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Recently much attention has been payed to the investigation of twodimensional dilaton gravity. This is mainly inspired by string theory, and also by the fact that it gives the-simplest model for the dynamic2J description of a two-dimensional gravity [1-5}, the gravitational variables are dilaton and metric fields (¢,g~v)· In empty (without matter) space the classical equations of motion are exactly integrated [1-3]' and the solution discribes the two-dimensional black hole. On the quantum level it was shown [4] that this model is renormalizable. Since in two dimensions many things are simpler and models (classical and quantum) become solvable, one can consider the 2D dilaton gravity as "toy model" for the study of old problems of black hole formation and evaporation [5]. 
On the other hand, numerous recent attempts to formulate the theory of gravity in the framework of a consistent gauge approach resulted 

in constructing the gauge gravity models for the de Sitter and Poincare groups (for a review see, e.g., [6} ). The independent variables are now vielbeins ea = eadxP and Lorentz connection one-form wab = wa, dxt•. /)-
O,!J. The application of these methods in two dimensions was justified by at-tempts to give an alternative description of two-dimensional dynamical gravity in terms of variables ( ea, w\). It was argued also that investigation of simple two-dimensional model leads to a better understanding 

of four-dimensional gravity and its quantization [7}. It was shown in [7] that the Lagrangian L = 1 R 2 + ;3T2 + .\ is the most general one quadratic in· curvature R and torsion T, and containing a cosmological constant .\. The classical equations of motion were analized in confor
mal gauge [7J and in light cone gauge [SJ and their exact integrability was demonstrated. 

In this note we will consider the model for two dimensional de Sitter gravity. The constants 1, (3, .\ are fixed in this case with only one free parameter o 2 and the action is of the Yang-Mills type [6]. We will show 
that the exa~t solution of equations of motion are most easily found in coordinates given by torsion's components (the generalization of result 
to the case of arbitrary constants 1, (3, .\is straightforward). For certain choice of integrating constant this solution is of the black hole type. 

1. In two dimensions the gauge gravity is described in terms of zweibeins e" = e~dz~, a = 0, 1 (the 2D metric on the surface M 2 has the 
form 9JJ.v = e~et1]ab) and Lorentz connection one-form wab = wt:a&, w = 
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w~dz~ (cab = -£60 , £ot = 1). The de Sitter curvature two-form R. [6] 
in two dimensions takes the form: 

where a is the coupling constant, and curvature and torsion two-forms 
are: R = dw, T" = de"+ c"6w II e6

• 

The dynamics of gravitational variables (e",w) is determined by the 
action of the Yang-Mills type [6]: 

(1) 

where* is the Hodge dualization. The last term in (1) is the boundary 
one and it does not affect the equations of motion. 

Let us consider variables p = *Rand q" = •T". Then using identity 
E,&Ecd = (o~og- 6~og) it is easy to show that the action (1) takes the 
form: 

which is positive in euclidean signature; here q2 = qalTJa& (7lab = 
diag( +1, -1)). 

Variation of action (1) with respect to zweibeins ea and Lorentz 
connection w leads to the following equations of motion: 

(2) 

(3) 

2. One particular solution of (2)-(3) is evident. Assuming q2 = 
constant one gets from (2)-(3), provided e" are linearly independent 
everywhere on M 2 ): 
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p2 =a4 , q"=O 

in all points of the two-dimensional manifold. That is, torsion is zero 
and M 2 is the de Sitter space. 

Let now q2 be nonconstant, and hence non zero identically every
where in M 2 • Then from eqs.(2)-(3) we have the following equation 
connecting q2 and p: 

dq2 1 ---<I> dp - a 4 ' 

where <I>(p, q2
) = p2 + a 2q2 

- a 4
. 

The solution of this equation has the form: 

q2(p) = -~(p+ 2a2 j2 + ee;;T, 
a 

(4) 

(5) 

where E is integrating constant, we will see that it is proportional to 
ADM mass. Notice that due to pseudoeuclidean signature q2 can take 
both positive and negative values. 

One can see that for large negative p independently of the value of 
integration constant E function q2(p) has the asymptotics q2 ~ -;!,-(p+ 
a 2 ) 2 • The form of this function for positive p depends on the constant 
E. 

