


Introductlon T i i

: One of the most important’ unresolved problems in general relativity is the ploblem
of smgulantles According to ‘the results-of Penrose and Hawking [1], the space-time.
. singularities are typical for a classical theory of gravitation. Under rather general
“assumptions about the properties of the matter they occur in the, Unlverse and inside.
black: holes The curvature of space:time increases without limit near a smgularlty
In such c1rcumstances the classical theory is not aplecable and Jin: particular; we
cannot, belleve n its predlctlons concernlng the complete global structure; of. ;space-
tlme & pf
. On the other hand, it is commonly believed : that a successful quantlzatlon of
: gravrty will provide us w1th modlﬁcatlons to ‘the theory Wthh are necessary to avoid
the predlctlon of geodesncally 1ncomplete space-time: manlfolds [2,3]. Quantum €or-,
rectlons may completely change the gravxtatlonal equatlons and the correspondmg
space tlme geometry at the Planck scale. The mam problem on this, way is, the
‘non- renormahzablhty of the Emstem grav1ty smce the stralghtforward explmtmg of
the standard perturbation methods leads to 1nc0ns1stent quantum theory However,
quantum gravity can be treated semi- clas51cally [4] and the obtalned results are sen-
. sible in some regimes when part of grav1tat10nal degrees of freedom in. the leading
, order can be consrdered as classrcal (5], whlle the other part is: descrlb dby exactly
1 solvable quantum theory . ; r ool s S
In this -paper, we.are trymg to take mto account the An uence of quantum cor-
rectlons on the. behav1our of the Schwarzschlld solution. ThlS solutlon is probably
the most 1mportant one in. general relat1v1ty It descrlbes the space ime. outs1de
the gravrtatmg body of mass M and. allows max1mal Kruskal extensron wh1ch has
a smgularlty at the rad1al parameter T= 0 o
Our strategy is the followmg We are mterested 1n spherlcally symmetrlc solutlon
of gravxtatxonal ﬁeld _equations’ and its defor ratlon due to quantum excltatlons of
the metric and the ;matter fields. Therefore it ls naturaly to assume that the general
element Guw ¢ of the space of all metncs (over Wthh we. have to mtegrate in functlonal

of a sphencally~symmetrlc part g,,., and a non- spherlcally symmetrlc perturbatlon
huv: : RN RATUE TR
g;w - g,w + hp.u . Lk _ﬁ ot it (1 1)

We do not assume the spherically symmetrlc part g”’h to be small and will quantize
Uit exactly Instead anon- spherlcally symmetrlc deviation k,, is assumed'to be small
‘and we will take it into ‘account perturbatlvely under quantlzatlon Spherlcally sym-
metric excitations of the metric do not contain propagating modes while the modes
of h,, do propagate. So’in the first order, eq.(1.1) is.a separation on-propagating
and non-propagating modes. Bearing in mind the non-renormalizability of quantum
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oné can expect that it is related'to the contrrbutron of ‘the propagatrng h modes“
(gravitons) to the: Feynman' dragrams Thus quantum theory blows up already in”

Copt

the first’ non-trivial order in’h."

in h o
o ‘;S,,[g‘

where D rs ‘the second order differential operator determmed wrth respect tothe

metric g;0". (Actually, the h- ‘modes can be expanded with’ ‘respect to the basis of

Spherlca.l harmomcs and be’ represented as an infinite' set of two‘dxmenslonal fields®
(functrons of only trme and radial coordinates (t 7)) The operator D ls then the‘

correspondlng two-drmensronal second’ order. operator P : :
To'the’ leadrng order (which we only ‘will’ consider here)" the non- spherrcal ex-

citations k' canbe’ ‘considered as classrcal and consequently we can assume that’

By, =0in (1 3): So far, as nion- -spherical excitations h are concerned we are in the

,classrca.l regime. In tl’llS case, the 4D theory of gravity with the’ Einstein- Hllbert"

action (1. 2) reduces to quantum theory of only spherrcal excrtatxons of the' métric

wrth the action .5'5,,.[y,“l ] descrrb\ng effective exactly solvable two dimensicnal the-l '
ory “of the 2D dilaton gravity, In‘the leading order, the effective theory descubes the
non- propagatmg ‘spherically symmetric modes and is correctly tractable under the"
quantlzatron (in’ the sense.of generalized renormalrzabrlrty) It'is possrble to’ compute‘

“the hlgher order correctrons due to the’ presence ‘of propagatlng ‘gravitons; although
at some point one is'bound 'to encounter the problem ‘of non renormalrzabrllty -of

quantum gravity. The stlll unknown correct theory of’ quantum gravrty is likely' ‘to
avoid this problem but we expect that the’ modlﬁcatrons (which are not correctlyk
\calculable at the present moment) ‘will not’ drastrca.lly alter the leading order result’’

“The 2D dilaton‘gravity has widely beén investigated recently [6-14]. The levrew
with detailed references can be Iound in [7] The 4D dimensionally reduced models’

are discussed in [8,9].

2 Effectlve two-dlmensmnal theory

The classical dynamrcs of a gravrtatrona.l ﬁeld lnteractrng w1th the: matter is deter--

mmed by the standard Emstem Hilbert action -~ = -

v fito ' H A SRS I

S= / d'zy[—g® (——R<4>+cm,), @

Insertmg (1. 1) into the Ernstern Hrlbert actron (1.2) - we o get in the second’ ordel'

)= ,,[y"’"]+/hDh o 1(_1.3)

where R(") is, the scalar. curvature. determmed by.a four~d1mensronal metric; _q( ).
and Lygq i is the Lagranglan of matter ﬁelds The gravitational constant.x has the.:

drmensxonahty of length squared [12]

The metric g,(w) and: the-matter, ﬁelds are’ assumed to be:consistent \\1th the

condition of spherical symmetry. Let us consxder in detail the gravitational part of

“the action (2.1). An arbitrary spherically symmetrrc metric can be written:in the

form . .
ds? = gag(z)dz"dz —r (z)(dl92 +sm Odc, )y S22y

where we a.ssume that four dlmensronal space-trme is covered by the coordmates
(2°21,8,¢)! Note that g,p'in (2. 2) plays. the'role’of a metric 6n the 2D space ‘time
covered by the coordrnates (=° ,z') and- 1-2( ) is a functron on thls two- dunensronal
space. (We will use letters 10 =°0,1,2,;3,4 for cur\ed mdrces in four dlmensrons, :
wlule the correspondmg mdrces in two dlmensrons vull be denoted b\ alﬂ‘“— 0.

ds?s = el .,)1 +d~ - (- .")(do'-’+sm odl,« ) o (2:8)

In the case of the Schwarzscluld metrlc, (z+, z ) are the Kruskal coordinates defining
the maximal extension of the black hole space-time and "7 is indeed the radius
measured from the singularity located at_the point 7. = 0
g The non- zero RICCI tensor components for the metrl

= 3+(9_a +.3+.(9_ lu r? + 0+ lu 120_ ln P2, “{‘n i
"Ry = —1‘— 2e" "8+(')_7 . L -
R¢¢ = 51112 ORgg, .

