


The past few years have witnessed a great deal of interest in the study of the quantum
groups [1-10]. Such.an upsurge of interest has primarily been motivated by the fact that
the usual symmetry groups and symmetry algebras have played pivoial role in providing
deeper understanding of the basic laws of nature. It is, therefore, expected that the
quantum groups, which are generalization of the usual groupa in some sense, might shed
more light on the working of many diverse and intricate physical phenomena of nature.

Quantum groups present examples of Hopf algebra ( see, for instance ref.[5} for review).
In this note, a nut-and-bolt approach ie made to introduce quantum groups without
going into details of (antijhomeomorphism, coproduct, counit, antipede etc. Furthermore,
the definition of the deformed traces has been exploited to derive Hamiltonians for the
quantum groups G L(2) and GL{1}1} in terms of the g-oscillators. In addition, the non-
relativistic free particle, harmonic oscitlator and relativistic free particle are discussed in
the g-deformed Lagrangian formulation where ideas of differential calculus on quantum
plane and g-deformed Poisson-brackets are summoned for the definition of the g-deformed
Legendre transformations, derivation of the g-deformed Hamilton's equations and Euler-
Lagrange equations of motion.

Reduced to bare essentials, quantum groups are a deformation of the usual groups
in which a{multi) smooth c-number parametez(s) is{are) introduced without violating
the essential ingredients of group properties. This non-zero parameter( q ) is popularly
koown as "deformation-parameter”. A particular limit of the deformation parameter
{¢ — 1) leads to the emergence of the usual groups. It is a very tempting question
as to what extent the concept of quantum groups can be applicable to the realm of
physics. In fact, the "smoothness” of the deformation parameter guarantees that the
predictions of the deformed symmetries would be arbitrarily close to that of the usual
symmetries {6]. These deformed groups have found applications in many diverse areas of
research in mathematics and physics such as: knot theory, non- commutative geometry,
integrable models, statistical mechanics, conformal field theories, solution of the Yang-
Baxter equations etc. { see, for instance, refs. 1-10 and references therein).

Deformation of a symmetry group can be achieved either by introducing a deformation
parameter in its algebraic structure or in its group struciure. For instance, it was firstly
demonstrated by Reshetikhin, Sklyanin {7} and Kulish (8] that following SU(2} algebra
constituted by raising and lowering operators (Ji) and third component of the angular
momentum (J3):
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o
can be deformed without spoiling the basic feature of SU(2). Ia this endeavour, equaticn
(1) remains intact but equation (2) undergoes following modification:
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where non-zero smooth c-number parameter "q” is the deformation parameter. It is
straightforward to see that ¢ = 1 leads to the rederivation of the SU(2) algebra. Fur-
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thermare, the famous Jacobi-identities are also satisfied for the commutators (1) and {3).
However, it should be added thai for the validity of these identities in the general case,
one has to define deformed commutators in a special way { see, for instance, ref.[9] for the
Virasoro algebra).

In the framework of the g-deformation of a given symmetry algebra, the usual quanti-
zation by introduction of the Planck’s constant & can also be discussed [10). For instance,
in equation (3), if one takes ¢ = e", then, the limit ¢ — 1 corresponds to the Hmit
h — 0. As is well-known, the latter limit leads to the famous correspondence - principle
due to which, the quantum mechanical equations reduce to their classical counterpart.
Recently there has been an attempt to discuss these deformations on completely indepen-
dent grounds in the hope to abtain possible inter-relatioships amongst quantum groups,
non-commutative geometry and space-time quantization [11]. In this work, a framework
has been developed by which one can discuss in detail the g-deformation, A-defarmation
and their various combinations in different orders for a given classical system. In fact, as
a starting point, the simple cases of non-relativistic free particle and harmonic oscillator
are extensively discussed by exploiting techniques of the various deformations [11].