A. c > 0 
In this case for large positive p function q2 is positive and approxi

mately q2 ~ Ee '!r. 
The critical points offunction q2(p) (5) (where if;= 0) are solutions 

of following equation: 

2 f "! Pc =-a + -ea: · 
2 

(6) 

One can show that there are no such points for E > 2a2; for £ = 2a2 

one gets one critical point p, = 0; for 0 < e < 2a2 the function has 
two critical points: the first one is positive (p,; > 0) and the second is 
negative (Pcz < 0). 

In general case q2 (p) in critical point is equal to the following value: 

q2 = _:e~(l _Po) 
c 2 a2 . (7) 

One can see that q; is positive if Pc < 0 (since £ > 0). The sign of 
q2 in positive critical point Pc1 depends on value of constant E. If c is 
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slightly smaller than 2a2 then q;, is still positive. The point Pel is a 
minimum which goes down with decreasing constant f and reaches zero 
value q;1 = 0 if, as follows from (7), Pel = a 2 . One can see from (6) 
that it corresponds to £ = 4~2 1 

. Thus we come to following conclusion 
about the behaviour of function q2 (p ). 

For £ > 4~' the function q2(p) has only one zero at a negative p < 
-a2 • If£ = 4

"
2 

there are two such zeros: at p < -a2 and p = a 2 > 0. e . 
For 0 < £ < 4~2 

the function q2(p) vanishes at three points: one for 
p < -a2 and two for p > -a2 (one of which satisfys p > a 2). 

B.<= 0 
In this case function ( 5) reduces to q2 = - ~ (p + a 2 JZ which is 

negative everywhere except for a point p = -a2 where it vanishes. 
C. E < 0 
As one can see from (5) the function q2(p) has no zerosin this case 

and it is negative for any p. Evidently there is only one critical point 
(ma:<imum) Pe which lies in the interval -a2 -J¥ < p, < -a2

• 

3. Thus eqs.(2)-(3) determine q ( = .,fi'i) as a function of p. Further 
analysis of (2) easily shows that f.(q) = 0, where· we denoted 1-form 
f. = q,ee. Let us use this and introduce a new coordinate system which 
is (pseudo )polar with q playing the role of a 'radial' coordinate, while 
the 'angular' coordinate ¢ is then clearly such that its differential is 
proportional to f.. Assuming (for definiteness) that q2 = ( q0 ) 2 - ( q1 ) 2 > 
0, one can write the torsion components in the form: q0 = q cosh¢, q1 = 
q sinh¢. 

Let us consider q,¢ as the new local coordinates on M 2 . The dif
ferentials { dq, d¢} form basis in the space of one-forms. Since q is a 
function of p, we can use an equivalent basis { dp, d¢}. From the con
struction of q,¢ (see above) and (2)-(3) we get 

(8) 

where B is some function of variables p and ¢. Equations (8) are easily 

1 e = 2. 7 ... is the Euler number 
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solved with re,~pect to zweibeins ea: 

o B h"-d' 1 ''-'d e = - cos '+' cp - -
2

- s1nn '+' p q Q q 

e1 = B sinh ¢d¢- ~cosh ¢dp . q Q q (9' . J 

Let us find the function B. From (9) one calculates the volume 2-form 
V = ~Eabea ,\ e6 = , 2~2 dp A d6, and from (8) thus d( = q2a 2 B- 1 ~! V. 
However, it is straightforward to see that (3) can be rewritten as 

q; 2 
d~=(--q)V= 

a2 

and thus B satisfies 

B-1 &B = q-2 dq2 - J:... 
&p dp a 2 

From this we find finally 

where Bo is an arbitrary function of ¢. Consequently the metric has 
the form: 

2 0 2 1 " 2 2p 2 1 2 d s = (e ) - (e )" = q (p)exp ( --)(d¢) - (dp) (10) 
. a2 a4q2(p) 

where q2(p) is known function (5), and without any loose of generality 
we redefined the 'angular' variable B 0 (¢)d¢-> d¢ (denoting the new 
coordinate by the same letter). Several remarks are in order. First of 
all, let us note that this result (10) is also valid in region where q2 < 0 
(in which case one should use other formulas describing the introduction 
of new coordinates, q0 = qsinh ¢, q1 = qcosh ¢). Secondly, the metric 
(10) is obviously stationary (angle¢ is of course the time coordinate), 
however the Lorentz connection one-form w has a non-stationary part 
due to the time-dependent torsion. It should be noted also that the 
demonstration of integrability of the model ( 1) in coordinates of torsion 
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q" is similar to the analysis of the dilaton gravity without matter in 
the coordinate system where the dilaton field ¢ plays L~e role of one of 
coordinates [1]. As was shown in [7], in conformal ga\Tge the action of 
the type ( 1) leads to the essentially nonlinear equations of motion, the 
exact solution of which is much more complicated. Thus the conformal 
gauge, though standard, is not always the best one. The model (1) gives 
us an example of a theory when the equations dictate the natural gauge. 