Y Ban e v;'iRii = 3:!:1111‘ +3ﬂ:lllr 3:1:1111' = (?io‘ai lnr,. wvies e o (24)0

: ;:R(‘l).::_él_e,'.‘.’a;a;a-—?(‘ .;“8+ ln1 (9_ lnr +

Note: that- the first term" in (2.5) coincides with the scalar cnrvature Rm of the =
two- drmensronal metric gy="= € e?z*27), Ry 46"”6+0_ Analogousl\ “the
whole expression (2.5) can’be writtén ‘in the covariant forln \nth respect Lo the )
two-drmensronal metrrc ds =iga gdz"’d#l ‘ ; : a

1) p(2 2 2 .
( ) R( ) 2(Vr) + .734. -7-5[]1- ) : V (2.6) -

where 0=V?= g°ﬁV Vg



" Since the determmant of the metrlc (2 3) is gi)i= '—-'-c'z" r“ sm2 8 the gra\ 1ta—
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tional action':
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§

= - . d . ' g(4) (4) AR A D B
59"., wm:/‘“/‘l“’/‘f" T +(2:1)
; Loy e : D R ) A . Loy H L
takes the form: * - S wwin o THenitaide e rd
B Sgrr: ——/ dzz[rzR(Z).;2(Vr)? -l;?], : : (2.8)

: where we have omltted the 1ntegral of Dr _lwhlch is the total derlvatlve and does
not aﬂ'ect the equa.txons of motion. The action’ (2 8) determmes the dynamlcs of
o sphernca.lly symmetnc excxtatlons of the 4D gravrtatlonal ﬁeld On the other hand,
" (2.8) descrlbes the eﬂ'ectrve two dxmensnonal scalar-tensor theory of gravnty It is.
' worth notmg that this theory is mdeed of the 2D drlaton grav1ty type. It is.easy to
see this mtroducmg the "dilaton”. field ¢ = ln(" ) Then.eq.(2. 8) takes. form of.the,
dilaton gravity [6- 7]

i

=1 / dzz[e"’(R - -(V¢)2) + U(¢)] '

- where the ”dilaton” potential is U(¢) ='2. . This obse'ry'atxon’xs' lmportant for us’
since it ‘allows one to use all ‘the methods prevnously developed for'the 2D"dilaton
gravity [6-7,12- 14] Note that usually one considers. the followmg dilaton-gravity

[

" action” ; % R S ey

Ss,,_ = j—/dzé\/'_e¢[R (V¢) + ,\] ’ o B (2.10)

™
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: Wthh is mspxred by strmg models The essentral dlﬂ'erence between (2 9) and (2. 10)
~lies in the quantum region. ‘The strlng-msplred action (2. 10) is shown to be ﬁmte,
while the action (2.9) is renormalizable in the generalized Sense: 'quantum correc-’
tions change the form of the potential U(¢). Having this in mind, let us consider
mstead of (2 8) the generahzed actnon w1th an’ arbltrary ”dllaton : potentlal U(r)

R me ot S, e

T TN H \x; e

rwhere we have xntroduced the' drmensmnless varnable o= 7— Varymg (2 11) wnth“

respect to the 2D metric ga[, and 1 leads to the equa.tlons of motion

.x;‘ X

2rVanr = gag[ U(r) + 2r0Or + (Vr)2],

2Dr+rR+ U(r)-O ’ (212)

(29

The first’ equatxon m (2 12) means'w he exxstence of the two d1men51onal Kllhng

‘‘‘‘‘

the metrrc takes the form

- ds? —ydt?—y Kdr R '(2.13) |

where g = g(r) For the metric (2 ”13) we get Or.= —9— , (Vr)? = —2. Consequently, :
one has the following solution: of equations (2. 12)

o AM 1y ~
g<>——+/v<p>dp 210

where M = const. If U(r) =1, then g(r) = 1— 24 and we obtain the Schwarzschll
metrrc It'is not surprrsmg since the Schwarzschlld metrlc is the umque spherically

symmetrlc solutlon of Elnstem equatlons m empty space The constant M comudes

U = 1 egs.(2.12) are the Einstein equa.tlons in empty space

g(4) R(4) :

considered on the spher1ca.1 metric (2 2- 3) Hence, | the reductron to the eﬂ'ectrve 2D
‘theory (2.8) is self-consistent'and we obtain again the Einstein equations.
To complete our consideration we, present here ‘the expressions for the effective

' ;. two- drmensxonal and four—dlmenslonal scalar curvature valid for the metrlc (2 2)

‘(2 13 14)

’Note' that for U =1we get R(") =0 everywhere in. the externa.l regron of gravrtatmg A
‘ ‘body, as it follows from eqs.(2.15). 'In the next sectlons, ‘we will: show; that taking -
into account quantum spherrca.lly symmetrlc excxtatlons leads to the deformatlon of
 the form of the potential U (r): According to; (2 17), it mamfests itself in non-zero-

“value of R™ outside the grav1tatmg body “The Einstein tensor G, (2.15) for the :

metric (2 2) can a.lso be written covariantly w1th respect to the 2D metric. gag

5 ‘.;n'.i:ikz" Pl 1--~"‘~?'ﬁ'€w‘~-‘ o ;.

(Vr)2

Gaa—v—v Va" gaa(—-l- 2ar +

e = _(R(2)+ Dr) AR S
Go = sin?0Gge. 100 BA s Lt (218)



k 'Eqs (2 12) look bke the quantum corrected Emstem equatrons ' RS X i

'where S :
el 1t Japy
Taﬂ = [U(\/—) - 1]’

chf

= -—-—r(') U —), .
T‘” = sin’ 0T99 S - (2.20)

is the effective energy- -momentum tensor Wthh is mduced due to quantum sphen-

cally symmetric excitations.