Now we shall discuss about the introduction of deformation parameter in the Ygroup-
structure” of & given undeformed group. For simplicity and clarity, let us start with
the general lincar group of 2 x 2 non-singular matrices; namely, GL(2). An arbitrary
non-singular element T (detT # 0) of this group can be rcpresented as:

T = ( ‘; Z,) € GL(2) (4)

where a,b,c and d are c-number elements of the matrix T. It is straightforward to see that

under matrix product ( closure relation (-) }, matrices (4) form a group because identity,

inverse and associativity can be defined explicitly. The other trivial properties of matrices

(4}, which would play significant role in the context of deformed groups are as follows:
(i) All the c-number elements a,b,c and d commute amongst themselves;namely:

ab = ba, ac=ea, ad=4da

be = c¢b, bd=db, cd=dec. m

iy

(i1} The determinant D = ad —~ bc is the central and commutes with all the elements

D({a,b,c,d}) = ({a,b,c, d})D. (5)

With this simple background, let us discuss the deformation of GL{2} by introducing
a deformation parameter q. The elements a,b,c,and d of the 2 x 2 quantum matrix T,
belonging to the quantum group GL,(2), exihibit different braiding relations in rows and
columns as given below:

ab = gqba, ac = gea, cd = gde
bd = gqdb, be=ch, [a,d]=(g-¢g b

—
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where g € C/{0}. It is easy to note that, in contrast to (5), the elements of g-mmatrix obey
non-commuting relations (7). The particular value of ¢ = 1 leads to the rederivation of
{3). Furthermore, once again under matrix multiplication, the q-matrices T form a group.
To see it clearly, we define the non-zero g-determinant D as follows:

D = det, T = ad — gbe. (8}
Now it is abvious that the identity, inverse and associativity can be defined explicitly
for the q-matrices T. In fact, the matrix multiplication T' = T"T" preserves relations {7)
il 'we assume the commutalivity of the elements of 7% and 77 { i.e. fT{j,chf. = 0). The
preservation of the multiplication law can be explained through Yang-Baxter equations.

Actually, the elements of GL(2) act on a two-dimensional Manin's plane (4], therelore,
the tensor products:

T, = T®l
T, = 1@T (9)

act on the product space of the vector spaces. It is interesting to nofe that the R-matrix:

g 0 0 0
S R I (19
0 0 0 g
with & = ¢ — ¢, satisfies following relations with 737 and Ty:
RLhT,=T:N R (11}

as a consequence of the braiding refations (7}, obeyed by the elements of T. In anclogy
with T1 and T3, if we define now another set of matrices T/ and T% from a different matrix
T of GLy(2) with elements that commute with those of T, then, following equation:

RN, L,=TT 9T R (12}
15 logically satisfied due to {11) and its anclogue for the primed matrices. This equation,
which is nothing but the Yang-Baxter equation, establishes the group properlies under
the snatrix nultiplication and therchby it also provides the reasoning for the preservation
of the multiplication law.( see, e.g. ref.{12] for details )

Tt is inferesting Lo check that, once again, the g-determinant  is central under braiding
relations (7). Furthermore, it is straightforward to see that the group property under
multiplication is also satisfied if q is changed to ¢71 in equation (7).( we shall dwell a bit
mere on this symmetry later on, in the context of GL,,(2) )

How to obiain relations (7) 77 Historically, it was the definition of the q-determinant
and the requirement of the associativity which led to the derivation of relations (7} in
ilie context of inverse scattering method for the quantum Liouvitle model described on a
laltice [3]. However, later on, Manin [4] proposed a simpler method {o obtain equation

4



(7} by introducing the concept of quantum hyperplane. In this technique, one introduces
"q-coordinates” x and y which transform under GL,{(2) as follows:

(§>=(:3)(;)’ (13)

b . ~
N ) € (1,(2). Furthermore, there exist another set of q coordinates =

c d

and ¥ which transform under GL,(2) as given below:

&7 = 3,9) ( : f; ) . (14)

Both these sets of q-coordinates describe the quantum hyperplane and satisfy non-commutative

where T = (

relations as follows:

Ty = qyT and Eﬁ:qﬂ%’ {15}
If we require the validity of relations {15) in the primed quantum hyperplanes also Jthen,
we derive all the relations of equation (7) for the elements of the g-matrix T.

The braiding relations for the elements of a g-matrix belonging to SL,(2} can be
derived from (13), (14) and (15) with an additional restriction that D = det, T = ad —
gbe = 1. Further appropriate restrictions on the elements of $L,{2) lead to the emergence
of the quantum groups U,(2) and SU,(2). ( see, for instance ref.[13], for detals).