4. It is straightforward to see that the above results are valid (with 
slight appropriate modifications) also for the theory with the most gen
eral action, S = J LV, 

(11) 

Equations (2), (3) are then replaced by the generalized equations of 
motion 

1 
'Vq" = - 2a2 [p2 + a2q2- a4- A2]E"beb, 

where the following notation was introduced: 

(12) 

(13) 

Notice that squares were introduced in order to get formal similarities 
with the above considered de Sitter model, but actually neither newly 
defined a 2 nor A 2 are positive, in general. As is seen from ( 1 ), the de 
Sitter model is recovered when"/= 1; {3 = 2a, >. = -2a\ so that A= 0 
and old and new' a's coincide. 

Equations (12), (13) yield a modified equation for q2 which replaces 
( 4), 

dq2 - _2_~, 
dp - a 4 ' 

where ~'(p,q2) = p2 + a2q2 _ a4 _A 2. 
·The solution of this equation has the form: . 
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The behaviour of this function is very similar to (5); in fact if one 
confines to the case a 2 > 0, the' quantitative analysis of q2 almost 
dupEcates the discussion in sect.2. 

It is easy to see that equations (12}(15) are such that the introduc
tion of the q, ¢;coordinates proceeds precisely as described in the sect.3, 
including the sam·e solution for the function B. 

Hence, the general theory (11) has the same structure of the line
element (10), with q2 determined from (15). 

5. The coupling with matter in general case breaks t!>is exact inte
grability in coordinates q". The exception is the coupling with Yang
Mills fields. In this case the total action 

S = j ~(Tr d?- t\ n + Tr * F 11 F), 
M' 

where F = dA + A 1\ A is strength of gauge field A = A~ r"dz~, yeilds 
the equations of motion for the gauge field A~ which reduce to the 
conservation law df2 = 0, j2 = Tr[•F * F]. This means that j2 = 
constant; in abelian case, moreover, f = •F = constant is a charge. 
In equations (2)-(3) the coupling of the gauge gravity with the Yang
Mills matter is manifested only in the shift of "cosmological" constant 
>. = -2a4 as>.--+ -2a4 + J2 • Correspondingly the function q2 changes: 
q2 --+ q2 

- {; so that the metric again has the form (10). 

6. Let us remind that when varying the action in order to get an 
equation of motion one usually drops out the surface term which arises 
when integrating by parts. The correct way of doing so is to impose 
appropriate boundary conditions. Assuming the variations ow and 6e" 
are arbitrary at spatial infinity (which in the polar coordinate system 
corresponds to the infinite value of the usual radial coordinate) one gets 
from the action ( 1) the boundary conditions: 

(16) 

The constraint that torsion at space infinity is zero is too strong. It 
leads to the constraint E = 0 in (5), so most of solutions are omitted. 

Let us add to the action ( 1) following term: 

(17) 
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where { == det[JLv' IJJ.v == 9Jlv- K,nf.J.nv is metric induced on the bound
ary &M2 with normal vector n" (n"nvg"v = ~<), K = 1 for spacelike 
boundary and K = -1 for timelike boundary. Then variation of total 
action Stat= S + S0 (note that it is still positive in euclidean signature 
for a > 0) leads to the modified boundary conditions at space infinity, 
which for metric (9)-(10) take the form 

(18) 

It means that integrating constant in (5) < = a2 e. Thus the found 
solution discribes the two-dimensional asymptotically de Sitter space 
with two kinds of possible singularities: where p = -oo and p = +oo. 
Remember that p is curvature of the Lorentz connection one-form w: 
p = •(dw). One can show that relationship of p and "metrical" curvature 
po = •[d(•(de0 )e0

)] determined for metric (10) is given by the formula: 

1 2 2 Po= p+ -p -a a2 (19) 

So we have po = p if p = ±a2 and singularity of p means the singularity 
of po, one can see from (19) that at any kind of singularity po is positive. 