¥

exc1tat10ns SO T S P

. Consider now quantum theory (of spherrcally symmetric excitations of the metric
descrlbed by the two-d1mensronal effectlve theory with the actlon (2 8)

) where ris drmensronless Note that the dlmenslonal gravrtatlonal constant‘
the combination —-R(") in (2.1) has moved to the A-term in the 2D action (3 1)

It rteflects the fact that the 2D effective’ theory (3 1) has a.better renormalizable
property than the initial 4D-action (2 1)." As it has been noted in. Sect.2, the action :
(3.1) takes the form of the 2D dilaton gravity which is widely mvestlgated in recent’

[ years in connection with the interest:in two-dimensional black holes [6-7]. In par-

ticular, the theory (3.1) was'shown to be genera.lly renormallzable in the sense that
f the renormalized action takes the same form as the’ orlgmal action’(3.1) with some
; new potentlal U(r) Puaie L o :

N RRIE R PN

In the conformal gauge gag = 62" gap the actron (3 2) takes the form k

Sgr = /d z\/_[—-gaﬁa 1/:651/)+2g°‘ﬁ6 ¢Bga— ¢R—:———U(1/))e2"] (3.3)

o

z-:Where we. denoted ¢ =% and R= R(z)[g]

rs

-
|
-

41 Let us start:with: neglectmg a!possible-anomalous term in the quantum version .
of the action (3.3). Of course, it is just an approximation, but its adv. antage is that
the results obtained have a very, s1mple analytic form and moreover, possess the;
same mterestmg properties as in a moré general case.

The divergencies now can be calculated : by. the. bacl\ground ﬁeld method. [12] o
It is:useful to.interpret- (3. 3) as the.D.=:2.a- -model (Note that our. deﬁmtlon of
curvature dlffers in. srgn from that of tlle paper [12] ) o ; ’
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For.(3.4) one gets

5.‘325» S5 A I ,_‘.4.' H

20 U)

iThe ﬁ\(ed pomt of. (zero of the ﬂU functlon) corresponds to. ther potentlaL i ‘ :

U= eV =én

In this case, the’ theory is ﬁmte [12] w1th the potentlal correspondmg to the strmg— '
inspired‘dilaton gravity (2. 10).-A weaker tenormalization condition is’ satlsﬁed if::
,(‘bU 26,/,U) is. proportlonal to the potentral itself, i.e.; in the case ofa Yuk 1-like’
potentral o o

e 8)_

' U(T)—ce wr?;j;; mr

Then, the dlvergency can be absorbed into a renormalization of €. Insertmgﬁ E'po\-”

‘tentials (3.8) or (3.9) into (2 14) we, obtam a mietric corrcspoudmg to the UV fixed - -

point. However, there e\usts a problem of reacluug ‘the fixed’ pomt since the clasle’
_cal (”bare”) potentlal U(r) = 1 can be out of the attractlon region o he UV ﬁ\ed ‘




pomt Therefore we have to conslder the: renormallzatlon‘group equation for:the

‘ where t =1n"£ L : Lo ; ’
One should ‘add:'the' ”initial” condition"to-eq. (3 10) We w1ll assume that at

i

potentlal U

vy AR

S being a scale parameter

i = po (t = 0) the potentla.l U(¥,t) coincides with the bare:potential i

S ~.4;“.\ B

-1t is easy to ﬁnd a general solutlon of eq. (3 10)

U(bt) = VI - ), | L ey

B

' where F(:..) is still an arbltrary function to be chosen from the initial condition.

Note that in our case eq. 3. 10) is considered in the region {t >0,% > 0} being
the tra.nsport equatlon w1th the characteristic lme P2 =
solutlon U at ‘the. point’ (¢, ) below this line; ( ¢‘ > 2t) is ‘obtained! by transporting
the initial condition, in"our case it is U(¥t" 0) _.~1 “along” ‘the characterrstlc
Hence for > 2t we get from (3 11 12) that f(d:) ﬁ- and consequently S
- ¢1/2
(¢ - 2t)1/2’

On the other hand above the hne ¢‘ = 2t ( tle.” for z/) < 2t ) the boundary
-condition U, )ly=0 = u(t) is ”transported” We do not have this kind of a
boundary condition -from ‘our’ problem ‘Howeéver,' as one can see from the form of

Ut = w2 St (g

. the general solution (3.12), the value of U(%,t) for ¥ = '0_cannot’ be' dlfferent from -

zero. In other words, there is the unlque pOSSlble boundary condition. . . .. 3

\,
¥

CU@le=0 e

v _consistent’ with eq. (3 10) Thus, the solution of (3 10) in: the reglon {dx > 0 t>: 0} 7

takes the followrng form

: 0 — lf¢<2t .
e U@ =L i f(3,.15)
(w ){ T »'f’/’”t

Note that the function (3 15) has a dlscontlnulty along the characterlstlc lme z/) = 2t

Rememberlng that ¢ = —'% we obtaln )

PR

U . | 0 el 1f0<r<4\/_
(T ) m 1f1'>4\/_

As ‘we expected the ﬁxed ‘point (3 8) (or (3 9)) is not’ reached in"the hmlt t
+00. However, the t-dependence of the solution (3.16) can be absorbed into the

U(d),t—O)_,l T S (3.11)

“0 Therefore, the

o

P where r > a = 4‘«; v? ‘~; 3 Sy <,< s.v, 3 9; N ." .‘]f; _,,‘,),t;’,; L

' iQ"’ = a2/2 but w1th oppos1te sign, m front of the charge s term ItvlS 1nterest1ng

““non- essentlal sl poonhoy e o

redefinition of the grav1tatlonal constant LE :“:':ﬁt- -}Thgf?,"(&lﬁ),can be written
mtheform SRIE Priccittegh

’ ’ 0 '1f0<r<4\/fc_,
o e o= 165‘)172 ‘f r.> 4"

We will | om1t * later on; : : : ; :

‘Let us‘now: return to’ eq {2 14) connectlng the metrlc of the spherlca.lly symmetrlc .
solution*with the potentlal U(r). " We get that the quantum sphenca.lly symmetric
gravitational fluctuations lead to the followmg deformatlon of the Schwarzschild
metric: .

