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1. Following the approaches of refs. [1] and [2] we proposed in 3] a
recipe for constructing quantum doubles (quasitriangular Hopf algebras of ¥
the special type [4, 5]) associated with invertible solutions of the quantum
Yang-Baxter equations (QYBE). Let us briefly recall this procedure.

It is'’known [1] that any invertible solution R of QYBE -

)

Ry2Ri3Ry3 = RyaRy3Ry, )
naturally generates a bialgebra 7 with generators {1, t;} a.xid relations
Ry, IV T, = T2T1Rl21 A(T)=T®T, &T)=1 : (2) ‘, .

(t;; form a matrix T, Aisa coproduct and ¢ a counit). We can now define
an analogous bialgebra U = {1, u’} by '

RiUU, = Ui Ry, A(U)=UQU, ¢(U)=1, , (3)

and introduce a pairing between these two,
<U,T; >= Ry,, B (4)

as a bilinear map < -,- >: U ® T — K into the underlying field X. The
pairing (4) proves to be consistent with the bialgebra structure [3] but is,

as a rule, degenerate. Removing the degeneracy by factoring out so-called

null bi-ideals [2] allows us to introduce antipodes by the relations

< S(h), Ts >=< Uh, §~Y(Ty) >= R}, 5)

and then establish the qua.ntum-dbuble structure on 7 @ U using the orig-
inal Drinfeld recipe [4, 5)

ab = E E < S(aq)), bay >< ag), be) > bzya(a) , (6)

where
Al@) =) e B Bap, AXb)=Y by®bg®by. (1)

In the case (2)-(4) this recipé results in the well known formula

o

R Uy T, = TaU Ry - (8)
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| _ factorization, these two ways lead us to the same quantum double. -

. “Now it can at most trivialize the whole output. To show that sometimes it

. trivial and appears to be quasitriangular. We assume the correspondxng

" However, it is not-very well known that (8 ) can’ be mterpreted [3] as. the
quantum-double cross-multiplication conditionas well.

. In the present paper we develop the method [3] along the followmg as-
pects. Firstly, we change the order of certain steps described above: a defi--
nition of antipode will now precede the bracketing procedure. This will im-. -
mediately produce the ( R-generated) Hopf algebra, because Reshebxkhm 8

~ result [6] enables one to introduce invertible antipedes explicitly and so give .
* up implicit definitions (5), where the invertibility of § was not guaranteed. .

However, after the removal of degeneracy of <:,- > by abovementioned -,

t:18 Ry, t" R""t‘?‘
A(T,) ?"®3L E(t‘)—-

R a,dmlts not only an mverse matnxﬁ

Secondly, we now understand why the cross- -multiplication relation ®) -
- appears in its final form actually before (and independently of) any factor--
ization. We show that 7 ® & can be provided with the bialgebra (or the
Hopf algebra) structure metely due to appropriate features of the pa.lrmg,
- though. degenerate. -
" Therefore, in the present version of the method, the quotienting by null
bi-ideals does not look so unpredictably dangerous as it does in [2] and'{3)].

- RyR, =R'"’R::, _8;.6’ ﬁ'"’ﬁ:», E:’ﬁ':: 5. .C;lf%)z
Let us deﬁne the tensors Vo ‘ ‘
| o m=g, Ws@bﬁﬁ%‘ a8
i ‘which are inverse to each other, - | e

.. does not, we perform the construction of the quantum double for one of the -
4 x 4 R-matrices listed in {7]. The resulting Hopf algebra is by no means -

. | myes e
Thisﬁca‘.n be eaaﬁy seen from ‘ V , » o
“ik-:iz - m S 3 o ‘
R m"Rﬁ o j, S . ‘,ﬂj} ‘  .

” f‘wh'xch in tum, isa dlrect consequence of QYBE (10).
‘In terms of Q -and {2 one can define [6] an antipode

S(E)=%, SE)=0L0m, SE)=-E¥ (19

universal R-matrix to be a formal power series and evalua.te its terms up
to the fourth order. :

2. Here we afe to explain how an antipode can be introduced [6] into the
: R—generated bialgebra 7. For generality, let us consider its inhomogeneous
~version [3] (cf. [8, 9, 10]) with generators {1,t}, E,} (we prefer to display
all the indices): A

RZ tr 7 = R0" o E,t) = Ryt B,

117

mn “p. Yq ‘n ‘m .
A =tioth, e)=6, -9
, (E~)=E-®t"'+‘v1®E,-, e(E;) =0.
R-matrix is a solutlon of QYBE (1) ‘ ‘
. J k = R:::Rnl R ‘ (10)‘ '