Manin’s hyperplane approach to the definitions of the quantum group is very general
and can be exploited for the multi-parameter deformation of GL(N). For instance, the
most general deformation of the group G'L{N) contains [—m + 1] parameters. To
illustrate this point succinctly, we discuss here two-parameter ( p and q ) deformation of

GL{2). For such a two-parameter deformation we require following conditions:
oy = qur, V=gl

~ ~t el EV

= py¥az, T Yy=py zx (16)

o

T
where p, ¢ € C/{0}. It will be noticed that the above equation (16) is just the generaliza-

tion of relations (15} to the two-parameter case which subsequently leads to the following
braiding relations for the elements of the quantum matrix:

ab = pba, cd=pde, ac=geca, bd=qdb
be ;‘fcb, [a.d} = (p~ q™")be = (g — p")ch. ("

In this case the q-determinant is defined as follows:
D=ad—gchb=ad— phc =da — g7 be = da — p~ich. (18)

1t is worth mentioning that here, the determinant D is not the central because it satisfies
following relations:

a(D, D7) = (D, D Va, d{D,D7}=(D,DY)d
2,0 = (Ip,2piy, c(D,D_1)=(§D,%‘D‘1)c (19)
P 9

=
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where D~ is defined through the inverse of the matrix T as given below:

g1 s |
T; =D (_d b ) = (_d b ) D (20)
qc a P a

It will be noticed that the substitution p = ¢ in equations {16-19), leads to the rederivation
ol the corresponding equations for L, (2} and, once again, the determinant D becomes
the central. Moreover, the limit p = ¢ = 1 corresponds to the undeformed group GL{2)
and. all above equations ultimately reduce to equations (5} and (6). The generalization
of two-parameters to multi-parameters is straightforward. However, we shall not venture
into the derivations of the corresponding relations in this short note.

We shall discuss now the deformed traces for the one- and two-parameter quanium
group (GL(2}. In the realm of physics, the importance of the notion of traces, ranging
frony Yang-Mills theory to the partition functions for conformal field theories, is rather
well-known. Tt is, therefore, of immense value to obtain an appropriate definition for the
aquantum trace in the context of the deformed groups and apply them Lo some physical
problems. One of the simplest way to definc such "deformed traces” is to take the help of
the representation theory. For instance, it is well known that, for a particular elemnent of
& given group, two matrix representations are equivalent if they are related to each-other
by similarity iransformations. The key feature of this equivalency is the equality of the
trace for both the matrix representations. The well-known gauge invariance of the kinetic
energy term of the Yang-Mills theory centres around this basic property. Thus, it would
be fruitful to define deformed trace by exploiting the idea of its invariance under similarity
transformations.

Let us take the example of the non-Abelian gauge theory and pin-point few technical
terms which would be useful in the context of the quantum group. As is well established,
under local gauge transformations, the gauge fields (A,), the covariant derivatives (D),
and the field strength tensors (F,,) transform as follows:

A, - UAUT (BT

D, — UDpJu™!

F. — UFU (213
where unitary matrices U are group valued and carry in their wornb transformation gener-
ators and transformation parameters for the group under consideration. In mathematical
language, the transformations (21) form the "gauge orbits” for a given transformation
group. For the case of the quantum group GL,,(2), we define the quantum orbit in the
space of 2 x 2 quantum matrices E with following transformation properties:

Ey— T En Tl;l (22)
where Tj; are elements of T € G1,,(2) and commute with the elements of 2 x 2 g-matrix

E (i.e[Ti;, Exi] = 0 ). For such a situation, the g-orbit invariant quantum trace for the

fj: }EE;:Z ) is as follows[14]:

matrix K =

Tr(Ey=r""En +rFn {23)
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where r = (qp)%. For the case ¢ = p, equation (23) reduces to the g-trace of the quantum
group G'L,. Asis trivially evident, the condition ¢ = p =1 leads to the ordinary definition
of the trace. Furthermore, equation {23) agrees with the assertion [6,16] that two-( or
multi) parameter deformed quantities can always be recast into a form which would
depend only on a single parameter. For instance, in (23) only r = (gp)? appears as a single
parameter eventhough we took q and p as independent parameters. (The independency
of these parameters turns up in the comultiplication, which we donot intend to discuss
here.)

Now we shall concentrate on the qp-oscillator realisation of the quantum group GL,,(2)
and derive [lamiltontans as bilinears of these oscillators which remain invariant under the
coaction of this group. For this purpose, we inrtroduce two sets of oscillators A; and
;h (i=1,2 ) which are, in the language of differential geometry on g-plane, precisely the
coordinates and derivatives on the quantum hyperplane. Let us demand [ollowing GL,,(2)

transformations:
_fa b A
A.‘-—*T;_,‘Aj-—(cd)(/h)

~ ~ v v d o~
Ai = AT = (A, AnD 1( _qc’qa ) (24)

It is straightlorward now to sce thal following g-matrix:

Ba=d (4 Yot Ay 2
2

obeys the transformation propertics of the g-orbit {22} as 2 consequence of ils construction
in equation (25) and transformations (24). At this juncture, the g-invariant trace defined
by equation (23) can be exploited to derive the G lyp(2) invaraint Hamiltonian given by:

Hop =17 AL Ay 4745 Ay . (26)

Furthermore, in the space of 2 x 2 g-matrices [, the other oscillator realisation which
would trivially remain invariant under transformations (24) is as foliows:

Ly =4 Aj=(A1,AQ)®( Ai ) (27)

Thus, another G Lg(2) invariant hamiltonian J in terms of the bilinears of the q-oscillators
is as follows:

2
Hop= " A A (28)
=1

which is nothing cther than the usual trace of the matrix 2 in {27).

It is rather instructive to note that the notion of the q-orbit invartaul deformed trace
provides a kind of generality for the derivation of the Hamiltonians because, in ref {13},
only the analogue of (28) is mentianed. However, il is evident from the above discussion
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that there exists another representation of the Hamiltonian in terms of the bilinears of
the g-oscillators given by equation (26). It has been demonstrated in ref.[14] that these
Hamiltonians are related to each-other due to the presence of g-oscillator algebras that
are covariant under the coaction of GL,,(2}.

Wkhy are equations (26) and (28) called Hamiltonians?? The answer to this question
comes from the algebraic relations that are satisfied by these and other combinations of the
g-oscillators. To make this point transparent, it is instructive to take the supersymmetric
quantum group GL,,{11) characterized by 2 x 2 matrices T* with two odd { 5,7) and
two even (a,d)} elements that satisfy following non-commutative braiding relations for the
non-zero c-number deformation parameters ¢ and p :

H

aB pBa, df =pfd, ay=gva, dy=gyd
g = 4'=0, py= —f;’rﬁ, lo,dl=(g—p " B = (g —p)Br (29)

In analogy with the case of GL,(2), the set of bosonic oscillators (A, 7\) and the set of

fermicnic oscillators (B, B) transform as follows under GL,,(1|1) -

() = (50)(5)="(5)

- o~ - o~ 14 g8 Tya!, —a-18d"1 ~
GB) ~ Gl (e T R =G

The super g-matrix E* constructed from these oscillators:

= A4 AB (31)
BA BB

obeys the transformation laws of the super g-orbit, The invariance of the g-supertrace
results in following expression for the super g-orbit invariant Hamiltonian:

H!, = AA-B B=AA+ B B) (32)

where A is a constant which turns out to be equal to | or 7 due to the requirement of
the graded associativity for the q- super oscillators. In fact, this requirement is equivalent
to the derivation and solution of the graded Yang-Baxter equations. The latter value of
A leads to an oscillator algebra which, i turn, vields following covariant super algebraic
relations that include N = 2 supersymmetric quantum mechanical algebra:

{Q.Q}=H,, @*=@Q* =0,
{Q:Y] = Q: [Q*Yj = '—Qi
[H:,,Y] = [H:,.Q) = [H],, Q] =0, (33)

where @ = B, = A B Q= E; =B A and ¥ = (4 A +B B). As a consequence
of the SUSY quantum mechanics, it is clear that the notion of the g-orbit invariant



quanturn trace provides the expression of the Hamiltonian Hy = {@, @}, Tt is precisely
this reason that the oscillator bilinears {26) and (28) are called Hamiltonians as they
satisly Witten-type algebra along with other oscillators[14]. The cther reason for such a
nomenclature is the appearance of these expressions as the sum of products of "creation”
and "annihilation” operators which resembles the "usual™ Hamiltonian for the harmouic
oscillator. The name "oscillater™ is also cited because of this close kinship. The aotion
of the deformed traces has been exploited by Isacv and Popowicz (in ref.(15]) to discuss
Yang-Mills theory. Other attempts have also been made in this direction [15].

In addition to providing the derivation of the Hamiltonians, the transformations (24}
lead to the existence of two-types of gp-oscillator algebras in terms of the g-deformed
commutators as discussed in ref.[14]. Ome of the interesting feature of these algebras is
the existence of following symmetzy:

i=lei=2 and pgeop gl (31}
In the case of one-parameter deformed group SU,(2), analogue of this symmetry (i.e.q —
¢') is mentioned [13] which is the trivial symmetry present in the braiding relations
(7). However, it is illuminating to note that the generalization of this symmetry, in the
case of two-parameter deformed group GL(2), emerges very naturally in the discussion of
ref.[14] as the requirement of the associativity condition on all the g-oscillators. It is worth
emphasising here that the requirement of associalivity is equivalent to the derivation and
solution of the Yang-Baxter equations.

