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Exotic nuclei close to the neutron drip line are difficult to describe micro

scopically. The small binding energies and cX:terided radial density distributions 

of neutron-rich nuclei such as the lithium isotopes, which are produced in ra

dioactive beams [1, 2, 3, 4], are not correctly reproduced in either Hartree-Fock 

or shell model calculations [5, 6]. For this reason simple Gaussian parameteri

zations of the density distributions [6] have been used in order to describe the 

large experimentally observed reaction cross sections [1, 2, 3]. In the present 

work a fully microscopic calculation of the lithium isotopes has been performed 

in a basis of hyperspherical functions in which t.he symmetries have been prop

erly taken into account [7, 8]. In this basis a better description of the asymptotic 

part of the wave functions is possible. 

Unlike some previous theoretical attempts [9, 10] we shall attempt to pro

vide a unified description of 6 ,7 ,S,S,ll Li rather than that of just a single isotope. 

No attempt will be made to parameterize the effective interaction used for each 

isotope, rather a simple parameterization for all the isotopes has been used. 

Furthermore in our treatment there is no inert core [9, 10] and all of the nu

cleons are properly antlsymmetrizcd. Lastly because we make use of .Jacobi 

coordinates no problems are encountered with the treatment of the center of 

mass [11]. 

In order to provide a unified description of all of the lithium isotopes 

1ve use the following group theoretical treatment. In Table 1 the spin and 

isospin of each of the isotopes ·are given. From knmvledge of the total isospin 

Table 1: 

ALi [!] .;r. L s T 

6 [42] 1+ 0 1 0 

7 [43] 3/2- 1 1/2 1/2 

8 [431] 2+ 2 0 1 

9 [432] 3/2- 1 1/2 3/2 

11 [4322] 3/2- 1 1/2 .5/2 
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the symmetry of each isotope is determined. As can be seen from the table the 

corresponding Y~ung diagram [f] for each isotope exhibits a simple structure. 

In the same manner in which 9 Li is constructed from 7 Li plus two neutrons 
11 Li is constructed from 9 Li plus two neutrons. 

In the hyperspherical basis the wave function of nucleus A is expanded in 

terms of K-harmonic polynomials IAK[f]cLST) in the following manner [7, 8] 

,P(l' 2, 3, ... 'A) = p- !(JA-
4

) L XK, (p)IAK 'Y)' ( 1) 
K, 

where p is the hyperradius expressed in terms of Jacobi coordinates, ; .= 

[f]cLST and £ represents the additional quantum numbers necessary to de

scribe the state. Jn the hyperspherical basis the hyperradius is a collective 
variable which is related to the root-mean-square (rms) radius of the nucleus, 

p2 = A rr2ms, i.e., to the mean nuclear density. Excitations of this degree of 

freedom correspond to the monopole oscillation of the nucleus as a whole. The 

density is therefore a dynamical variable. 

The SchrOdinger equation for the radial wave functions can be written as 

[7, 8] 

(2) 

K'' where LK = I<+ ~(3A- 6), and WK/ (p) are the matrix elements of the 

nucleon-nucleon interaction 

A 

V=LV(r;;), 
i<i 

(3) 

which are expressed in terms of fractional parentage coefficients in the following 

manner 
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wJf/(P) = (AI<[f]cLSTMLMsMriVIAI<'[f]c' L'S'T' ML'Ms·MT') = 

A( A- 1) 
2 

2:: (AK[f]cLSTj(A- 2)I<2[h]£zLzSzTz, A(L1 I< 1 
); LaSoTa) 

Here 

x (AI<'[f]c' L' S'T' l(A- 2)I<z[h]£zLzSzTz, A(L1 I< 1 
); LaSoTa) 

x (So To IWaplSoTo) R~fl,. (4) 

where N is a normalization constant and Pf;, ( x) are Jacobi polynomials [7, 8]. 
It has already been pointed out [8] that the shape of the effective poten

tial (wJf;(p) +centrifugal term) becomes broader. for the higher-lying energy 

states. Nuclear properties such as the radial density distribution and the rms 

radius are thus functions of the excitation energy of the nucleus. The increase 

in size of the excited states takes place therefore automatically for the hyper

spheric"al basis. 

In the present work we adopted tlfe-·1<min approximation in which all values 

of I< greater than Kmin =A- 4 are neglected. The succ-ess of this approxima

tion arises from"the fact that the centrifugal barrier reduces the contributions of 

configurations with I< greater than Kmin in the equations determining the hy

perspherical wave functions (12]. We have also renormalized the Brink & Boeker 

B1 (BBI) potential [13] to the ground state energies and rms radii of 6 Li and 
7 Li, and we call this renormalized potential' RBI. The potential is parameter

ized With a sum of two Gaussians: 

2 

V(r) = LS;(1- m;(l- PM)]exp(-r·2 /pr), (6) 
i=l 
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Table 2: 

Name S1 [MeV] m, 1'1 [fm] S2 [MeV] m2 1'2 [fm] 

BBI -140.6 0.4864 1.4 389.5 -0.529 0.70 
RBI -120.0 0.4864 1.7 324.2 -0.529 0.85 

where PM is the Majorana exchange operator. In Table 2 we show the param
eters used in BBI and RBI potentials. In order to fit the binding energies and 
rms radii of 6 ·7 Li, it was necessary to decrease the strength of the BBl poten
tial and increase its range. We obtain a good agreement with the experimental 
binding energies of 6 •

7Li (see Fig. 1) and reproduce the experimental rms radii 
to within the experimental errors [14]. We have calculated the binding energies 
of the ground states, excitation energies of monopole excited states, rms radii, 

compressibilities and the radial density distributions of 6 •
7

•8 •9 •11 Li with RBI 
potential. In Fig. I we compare our RBI results for the ground state binding 
energies with the experimental [14, 15] and BBI results. Note that we quali
tatively reproduce the variation in the binding energy as the neutron number 
increases. The discrepancies between our results and the experimental binding 
energies are similar on the average to those obtained in a large-scale shell model 
calculation [11]. Most importantly, the decrease in the slope of the binding 

Table 3: 

ALi -Eo rrms 
rBertuh 
rm• 

rexp 
rm• EaM K. 