WA : g(r) 2= + (r -a?)H 2 3.18)

i 17

Analyzing the metric'(3:18) we- dlscover that the singularity of the Schwarzschrld
solution at r.= 0is now shifted:to the finite radius » = a (in four-dimensional picture

~it‘means that singularity now is:’ spread” over’a two dlmensmnal sphere of radius
«+7.=:a). One can see this when calculatmg the 4D ‘scalar curvature (2 17)

. 4(1 2)-3/2]

where £ = £, In the llmlt T — 1 we have R(4) — +oo On the other hand for large'
r(:c—»O)weobta.m _ o ‘

R(“) = -—[2 2(1 =

L

that the potential U in (2.14), (3.18) does not lead to an additional contribution
to the mass M which is due to the fact that the U term in (2 14) (3 18) has the
asymptote ~ —;— for large r.
1t is worth noting that as fol]ows from’ the general expressmn (2 17) (and (3.19))
the scalar curvature R(“)(r) does not depend on the mass of a gravrtatmg body, it is

rather universal and is'détermined: ‘by‘the parameters of the' gravrtatlonal field itself

(via the: grav1tatlonal constant) “Later on; the’ mmlmal radius e’ will‘be: supposed
to be equal" to the Planck radlu rp, by assummg that poss1b1e factors = f_v 10 are

We see from (3 18) that the Schwarzschlld horlzon at 7, = 2M.is also shlfted'
rh'="VAM? 4+ a¥’so that’ the asymptotlca.lly flat ‘mietric (3. 18) describes’ the’ space-
time’with" the same causal structure as; ‘the’ Schwarzshild one.~At’ the™ same timé;

. the Schwarzshild' smgulanty atT =0 manifests itself both in‘the metrlc and'i in the



:curvature (R(") ~ 6(r)) ‘while the deformed metrrc (3 18) is regular at r
_-only the scalar-curvature RU(7) is still smgular ' '

i

Formally, there exists an extension of the metric (3. 18) behind the smgularlty
at r = a. To see this, let us change the varrable r = acoshz. Then, the space-time” -
forz >0 has the metric (3.18) while for z <0 the metrrc takes the same form’ -
' (3.18) but with sign’ (~)'in front of the second term.’ In terms of the varxable it

simply means. that eqs 3. 17) (3.18) are extended to the other branch of the square

root functxon. So we obtaJn that the resultmg metrrc 1s a two-valued function ol' the -

radius r. L

At the point r = @, both functrons g("’)(r) and g- )(r) (but not- the1r derrvatrves)

are glued continuously.. The scalar curvature on  the ( ) sheet takes the form -
) 4(1 _ z2)--3/2] P

b 21 : :

(4)

R}"’) = [2:2(1 +

a

. where z = 2. In the limit z — 1 we have R( X Ynd ‘--oo The (—)-sheet is also ~ -

. asymptotlcally flat but for large T R (r) has a dlﬂerent type of asymptote than -

for the (+)-sheet (3. 20); e oy

“",(r)~¥ B CE

Note that for posrtrve M the functron g-)(r) i is'negative everywhere So the whole’
(—)-sheet is behind the horizon (r =

to be formal since no observer can penetrate through the singularity at 7 = a and
appear in the (—)-sheet. However, we: w1ll see'in the next section that taking into

“account the conformal anomaly we obtam the space -time with the same structure '
~but with the smooth behavrour at'r =a. The" extended space-trme then occurs to‘;»

be regular everywhere and geodesxcally complete

BEN

S by

4 Solutlon W1th the anomaly

Let us conslder -now the deformatxon ol' the potentral U(r) due to the ﬂuctuatlons
of the ghost'and. matter fields. : Taking into account only-the spherrcally symmetric
excitations we obtain:that these fields contrxbute to the quantum effective action via

the Weyl anomaly from the gravrtatronal mtegratron ‘measure and that of matter e

Meldse s e ¥ 1 TS LS :
In two-dlmensmnal drlaton gravrty there is a well known amblgulty [13] in: choos-’

mg the 2D metric to construct the Faddeev- Popov ghost determinant. One may use, .-
any metric of the form:g, = r%g, where r.=.exp3i 2 is dllaton and « is an arbitrary. .

~

10 *

'a:'a'rl(l;f o

(:l:l _: f‘ﬂ :t (T 2)1/2 : (3 22;) |
RPN . ;

r;.) from the. point of view of an observer
- staying on the (+) ‘sheet. At this stage ‘such a prcture of complete space-trme seems"

e b gl s

constant However in our case the meas re of mtegratxon over the 21
fields (r,g ) is mduced by mtegratlon over the 4D metric: g (m assumption:of. ..

spherrcal symmetry) and cousequently ‘should’ be ‘detefmined Wwith respect to the
rescaled metric gag = 12g,g, 5O NO ambngurtv arises.. '

gravntatlonal

o Hence, al'ter gauge fixing’ gc,,g = e ga‘g, the actlon \nll ’be supphed \uth the

ConS|dermg the spherically symmetric. configurations of matter fields, we ﬁnd

* where R; is the 2D scalar curvature detérmined'by the motfic Gapl T

that they are descrlbed by some effective 2D action which in general, tahes the form y

C,,{,;f, = C(k)r where k runs over pos1tne and negatlve mtegers (for e\ample the
k=1 term appears for 4D ‘scalar fields). We will cons1der here onlv the sunplest
case of decoupled dilaton r when L(o) El_l(Vf')(Vf') is the action for the 2D
conformal fields. The 1ntegratlon measure l'or the matter ﬁelds f’ lS determmed

with respect to non-rescaled ‘metric g,p5:
Thus we come to the followmg quantumkefl'ectlve actlon

ERo

; S_ Sgr + SFP + Nsanomv o

2)— 2 : .
%_W/Rl ‘o7 R (4.2)

Su.namj_?‘;l'—

Usmg the ldentlty R; = —;—D lnr + 7129, the action: (4 2) can® be rewrltten in the
- = [.R, D"R
- 3 / RO;IR, + 3

_N-24 p_ 24 -
where A = 5522, B = P

In the conformal gatge’ gaﬁ“.‘_ e gaﬂ we obtain frony - 3)

)(V1,/)2 + 2(1 - —)(Va)(VL") + -—(Vf’

S;/dzz\/“—_g[z— v

t

1 RSN §'..“x LR
-——R(AU + 21/) - = lIl 1/’) “',—U(lb)eza] 'l' SFP[g] 'l' Nsanom [g] (“l 4)
where 1/) = -8—— and R is the scalar curvature corresp011d111g to the metric g, 3. The
actron (4. 4) again:takes the form of.the 2D g-model (3. 6) where .,