As an illustartion of the application of the quantum greup to physical problemns, we
consider now the metion of a q-deformed free non-relativistic particle on a quantum-line.
This line is characterized by phase variables z(t) and p{t) on the g-deformed manifold
which satisfy following relationship:

z{t) p(t) = q p(t) (1) (35)

where ¢ is a real evolution parameter. The free motion is endowed with translational
invariance on the g-deformed manifold. As a result, equation of motion is nothing but
the conservation of momentum given by:

p(t) = 1. (36)

For the hermitian operators z{¢} and p(¢) (with |g| = 1), the g-deformed Hamiltonian
describing the free motion is as follows[11]:

q -1
H=——pm!p 37

The g-deformed manifold, with above hermitian phase variables, is characterized by an
SL¢(2) invariant g-deformed symplectic form B, defined in terms of the anti-symmetric
matrix ({145(q)) as follows:

By(z,2) = 2" Qual(q) ¥ = —¢ bz p + i po {38)
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=1

where #* = (z,p) and Ql4p = 0’1 g ) Thus, the q-Poisson bracket between
g2,
two-variables [ and g is defined as:
df _.p Og
{f-,g}q=a?ﬂ ] (39)
AB 0 Q'Ti ; : :
where 0147 = Ty 0 is the inverse of the matrix N4p defined on ihe quantum
-G,

manifold. Due to the presence of the equation (39), the Hamilton’s equations of motion
are as follows:

¢={e,H},=¢im™p and p={pH}, =0 (40)

Tiis worth mentioning that ke differentials present in equation {39} and delined on the
quanfum plane (characterized by equation (35)) obey following rule[17):

g™ L =)
R A
a(pnzm) — n . m—1 .n (1 - qsz
e o (41)

While computing the Poisson- brackets, it is essential to bring the Hamiltonian in a form
r'm” {where r and s are real numbers) by using following non-commutative relation:

mlp=gpm’ (42)
resulting from (33) due to equations of metion (46). This demonstrates that the mass is a
non-commutative number on a quantum line. Consistent with equations (35), (36), (40)

and (41}, following q-deformed Legendre transformations yields the first order Lagrangian
(Lp) as:

Lo g -1
Lp=gipi- m : 43
F=gipi—qrop » (43)
which, in turn, leads to the derivation of {40) due to ihe following equation of motion :
dLp '
i 0, (44}

and the q-deformed Euler-Lagrange equations of motion. { We shall discuss it in detail for
the ¢-deformed harmoenic oscillator. ) The equivalent second order Lagrangian is given

by:
g 12 -
Lg= Tr m (£) (45)

which emerges due to the application of equations (40) and (43). Tt is now straightforward
te check that the following Legendre transformations: :

H=qipi—Le . (46}
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reproduces Hamiltonian (37), we started with. The Hamilton’s equation of motion ,

consistent with Poisson-bracket (39), can be derived by requiring the invariance of the

action (S = [ Lpdt) defined in terms of the first order Lagrangian {43). This is given by:

. . oH

5S=O:f(q% bpi + g3 pﬁx—ﬁzﬁ—épa—H)dt. (47)

dz dp :

Now, taking all the variations to the left side by applying following non-commutative
relations resulting from equations {35), (36):

zp=qpéf and zép=gq épz, {48}

and dropping off the total drivative term by choosing appropriate boundary conditions
on the transformation parameter(s) of the variations, we obtain following equations of
motlon:

1284

dz
which are in total agreement with the definition of the Poisson hracket (39). ( We follow
here the convention of taking all the symmetry variations o the left). Furthermore, it
can be noticed that the basic Poisson-brackets for the "canonical” variables :

H
T = q_lﬂa— and p=g (49)

{z.p}e = ¢ and {p.z}, = —¢"? . (30)
can be generalized to g-commutators in the canonical quantization procedure as given
below:

[z.ply=zp-gpz=ihqg'/?
[pely=pz—qzp=—ihq’” (31)

To derive the g-deformed Euler-Lagrange equations, it is instructive to consider one
dimensional g-deformed harmonic oscillator with following q-deformed hamiltonian:
(q—Swz)

pm7p+ ——1—;7:5 m . {(52)