MeV fm fm fm MeV MeV 

6 30.1 2.41 2.118 2.57(10) 17.5 42.9 

7 38.0 2.45 2.139 2.41(10) 18.1 47.4 

8 36.1 2.57 2.157 16.4 42.8 

9 42.4 2.63 2.132 . 16.4 44.9 

11 48.1 2.76 2.249 15.7 45.3 
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Figure 1: The comparison of the experimental binding energies (EXP) 

of 6 ,
7

,
8

•
9

•
11 Li with those calculated using BBl and RBl potentials. 

energy from A ::::::: 7 to 8 and from A ::::::: 9 is well represented in our results: In 

Table 3 we list our results of the ground state energies, rms radii (our, Bertsch 

[6] , and experimental), monopole excitation energies and compressibilities for 

all 6 •7 •8 •9 •11 Li isotopes with RBI potentiaf The compr_essibility proposed by 

the hydrodynamical model is given as [16, 17, 18, 8] 

(7) 

'':here rn is the nucleon mass, and EBM is the monopole excitation energy. 
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In Fig. 2 the radial density distributions of the isotopes of lithium are given. 

Increasing the neutron number leads to a more extended radial density distri

bution. Furthermore, in the hyperspherical bclsis we obtain an exponentia1ly 

decreasing asymptotic behavior of the radial density distributions which differs 

from the resu.lts obtained in previous microscopic calculations in an oscillator 

basis [6]. 
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With this radial density distributions of the isotopes of lithium we have 
calculated the form factors (see also ref.[23] ). The expression for the elastic 
and inelastic form factors in the high energy approximation [19] has the form: 

. "l"'G;;(x,<) {"[ ( )]} () F;; = 27rtq L.. _2 ( ) exp t qxc + <li x, f n;; x x dx, 
c=±l 0 q x, f 

(8) 

where the functions G, ij, c)) take into account the distortion of electron wave 
with the Coulomb field of nucleus (see [19] ). In the Born approximation G = 
1, <li = 0, ij = q. Theformula (8) is correct for qR ~ 1, V(O)/E <t: 1, E• < E, 
where V(O) - the Coulomb potential in the centre of nucleus, E• - loss of the 
energy of the electron. The cross section in this case takes the form: 

where 

( du) ( du) 21; + 1 2 
df} .. = df} '"' 2J· + 1 IF;; I ' •J Mott 1 

(
Ze)

2
cos

2 ~ 
2E sin4 ~ 

2 

- Matt cross section in the point nucleus Z, 

(9) 

(10) 

(11) 

- the factor which takes into account the back movement of the nucleus; M -
mass of nucleus; J;,; - spin of the initial (final) .state of the nucleus. 

In Fig.3 are given the calculation results of the form factors with the 
density distributions for 6Li in comparison with the experimental results and 
the calculation results with symmetrized fermi-function [22]. It is seen that the 
hyperspherical approach gives a description of the form factor with the RB1 
nucleon-nucleon potential at small transfer momenta. In Fig.4 are shown the 
theoretical form factors of the Li neutron-rich isotopes in the hyperspherical 
functions method. For comparison in Fig.5 are given form factors obtained 
with the density distributions [20]: 

p(r) = p(O)exp(- ::). (12) 
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Figure 3: Form factors of 6 Li: new - this is our result, SF - symmetrized 

fermi-function 
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Table 4: 

ALi 

7 
8 . 

9 

11 

a [fm] 

1.797 

1.885 

1.952 

2.175 

100 
10-1 
lQ-2 

lQ-3 

1Q-4 

1Q-5 

lQ-6 

10-7 
10-B 
10-9 
10-10 
lQ-11 

lQ-12 

1Q-13 

10-14 

• 
t 

Parameters of density distributions are represented in 
Table 4. For qualitative comparison in Fig.6 are given 
the calculation results of the CO form factor with the 
density distributions for 7Li in comparison with the 
new experimental results [21] (CO+C2) and the calcu
lation results with density distribution [20] (CO). 

' ' 

' 
0 1 2 3 4 5 6 7 8 9 10 

q~': fm- 1 

Figure 6: Form factors of 7 Li: solid · this is our result, dashed is result for 
density distribution (12) 

12 



Our results give the rich information about the structure of nuclei in con

tradiction with the results from [20]. 

In the present work we have provided a simple unified description of the 

isotopes of lithium. The Young diagram [!] for each isotope has a simple struc

ture which allows one to obtain a simple approximation for the wave functions 

of the different isotopes in a hyperspherical basis with a renormalized effective 

interaction. A good qualitative agreement with the variations of the mass num

ber is-obtained along with radial density distributions which have-exponentially 

decreasing asymptotic behavior. 
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