X'l (?l’ U),‘I’(\)—2¢’+Aa—-§—ln¢, T = m

, ; I ) 2(1__’)‘» i
S G,J (’3(1_4_'1) t‘ i 4y )

iy

i’

LI {5y rr\,

i

&
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- since the coefﬁcrent ll'l front of 0¢U in, (4 10) is zero. Therefore, eq.(4. 10) must. be :

consrdered separa.tely in the reglons 0 <% < B /4 and ¢ > B/4. 1t is’ 1mportant

tha.t the functlon F(t,J) (4 12) has’ smgl : alued mverse functlon F"‘(z) defined for

: ) : “*z'> 0." The va.lue f! U(¢,t) for F(t/)) 2t > 0 is obta.lned by transportlng the

: V ' ‘ = [A'+ B) AR ~initial condltlon a t'= 0 a.long the characteristic. On the other hand, the value

’ NOte that A + B, —“12r> 0and det G.(4: 6) is: zero 'f '/’ ..r—‘and ‘/’ At Ty Cof U(d:,t) for F(:/J) 21 <0, is obta.med by.-. tra.nsportrng the boundary condition:

" these points the kinetic. term in. (4 4) is: smgula.r and lf Al 96 0 changes lts sxgn el & 'U|¢—B/4 u(t). Consrdermg eq. (4 10) in the regions 0'< 11’ < B4, ¢ > B/4 sepa-
For the ta.chyon ﬂ functlon we get " R “rately, we may choose different boundary conditions. [l.l(t),[l.g(t) Actually, we have

8 The metrlc G._, is ﬂa.t and its determma.nt lS :

il

ﬂT“; 0, ﬂT 7 ( 4.7) 1o concrete choice for u(t). Therefore, for snmpllcrty we will ‘assume that p.(t) =0.
. R The genera.l solution of (4 10)is . agweos R AT P OE

vAnalyzing this eque‘t{ion“wg}con)sider, t‘YQ,d(;,f],:?‘f‘.*",t_ cases. . 4 st S g U(d:,t) —‘\/_f(F(dl) _ t) (413)

“4.r A= 0 e X i ’ From the mltlal condltlon P S ’ r k

o We begm w1th the conmderatlon of the case when the matter <ﬁelds do not fcon- ’ , e U(t/),t = 0) = 1 T : ‘(4.14)'
trnbute to the effective actlon (4. 3:4),i i. e A = 0 One can see that t‘he-ta.rget space. i we get the equatron on the functlon fin the reglon where F(d:) 92> 0

metrlc then ta.kes the form o PR , . e G

PR s i iR e f(F(t/))) = ¢ a B (4».”15)

dstury (1 - )d33=0’ Thus, one obtains that f(z) = (F"l(a:))" where F‘l(:z:) is the functlon inverse to- -
: . (4:12) single-valded in' the regions 0 <y >: B/4 and ¥ >'B/4. Neote that’ F‘l(z)

- where ds}_, = d2¢ +4d¢d0 is the target metrrc of the a—model (3 4) Due to the o . is a continuous monotonic function but its derivative is singular at z = 0. Thus for.
- conformal transforma.tlon of the 2D Laplacian; we'get from (4.7) that Lo F(3) — 2t.> 0_we have the followmg solutlon of (4. 10) w1th the mltlal condmon
: : BT L Sy o ¢
Pl NEA : o ; [P
C = ﬂB =gy (4.9) S
- ) et Pz

U(d’y t):‘

8 (S [Fw) 2t1)2 e y
On the other;hand for F(d:) - 2t <0 the form of the functlon f( ) is. deﬁned

“where BL_, is the beta function (3.6).. i SRS
’ Thus, we obta.m the renormahza.tlon group equa.tlon for the potentlal U (111)

|
: 4 SR N B by the boundary condrtron A BJaf(=2t) =u(t).: Since we; have. chosen [l.(t) =0,
atU = [ U 26¢U] s (4,10) ol f( )= 0i in: this regron Thus, the complete solution: of ¢ eq.(4. 10) reads oy
B L “‘ w) ¥ .',M"M.@*Qme S S : QTR T F() S 28 0,77 ‘
h h e ol U(¢,t)_ 1/2 _ fF 2% >0 (4 16)
To solve thxs equation, let us 1ntr0duce the functlon F(t/)) suc that. ' ... J S —_’L_M-I(F(:p) i | (¢)

‘Remembermg now that 11: —. % we express the solutron (4 16) in terms o ‘the

o L M:lﬂfd.'QMﬁm—, (4.11)
R A L g (. )¢ Dl R va.rla.bles (r,t) Note a.t ﬁrst tha.t

‘ B ‘B '““f““a.« .
Choosmg the »mtegrar.trlon constaut 50 tha.t F(t/) = ) = 0 we obta.ln‘ el ”F( %F_(rg)’ , P
BB 4w . | e f 2T

" As one can see, the second derlvatnve F"(¢) (4 12) has a dlscontlnulty at the point” where b2<— 2Bn From (4 17) we have tha.t [F'] lSnf— SnF - and consequently

t
Y= — S % (4 16) ta.kes the’ form o y
; Eq (4. 10) is the tra.nsport equa.tlon with the cha.ra.cterlstlc F(¢) 2t = 0. Ini- 5 i BTy i ;0 1f F"(rz) < 165t o
. tra.lly, the function U(%,t) is defined in the region {y >:0,¢ > 0}. However, as o ; U(r,t) - { e . 1f F () > 16r<t 40 (418)
. one can see from the form of the characteristic the line ¥ = B/4 is a singular one = (F'-l[F'(r) 16;:t])ll2 R SR




As one ca.n easﬂy see the t dependence of the
sorbed 1nto the redeﬁnltlon of the constants K

follows

v1f0<r<r1,,,,‘ ;"
| lfT]_mST<T2m,
1fr>r2m

i, (E‘»‘,-‘ [F',(r,’—wgg]),g”,

(F'" [F(f’) 16%])‘/2

The potentla.l (4 19) tends to (3 19) when b— 0.
~Let 1 >:r2m. The potential-U(r).(4.19) 1s"a continuous function in this region.
Near the pornt T = rom it takes the form

1=
\/_b
Thus, at r "“Tgm it has a finite value: U(ram) =
the potentlal is s1ngu1ar 3 U(r) - —00..