Im m qr
Now let us extend this bialgebra by the inverse elements %, (overlmmg B
a quantity w1}l always mean its inverse): ‘

l ‘ Kt =Ttk =6, (11)

and ?its' iﬁverse T B
3@ =Wy, SE)=f, S(E-)=-3‘(t4‘)E-‘ (19)

- To confirm the correctness of this definition one can use the followmg

relatlons
nm;w;:n;, ﬁ,’;, ! ﬁ' : _(20)‘

“For example, :

S(t t") S(t")S(t,,) QM =0, =6




* Then the cross-multiplication rule ('cf.’ (6))

ab= E Y << apybp) >>< oy b > bpe)  (34)

‘.establishes the bialgebra structure on A®B.
In (32)'1 is the unit of B, and <<;<; in (33) indicates that << -,- >>-

operation deals with the left multipliers in tensor products; whereas < +,- >

with the right ones.

Proof. Fix the bases {¢;} in A and {¢’} in B Denoting the structure
constants and the pa.mng tensors (which are in general degenerate) as
follows,

eie;=ckien Ale)=fi*(e;®ex), ele)=¢i, 1=Ee,
elef = fiiek, A(e) = (e ®e’), e(e')=E, 1=¢¢, (35)
<éej>=7i, <<é,e;>>=x],

., we may list the relations between them which are caused by the bialgebra
structure of A and B, :

Cﬁ'c'k':; =c} L", L EJ =C; E’ —6,", cf,-ek =¢i€j,
figpk=fingit, fitei=fPe =6, f'E'=E'E*,  (36)
N fpt= e o, Eei=1
(the same for quantities with a tilde), by the properties (32),
e L =l e whch = PR, XD = X8, (87)
XnClk = X Xiom» ME =xiE = E', njé&i=xjéi=¢;,  (38)
and by the relation (33), :
By Xp ST = CnpXg 7 = , (39)
Now (34) reads |

?iej = P;: epeq y ‘ P_;: = '7..'" é"mq E:c X: f;lflp" . , i (40)

A
!

‘To be convinced that this makes :A ® B a bialgebra, we should verify that

the transition from, say, e'eje; to ee” can be equally well performed in
two dlﬂ'erent ways, whlch requires

kn pm

o PP, = c’;,,P" o (41)
Analogousl);, el er — e;e™ implies |
PL Pl 7 = JPH, @)
z;nd, at last, A(e'e;) = A(e‘)A(e,-) means |

Con ST Pt P’ = 7’;2' il (43)
All the conditions (41)-(43) are verified by direct, though tedious, calcu-
lations with repeated use of (36)-(39). For example, when proving (41)
or (42), the cf = f fcc relation from (36) is applied twice and cc = cc (or
ff = ff) many times, whereas in the case of (43) the key property is (39)
accompanied by numerous applications of ecc = ccand ff = f f

A minor problem is caused by checking the conditions

E"P"’ E”&' é"P'-” =&, e, B 'P"’ Ee;, (44)
which reflect the properties of unit and counit. Proposition 1 is proved.
It is worth noting an alternative form of (40), : K
EMiele; = Filejet, (45)
where . :
=gy, F=gm. 49
Formula (45) is related to (40) through
'P"’ 8:,',‘_, Fals (47)
with ) :
om j mi mi ]
En =S f¥, EREL =EREN =878, (48)
and, for completeness, '
TRl =G0, FoFy = Ry T = ;. (49)
1
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' The prmclpal goal of the proposxt.non prcved was to formnlate mmlmal’
" reqmrements (33) which yet suffice for the. qross-multlphcatxon recipe {34)
to'be fruitful. Propertxes of the second pwing, <<+ S, as well a8 (8

‘ptoposition states this explicitly,
- 1lx’olz-inposxt;xotm 2. Let Aand B be the Hopf algebras and let therg emst

a pmnng <y B® A= K with the prOpertles (32) and, in addxtmn, e |
| < S(a),a >-< a g(a) >, ’ ‘< §(a),a >v=< a, S(a) > (50) &

- Then the rule (6) makes- A® B a Hopf a.lgebra
Proof Usmg the notatxon

(e =€fei Fled =otes, SN =7e, ?(e’>=f’ev @

: we wnte down. the Hopf-algebra propertxes of A and B as

e =ghol =8, g =Fid] ——E‘; e.ﬁ,-sf" =g, ()

;jE“=c“£7£,'s. fiah, -—f"'aq B, (53‘)'
“ ck ak "'cpqaxaj f'JEm ""“fméqut \ . (54) v
nr&:f" rnirfm = c’ orf; } -—C‘:.,.O': e = EJE" i (55) )

