagrams calcula!ion is presented. It 
provides a fairly simple procedure to obtain the result without the D-space 
integral talculation (for the dimensional regularization). Some diagrams are 
calculated as an illustration of this method capacities. 

The investigation has been performed at the Laboratory of Particle Physics, 
JINR. 
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