2M  r 1 b SRR
g -+ - m; 154(_)2(”2 = 13ml)*’?, (4.21)
and consequently, it is more regu]ar near the pomt r= rmm than (3.18) considered
in Section'3. Indeed we see’ from (4. 21) that y(r) and g'(r) are regular in r = 7o,
though the second: derlvatlve is still 'singular: ‘Tt means that the’ behav1our of the
geodesics' is: regular riear’ this ‘point (since' only the first derlvatlves of the’ metrlc;
enter into equations for 'geodesics) but the ‘4D curvature’is singular: R4 5 jo6
if 7 — rom. For large r >> .T2m the potential (4 19) asymptotlcally comc1des with
. 17) oo . ;
cpo
. | | T
Obta.lned in the prev10us sectlon Hence, we have the same. asymptote (3 20) (3 21) .
for the metric g(r) and the curvature R(4)(r) for large T >> ra;,. Formally, there
exists an extension of the metric beyond: the pomt T'= T2m. Indeed, we may again
consider the variable r = Tom coshz. Then, we-come to the same picture as in
Section 3. with-two sheets sewed on the hypersurface r = ro,,. The only difference
from Sectlon 3.1is that the smgularlty at the minimal radius r = 1'2,,, |s more mild
now....: : : . : ; : e g
The potent1a1 (4 19) determmes a.lso a non- tr1v1al metric deﬁned ‘in the compact ;
region 0.<.r < . One can see that this metric describes the space-time which
has smgulantles (of curvature) at the points # = 0 and 7 = ry,,.. The curvature
near r = 0 has the form: R(")(r) -—,—(1 —‘e"F), while the behaviour of the metric

U(r) ~ (4:22)

R

.near r = rlm is srmllar to that near r= sz ThlS space-tlme has no asymptotlcallv :
ﬂat reglon ‘and'i is not connected w1th the space—tune defined ‘for r > T2m. Soit is.
not observable for any observer staylng at kg > Tam- The physwal meanmg of suchv’
a space-tlme is not clear for us. o Q v )
Thus the general picture in the case when tlie Faddeev-Popov ghosts are taken :
into-account (A=0,B#0) maml} repeats the picture considered in the previous -
section. We may also conclude that the mﬂuence of: the ghosts is m smoothenng of{ o
the s1ngular1ty at the mlnlmal radlus r,,,,,1 co el o : m

42440 '

“The expressron for ﬂT is. covarlant -with respect to the target metric G,J To i
find BT we ‘use the fact that. Gij is: ﬂat and consequently it can be reduced to the ..
standard dlagonal form" by ‘means.of-the. coordmate transformatlon in the targetj :
'space Followmg [14] the target: metrlc (4 5) S

ds,,,,g (1 - —)ddv + 11 —~-—)d¢vda+ Ado® . (4’.’-23).:

Y

by introducing the new target /_c_oord]nates ‘ (w_,,\') )

i

can be reduced to the form >
i4 ;a' _‘, PR *

dsm,g = 4Adx - —-—(w - B)(w —A- B)d.u FE (aaesy

NoteagaJnthatB>0 B+A>OforanyN 0 »
Let A+ B > B. We see that the second tenn in (4 25) is posltne if w hes in )

the 1nterva.ls Il = (O B) or I3 = (A + B +oo) and 1t changes the s1gn 11' w hes in

Let us cons1der the new varxable Q

Lo ST Gy
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For ﬂT we obtain _

: 'Zzag (iA)(’)QT]

where one must take sign (+)for the int‘ervals 11,13 and () for Ig
As before, we consider now the renormahzatlon group equation

ST

atU (;t)Aaf 0~ —U

. B . o E . RE i '\‘ IS Tt S L{!
where t = ln-E- Assummg that for = 0 the potentlal U(w t): coincides w1th ‘the’
"bare” one: U(w,t = 0) = 1, we get that eq.(4.31) should: be supplied: with the
initial condition ‘
£ Do = ¢(0) = ¢ X (w(ﬂ)) Aot (432)
where w(ﬂ) is the inverse function to (4.26). - .- s
We see that U satisfies the differential equatlons of different type in 4varlous
, mterva.ls Let us assume that A >0 (N >:24). Then (4. 31) is the standard heat
Vequatron being considered in’the intervals Il,Ig, while it is the heat equation "with
decreasing time” in I3. The problem is that the "decreasing time” heat equation is

known to be non-correct. Solvmg it formally by means of the Fourier. transform in-

the mterval I we get ”

" where weass‘umed that in Iz the variable Q changes in the interval (— A,0): ag =

" (¢(R2),sin £ ) are the Fourier coefficients of the:initial condition:(4.32). .In order
“the sum (4 33) to be convergent for any finite t, the coefficients a; must decrease

~ faster than the exponent. It'is not obviously the case for the.initial condition of the
~type’ (4:32). So the solution of (4. 31) in the interval I, does ot exist at least within
“~ the quadratically mtegrable functlons (probably (4 31) can be solved in the class of

g 'dlstrrbutlons) . G el s R T  a

oA <o (N < 24) eq (4 31) is. the standard heat equation: only inzthe’ ﬁmte
. '1nterval I; = (A + B, B), while it is again of the "decreasing time” type in semi-
: “mﬁnlte intervals I}, I3 with the same problems concerning the solution as above (the
: formal solution takes the same form as (4 33) changmg the sum Zk by the mtegral

t f dk).: We have no deﬁnlte idea about the possrble phys1cat mterpretatlon of the

: solutlon valid only in"the interval A < <0 or equlva.lently 2K(A + B) <rl«
’2KB So we w1ll conslder ‘only the case of posrtlve A {

Let A > 0 and consnder eq. (4 31) in the mterva.l 13 We may choose the jntegra-' '

- tlon constant in I3 to arrange that Q(A+ B) = 0 Then Q(w) determmed by (4.26)
B varles m the mterval (0 +oo) .

; ; : 3 2
=§}@"2 B)(u'l A= B)_”A‘+22é1n‘/“’ B+‘f

,/B(A +B) 2B(A ¥ B) z (A + 2B)w \+‘2\/B(A ¥ Bj\/(uﬂ

: t«,.;,_sz |

LRSI

O B : ’ “. o i R
Thus, the functron U:is. deﬁned in: the region {t 20,9 > 0}. Hence we should L
have an appropriate boundary condition at:Q:=.0.In fact, the results (the behaviour

:
Lot
fo-
St

‘of g(r) and’ R™)(r) and possnblllty of extension on.(:=)-sheet).are not changed ifwe
“take an arbltrary condition: U|azo
“zero boundary condmm

it ;, NSRS

p(t) However, for s1mphc1ty, we choose the

L—L.ti e,

'where E and w(E) are related by

i S, bt
g=uf ”\/(y =B A= 5).