- (the sa.me for quantmes with a tllde) and the condxtxons (50)

ai—-m,., nE =it B (56)

The bla.lgebra part of the proof is already done in the Proposxtlon 1 because:

. of the following 1dent1ﬁcatlon |
<< *a >=< S(a);a>, ie. x. = plo ~n,ai
The condmons (33) are readily checked
<<1<2 A(a), A(a) >>,>2_.< (S®id)o A(a) Afa) >
=< mo( Qid)oA(a),a>=¢ gla) <ia>=¢ ( )e(a).
So it remains to.prove that S(e‘e;) = S(e;)S(e'), i.e. o

mf‘

‘.‘«;v,‘” : ‘ ‘_ . ,Plp ) lfPrk "E: a,:"_

Jq"

‘itself, are ‘motivated by the antmpation of an a.ntlpode The followmg -,

It can be done applymg the relations from (54) four times and then twice,
(39). - u '

-One easily observes that our blalgebras (Hopt algebras) T and U in -
Sect.2 fit the above Propositions. This explains the appearance of the
cross-multiplication relations (8),(31) prior to factorization. The role of '
the latter is to produce ortonormalizéd bases,

<é e >=1ni =46,

that enables one to rewrite;(45) in the form of quasicocommutativity con-
dltlon [4]

RA(z)=A'(z)R, A'’=PoA, Pe@b)=btRa (58)
with thé universal R-matrix

R=e;Q¢. - (59)

4. The method described in the present paper creates quantum dou-
bles out of arbitrary invertible Yang-Baxter R-matrices taken as an input.
However, an output (quasitriangular Hopf algebras) might sometimes ap-
pear almost trivial if the factorization involved were ‘rude’ enough to crash
down interesting features of original bialgebras. Fortunately, this does not
necessarily take place. In [3] (cf. [2]) it is shown how sl,(2) is recoveredfby
this method. Another illustration is given below.

Let us take as an input the R-matrix [11, 12, 7]

1 q —q ¢
101 0 ¢ :
B=lo0 1 -4 - (60)
00 0 1

and consider the h'omogeneous case of the R-generated algebras (without
E- and F-generators), assuming the notation

a b r_fw =z
T"(cd)’ U'(!/Z)'
To remove the degeneracy of the pairing (4), we should require
c=y=0, ad=da=wz=20=1. (61)




i 'v«’The procedure descrrbed in Sect 2 results in the Hopf algebra wmh/gener-
ators {1 a E,b w, W, } whose nmltrplrca,trve relatrons are T

" a, b]=q(a -—1), Iw .'t] q(w -I) :
[, z]‘ qo(w ~ ), [w, bl q(a —a)w, (62)
[b,2] = qla + @)z —q(w+ Db, aw = wa,

‘'and the corresponding ones for inverse generators We see that q may be o

absorbed into b and z (so we a.ctua.lly use the *R—matrrx given by (60) with .

¢= 1 [13]). Denoting also -
a=e, wed, s=-y, }_(63)' -5

* we eventually come to- .

éef ‘b | 'e" —v '
T=(0 e“')’ U_('O e"‘A)'

_ The elements of these matrices form the Hopf a.lgebra" B

0.8 = [h bl = =™, [g,0]=[he] =& e,
[b,0] = (€ + e)o + (c* + )b, [5,h] =0,
~ - Ab)=e"@b+bRe™, A('v);e"®v+‘v®e-’*, (64)
Alg)=g®1+10®g, A(h)=h®1+1®h, S*‘(g)——g,
SH\(h)=—h, SH(B)=-biteFe?, SH(v)=-vFehre

The pairing relations are the following:

<L1>=<hb>=<v,g>=1, <v,b>=-1,
<lLb>= <1g> <hl>=<y,1>= <hyg>=0.. (65)

By constructron, the Hopf algebra (64) has to be a quantum double.
So,.it should possess a universal R-matrix. Assunnng exponentra.l Ansatz,
we can write down several terms of its formal power expansron in g and h

f"ﬁ

10

' ‘R —exp{g® v + b'® h
‘"‘(9®hvh+ybg®h+g @(h»+vh)+(gb+bg)®h’)+ }. 66
where discarded terms are of the ﬁfth order ing and h To check (58) a.nd

the quasrtrrangula.rrty condrtrons '

(A®id)R = RisRaa, (id® A)R = 72137312 o ‘(67) '
fqr ‘the ‘R—matrrx (66), the program FORM (14] has been essentially used |
A detailed study of this and other R-generated quasitriangular Hopf

algebras is a subject of further investigations.
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