0 __

137

Exploiting q-deformed Poisson-brackets defined in (39), we obtain following Hamilton’s
equations of motion:

&= {z, H*}; = qf mTp and p={p, H*}, = —¢ W m 2, (53)
which result in, if we assume following non-commutative relations between z{t) and m:
z(t) m = qgm z(t). (54)

It is worth pointing out that all the refations (35}, (42), (53) and (54) are consistent with
one-another on the g-deformed manifold. It is obvious from (42) and (54) that the mass
parameter is, once again, ron-commutative number with respect to phase variables x(1)
and p(t). The first order Lagrangian ( $¢ ) is as follows:
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~3,,2
q ~1 (¢ w?) .-
1+q2pm p—mz—:’:mz. (53)

One of the ineteresting but unusual features of above Lagrangian is the definition of the

L?’C:q%pi—

g-deformed ”canonical” momentum that emerges from it. For instance, it can be clearly
seen, using the rules of the differential calculus on the g-plane and Ip = ¢pi {emrging
from {33)and (53) ), that following equations are derived frem Lye

aLpe s

BLoac
6; =4¢**p and Fra ¢ 'w'm oz, (56)

It is evident now that, o attain conformity with Hamilton’s equations of motion (33),
following q-deformed Euler-Lagrange equation of motion very naturally emerges:

q‘mﬁ(—a@m) o 2 (57)
di\ Oz dz
In the ¢ — 1 limit, above equation reduces to the usual Fuler- Lagrange equations.
The second-order Lagrangian, derived from the first order Lagrangian (55), is as fol-
lows: . (27)
cac __ q =32 q_ w
Ly &1+q2m[m)—qu-$mz. .(58)

Consistent with the Hamilton's equations of motion (53), the Euler-Lagrange equations

of motion derived from the second-order Lagrangian is as follows:

—mi(?ﬁ) _ gz 0L (59)
dt\ 9z dz

The difference in the powers of * q 7 in equations (57) and (59}, is not surprising. This
discrepancy emrges due to the presence of different powers of 7 q" and velocities "7
in the first- and second order Lagrangians. Tt is now straightforward to see that the
Legendre transformation (46), along with the equations of motion {53), lead us back to
the oscillator Hamiltonian (52), we started with.

[t is very tempting venture to discuss Lagrangian formulation of the g- deformed free
relativistic particle on the same footing as that of the g-deformed free non-relativistic
particle. In fact, this attempt is in progress [18], and the preliminary results demonstrate
that the mass-shell condition:

PPt —mi=0, (60)

remains the same for the g-deformed free relativisiic particle as well. This result is
in conformity with the derivation of the g-deformed Klein-Gordon equaticn and Dirac
equation in ref.[19] by exploiting the definition of the q-deformed Dirac matrices. The
other interesting feature of the g-deformed relativistic free particle is the emergence of
mass and einbein field (metric) e(r) as non-commutative objects. The three g-deformed
equivalent Lagrangians for the g-relativistic particle are as given below:

1
Q( +g) m (ipiu)lﬂ

i2



y q

Ly=q¢"% p.¢ —1+q2Lppep“—mem]

¢ g
Lo = T+ 61
s l+q28 (mu)+1+q2mem (61)

where e m = ¢ m ¢ is assumed and other non-commutative relations emerge from the
equations of motion and the basic non-commutative relation describing 2 quanfum world-
iine on a g-deformed D-dimensional Minkowski manifold as given below:

zu(7) p{7) = g p*(7) zu(7) (62}

where g = 0,1,2........... D — 1 are Minkowski indices and 7 is the proper-time evoluticn
parameter.

It is rather well-known thal the understanding of the free relativistic particle is key
to the modern development of the string theories. The string and free relativistic parti-
cle actions are endowed with many symmetries e.g. reparametrization, gauge and Weyl
symmetries — to name a few, Ii would be, therefore, interesting to perform BRST quanti-
zation of the g-deformed relativistic particle by exploiting the gauge symmetry present in
the corresponding action, The g-consiraint analysis, g-reparametrization symmetries and
q-BRST quantization ete. for ihis system are under consideration and would be reporied
elsewhere {18].

It is worthwhile to stress here that the thorough understanding of g-deformed relativis-
tic particle might turn out to be the corner stone fur the development of the g-deformed
field theory.
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knowledged. It is pleasure to thank H.5.Mani and A.V.Khare for warm hospitality o
Mehta Hescarch Institute, Allahabad and Institule of Physics, Bhubaneswar, where part
of this work was completled.
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