VLR AT L. A {s(

HETREESENT B T E15 NP AT

“We are interested in the potential ‘U(w;t) = Véy}wa@f](ﬂ t), where w and Q are
_related by (4 26) Note that the ¢- dependence of the solution (4.36) can be again
absorbed into, ‘the’ redeﬁnltlon of the’ constants A;B,K:*Indeed; let ‘us-consider
‘the ’ renormahzed” constants A* A"B‘ = ‘n =“kt::«Note that w2:".”;:
Ath(n ), Q(A B,K)’ "':’tQ(A" B*)x ) “We assume’ ‘that "A*; B*; k" COlHClde ‘with
'\therr observable”va.lues (A" A;’;:‘, B" = 4122:) "Then! terms of the new,
Zconstan 'we obta.ln the po ntla.l U(w) R B

"f'plotted in Frg 1. fors s

517



" the boundary at- rf’

We mterpret the 4D metric (2 14)

Ein Y

where Tmin = \/2K(A+B), with the potentla.l U(r) in the form (4 38) ‘as’ the'
Schwarzschlld metric_deformed due to the quantum spherically symmetric exci-
: tations of the: ghosts and Mmatter. ﬁelds The role .of quanturp fluctuations, of the
field ‘f is only in vacuum polarlzatlon around the gravitating body’ which-leads to
the right hand side of the Emstern equations: (2.19) in the form (2.20). A different

situation would happen when: the collapse ‘of the. f-field impulse:is,considered [6-7].

Then; we would:have to take into account.the back-reaction of the; Hawklng radia-

tion: that needs:the static solutions of: equatlons obtalned by varymg the quantum .

actlon (4.3).-Weido not:consider it here: R R R AR
“’Analyzing the metric (4.39) we note that here the mlnlmal dxstance rm.,,,_
\/2k(A ¥ B) again appears. The expression'(4.39) is valid only for r > *min. The
essential difference of the, metric (4. 39) with the potentlal (4 38) from that of (3.19)
or (4.21)'is ‘that it is more regular near the" point 7= rmm To see this; note’ that
‘the solution of the heat equation U(Q) (4. 36) in the v1c1n1ty of the point » = T

' :takes the form U(Q) = ¢ (0 < k<), where c">_0 is an 1rrelevant constant
Then, we have for Uw): ' : :

U(w)=ce‘”xwi79(w),” "‘(4.40);

where w? = . From (4.40) and (4.34) we obtain for r r,,‘“-,,lthat '

. Lk U(T) ~C (T mm)sl2

Thus, the metric functlon g(r) (4. 39) near r = rmin. Can be approximately written

in the form . .
SR - 2MC
g(r) ~1-Zd

( P2 2 )"5‘/2': -

"mlld smgula.rlty ‘which. does not ‘affect the behavrour of the geodesrcs The latter is
regular near r = Tmin that implies an. analytlc extensron of ‘the space-tlme beyond
the hypersurface T= Ty (1n the opposrte case we would obtain the manifold with
- romin that seems ‘to be unsa.tlsfactory) As we have dlscussed
“above, it cannot*be the extension to the small Tadius 1< Pmin since we “have no

solution of our equations in this region. ‘To construct such an extension, we note.
- that the variable Q.was introduced in such.a way: that its differential-squared, (dQ)2

gives the second term in (4.25). It is clear that for fixed w both Q (4. .26) and =
satlsfy thls condrtron We use this fact to consider Q(w) as a two-fold function in

B ‘18.

) the mterva.l Is. Then, we can contm‘ue the above obtalned expressnon and vahd for'

R>0to the negative values of Q.

-takes two values

" 'We see from (4. 36) that U(Q) contmued onto the mterval ( 00, +00) is an odd
function: U(-9) = —U(Q) As a result for the ﬁxed T the metrlc function’ g(r)

: g : f ;
| ”q(f?(r) 22 s /U(p)dp, y (42)

‘ where U(p) is glven by (4 38) The correspondmg e\press1on for the 4D scalar 'v

curvature is «77 U e :
Rll)) (1; UNF — - (4 43) ;
Thus, we obtain the same picture as consrdered in Sectlon 3. The metrlc (4. 42)

describes the 4D space-time with two sheets (g‘*) is the metric on (&£)-sheet) wlnch
are glued on the hypersurface of constant radial coordinate r = 1'm,,1 The functions

) g("')(r) g\ (r). and their first and second derivatives are regular and sewed contm- :
,uously at 7 =.Tpmin.and only the tlurd derivatives dnerge g (£ (rm,,,) = +o00. Asa
’result we see that one-sheet is tlle e\tensxon of. the other (One can see this trans-
“parently by using the variable z: 1 = o, cosh'z. 'I;hen (= 3 —f—Q(:r) and the

(—)-sheet corresponds to z < 0. Metric is extended continuously into this region.):
the geodesics of one sheet are not ended at r» = 7,,;, but continuously e\tended,
to the other sheet. One can see from (4.38) that U(r) > 0 and hence g{~)(r) <0

“while g("')(r) has zero at the smgle pomt Ty, which is a solutlon of the equatlon

2M = f U(p)dp. To see the behavror of (4. 42) at large‘drstances (r>> Fmin) it

CPmin e
is useful to note-that’ the potentlal U(w) (4 38) for, w’ >> A+ B asvmptotlcallv ;
coincides with (4. 19) (3 19) 3 ; ;’ ;
r ' ;
T 4144
U(r) o i ,2 (s

and consequently, the metric g(*)(r) (4. 42) behaves for large T >> Pin as follo“s
23_, 12 :
—————(r 16%) (4.45)

1 i ‘ 8

Both sheets are asymptotlcally flat. llowever, the flatness is reached i a dlfferent i
way that.one can see from the.scalar cnrvature (4.43).at large dlshnces L

(i)(,-) ~1 -2

(4) 4. (4) ‘ e
R(+) ( ) R 7'2""‘4'"’ L (44())_

JThls comcldes \vrth what we have obtamed Jnt Se(‘hou 3.(3. 20) (J 24) llle plol

~of R( )(‘r) is shown in Flg 2. ‘We see that the space:time hasa horizow locale(l on

the (+) sheet at r = 7, > Thin and the whole (=)-sheet is belind this horizon from