7. The most interesting solution is of the type A with p laying in 
the interval -a2 S p < +oo. One can see that metric (10) describes 
the two-dimensional asymptotically de Sitter space-time with sigularity 
(p = +oo) and horizons at points where the function q2 (p) has zeros. 

As was described above, for < > 4~ 2 

such points are absent and 
we have naked singularity. For 0 < < < 4~

2 

we obtain two horizons 
which coincides when < = 4

"
2

• Thus the metric (10) for 0 < < < 4
"

2 

' - ' resembles the charged two-dimensional black hole type solution [3]. The 
case < = 4~2 

corresponds to the extremal black hole. 
In support of this analogy we note that the equation (2) is similar to 

the Maxwell equation df = •j where f = •(dA) is strength of abelian 
gauge field A and j is charged matter current one-form. Then the 
second gravitational equation (3) is similar to the equation of motion for 
charged matter. It is not surprising because the local Lorentz symmetry 
in two dimensions is abelian and analogous to the U(1)-symmetry of 
Maxwell theory. 
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From eq.(3) we get that the corresponding Lorentz current one-form 
•J = -a2q"Eabeb is conserved, d • J = 0. Integrating •J over any 
spacelike hypersurface L we get that total charge Q = J1: •J is equal to 
curvature p at infinity2 : 

Q = Ploo (20) 

and consequently for the boundary conditions (18) the total charge Q = 
-o.?. 

8. To calculate the ADM mass for the black hole solution (9), (10) let 
us assume [3] that only the equation for w (2) is satisfied and consider 
the zweibein energy-momentum one-form T" = T~dz~ which can be 
determined as follows: 8,S = J- * T" ,\ 8e". For action (1) it takes the 
form: 

ya = - * ya = a''Vq" + ![P' + a'q'- a'Jo\eb. 

Multiplying this expression on q"exp( -;;,)we obtain that 

.. p 
T = T"q"exp(--

2 ) 
0' 

= a 2exp(-..t'..)(~dq2 - -
1
-(p2 + a 2q2 - a 4)dp) (21) 

a 2 2 2a4 

is obviously conserved: dT = 0. It implies that there exist such a. scalar 
function m that 

T= dm. (22) 

Straightforward calculations show th<>t the mass function m at point p 
can be written in the following explicit form: 

a' . p 2 1 . 2 2 m = -exp(--l(q + -(p-t-a ) ) 2 a 2 1 a2 · 
(23) 

In the case when the field equations •T" = 0 are satisfied eq.(22) implies 
that m =constant and for q2(p) in the form (5) we get that m = 0~'. 

In order to see that defined in such way m is indeed ADM mass let us 
consider the metrical energy-momentum tensor T1-1v = !(T;e~ + T:;e~), 

'Note that the same formula is valid in (1+1)-electrodynamics: 

Q = J, • i = II= [3] 
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r: = -E:~"T:;. Then for component Too= Tgeg since eg = q"exp(';j) 
we obtain that 

T: -"T-" a (-p) oo:::: -co aq exp -2 
a 

(24) 

where m takes the form (23). The ADM mass is ordinary determined 
[2,3] as integral ofT00 over space-like hypersurface I; with tangent vector 
vll- =or and normal n~ = CIJ.aVa: 

M = J Toon°dp . 
E 

One can see from (24) that it is reduced to a surface term 

M = m(p )I - "' = "'' . p--T 2 

Hence only the solution of the type A describes the positive mass 
configuration (solutions of the type Band C have correspondingly zero 
and negative rnass ). ~ 

9. In conclusion we considered the two-dimensional gauge gravity 
of de Sitter group (generalization to the Poincare gravity is straightfor
ward) and shown that the classical equations are exactly integrated in 
coordinate system determined by components of 2D torsion q", a= 0, 1. 
The general solution is two-dimensional asymptotically de Sitter space 
and for some choice of integrating constant it turns out to be of the 
charged bkack hole type. The square of torsion q2 = q"lr;ab is shown 
to be function of curvature p and zeros of q2 (p) are points of horizons. 
We calculate the conserved charge corresponding to the local Lorentz 
symmetry and ADM mass which is positive for the black hole type so
lution. 

As the next step it would be of interest to consider the coupling of 
gauge gravity with matter and analyze the Hawking radiation and back
reaction for this type of black holes. This work is in progress. 
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