“the point of view of an observer staying at r > r, on (+)-sheet. The topology of

- 19 .



an 3 The t : const shce of the extended Schwa.rzschlld space-tlme deformed byx
qua.ntum correctlons It consxsts of two asymptotlca.lly flat (£)- sheets glued on the -
hypersurface of consta.nt ‘radial- ‘parameter. r = Trine- The event. horxzon is located
on the hypersurface r= rh of the (+)- -sheet.. = .. : R

‘AF_

Flg 4. The Penrose djagram of the spa.ce-txme deformed by qua.ntum correctlons
for A,B > 0. The asymptotlca.lly flat (4+)-region has the same causal propertles as
the classical Schwarzschild solution. It is analytically extended beyond the hyper-
; ‘ surface r = rp;, to the other asymptotically flat (=) reglon, 50! that the. complete
‘ng 2. The shape’of the 4D scalar curvature- R(4)(r) induced - by qua.ntum space-tlme is free from smgula.nty ;
correctnons for A= 0 1, Bi= 1 : IR Lo : R : : :

i
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1t = const sllce of-. the space-trme is shown in Frg3 The Penrose dlagram of the
space-trme can be seen in Fig.4. T ",

- It is-worth noting that.the resulting space~t1me does’ not much differ from that
of the black hole with the internal de Sitter : space instead of srngularrty “Such’ space-
times have been earlier considered in [15] where it has been shown that such a picture
~ may occur under the condition that limiting curvature exists and the Schwarzschild
singularity does not arise. In case of the two—drmensronal black holes such solutlons
were considered in a number of papers [16]. -

If now w lies in the interval I; = (0,B) (or equrva.lently the radius r lies in
(0 v2nB)) the function Q(u) (4.26) takes. the form

o )-e/ "”\/(B ) AFT=F), (4

where we have chosen the 1ntegratron constant so that Q(B) =0. For0<w< vB
we get that'Q(w) > 0'and Q(0) = +co. The solution of ¢ eq.(4. 31) (wrth sign (4))

takes the form (4.36). For'the potential’ U(w) we ‘get the ¢ expression (4 38) ‘where™
now Q(w) (and w(§)) is given by (4.47). Proceed analogously, we also can consxder

Vhere the (&)-sheets w1th the metric g¥(r), respectively: st

oM 1
g®(r) = ~—F - / U(p)dp, (4.48)

~where 79 = v/2xB. The curvature is given byi (4.43). The space-time is regular
at 7 = 7o and both sheets are.sewed<at-r ="rg’ continuously in the same manner
as above. However, we again obtain the smgularrty at r"= 0 since the 4D scalar
curvature in the limit » — 0 tends to )

R“) v[1 Tifﬁ ¢
(:l:) 2 Fe I, L (4.49)

Thus, for A >0 the general picture-is srmrlar to that we have obtamcd for

A = 0:. the solution of eq. (4 32) describes two non-connected space-times. The
first one , located at 7 > 7y, is free from the srngularrtres and is asymptotically
kﬂat whrle the second, located in “the regron 0 < r < 1o,’is singular at r = 0.
However, only the first space-time has an obvious physical meaning and realizes our
: prehmrnary assumption that quantum corrections might lead to drastic deformatlon
'of the’ Schwarzschrld solutron and avord space-trme smgularrty T

5 Conclusion

We have studied the problem of deformation of the Schwarzschild solution due to
quantum corrections in the approximation when only spherically symmetric excita-
tiens are taken into account.
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" One of our predictions concerns the behavior 6f the metric function‘g(r) and the *

: 'correspondmg curvatire: R{)(+) outside the gravitating body: with the mass }»I at‘ P

distances much larger than the Planck scale, r>>a= 4\/—

'.«z(;),,zlf'—“%"—,,f—(—)z 1(“) “’(r) ' 2(‘:).

It is’ worth notmg that-this express:on is rather’ unlversal and doés ot depend on !

whether gravitational ghosts and, matter contrlbutlons are included 'in the’ consid: ; -

’eratxon or not. One can see “from (5.1) that the space-time‘outsidé the gravntatlng-

body is no more Ricci flat as it follows from the classical Einstein equationsy though: -
the scalar curvature R(4)(r) rapxdl) tends to zero and becomes too negllglble to be -
observed in present gravrtatlonal experlments DR T T IR
The other important point is the behavror of the spac time 1 near the c 1warzsclnld
snlgularlty We have shown that quantum correctlons lead'to the’ sluft of the' singu- ;'
larlty at’r = 0 to the ﬂmte dlstance rmm' ~' r,,, and make |t smooth r. :The'sca]ar
curvature R(4)(r) takes'the finite value'al + = = Toin so the space-tlme lool\s regu]ar]v .
near this minimal radius and allows the analytic extension’ bd)ond it. The’ coniplete
space-time'is: free from ‘singularities' arid consists of two ‘asymptotically:flat sheets
glued ‘on hypersurface of constant -radial paraineter T = Tmin, so:that.one sheet.is :
behind the horizon with respect'to an.observer staying’on thie-other sheet. “This is -
the result of the deformatlon of the I\ruskal e‘(tensron of the classxcal Schwarzscluld
metric due to quantum corrections. We' se that these correctlons mdeed make the
singular classical space-time more regular as it was ‘originally assumed. £33
The method developed can be applied to the study of the other known classically?
singular solutions. of general relatrvnty the Relssner Nordstrom and cosmologlcal
ones. This work is in progress. ' ‘ : g
The next problem of interest is'how. the corrections found may change the- gra\[ s
1tatlonal collapse Tt;is;known that the,collapse in the classical: Einstein:gravity :
ended by formatlon of the smgularlty Probably our; resnlts mean that ‘the. real
smgularrty is not formed and -at the end of grawtatlonal collapse one obtalns the °

- . regular space-tlme However, at the present stage we can not mal\e am deﬁmte ’

conclusion’since’ ‘the’ Hawkmg radlatlon and its back- reactlon were ‘not’ “taken mto
account.’ The prevrous study of 2_D black holes tells us that the' space:time pomts
such as't = rmm at whlch the D' = 2 a- model becomes degenuate‘ ec eq: (-l 6)) .
are the' possrble places for new s1ngular1t|es to be formed [11] Tlns problenl needs o
further investigation. ¢ ' e f
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