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1. I n t r o d u c t i o n 

Const rained systems are often considered in physics and therefore their 
quantization di serves particular at tention. To quantize such systems one 
usually uses the method of canonical quantization or the method of pa th 
integral quantization. The method of geometric quantization of Kostant 
and Souriau [1 -4] is a generalization of the s tandard canonical quantiza­
tion on the curved phase manifolds M. Geometric quantizat ion of the 
constrained systems have been considered in Rcfs . [5- l l ] . In these pa­
pers it has been supposed tha t the G-invariant polarization P exists on 
the symplectic manifold ( Л / , и ) . We consider a positive Kiihler polar­
ization corresponding to the complex s t ructure J on M and impose the 
weakened form of the synnnetry requirement. Namely, we describe the 
homomorphism r : G —* AutV of the group G into the group of the auto­
morphisms of the bundle V = V[M,Sp('2n,R)) over A/ and impose the 
condition of invariance of the complex structure J under the group T{G) 
(weak G-invariance). In this paper we present the geometric quantiza­
tion scheme of the Kiihler manifolds (A/, u>, J ) with weakly G-invariant 
complex structure J. 

2. M a r s d e n - W e i n s t e i n r e d u c t i o n 

2 .1 . On a symplectic manifold M with a 2-form u> for two arbitrary 
functions / and li one can define a Poisson bracket {/,/1} — ui(Xf,Xh). 
Here a vector field Xf is defined by the formula Х/\ш — —df. A corre­
spondence / —* Xf maps a Lie algebra C°C{M) of functions on M (with 
the Poisson bracket) to the Lie algebra of the Harniltonian vector fields 
on M (with the ordinary commutator) . 

2 .2 . Let G be a Lie group and a(G) a representation of G in the group 
of the symplectomorphisms of A/. Then a Lie algebra a»{G) of the Lie 
group a ( G ) acts on M as a Lie algebra of vector fields. This action is 
called a Harniltonian action if to each vector field X^ (£ € Q) one may 
correspond a function tp^ £ C°°(M) by the formula 

X(\w — -dipt (2.1) 

2 . 3 . Let Q" be a space dual to Q. Using functions щ on A/ one may 
define u momentum map ip: M —> Q* by the formula 

< ¥ > ( ! ) , £ > = ¥»«(*), (2.2) 
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where £ € £, ^(.r) £ (/*. 
2 .4 . Let us consider a constraint set ^ = (J. V£ £ (J. In such a 

situation the reduced phase space MQ is obtained as the quotient [12] 

Ma = A/„/n(G), (2.3) 

where Л/0 = <,5_1(0). For the description of conditions under which M(; 
will be a manifold, sec [6, 13]. It may be shown [12. 4] tha t there is a 
natural symplectic structure u-'c on the space :V(;. 

3. G e o m e t r i c quant i za t ion 

3 .1 . To quantize a classical system with the phase space {M,u>) means 
to construct an irreducible unitary Lie algebra representation 

r : C°°(JU) — EndH0 (3.1) 

of the algebra CX{M) in the algebra EUCIHQ of linear self-adjoint oper­
ators in some complex Hilbcrt space Нц. TO do this, it is necessary to 
introduce 

i) a prequantization bundle L over Л/; 
ii) a polarization P of M; 
iii) a metaplectic structure on M. 
3.2. We define the prequantization bundle L over Л/ as a complex line 

bundle with the covariant derivative V (the connection) compatible with 
the Hermitian structure < , > in fibres, the curvature 2-forin Fv of which 
{Fx-(X.Y) = [V,Y,Vy] — V[A-y]) coincides with the symplectic 2-form и 
on M. 

P r o p o s i t i o n [ 1 4 ] . The prequautization handle L over (Л/,ы) exists 
if and only if the cohomology class of u> is integral. 

3.3 . Take for the Hilbert space H of prequantization the space C'2(M, L) 
defined as the completion of the space of smooth sections of L over A/ 
with compact supports with respect to the inner product 

{s,t)= I < s,t>tJn, (3.2) 
J и 

where < . > is given by the Hermitian structure of L. Then we define the 
Kostant-Souriau prequantization r : C°°{M) —> EndH by setting 

'•(/) - / - iVx, (3.3) 
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Tin1 introduced Ililbert space / / is too large to represent the phase space 
(Д/.~') and we need a polarization. 

3.4. Let TM be- a tangent bundle over M and TcM = TM 0 С 
its coinplexificution. We call by a polarization of (M,u>) a subbundle 
P С TCM such that 

i) a fibre Px С Tx Л/ is a Lagrangian subspace in Tx M for all x € M , 
i.e. the restriction of -j to Px vanishes and dimPx = n; 

ii) a space of sections of the bundle P is closed under the Lie bracket. 
If X —> X is a complex conjugation then a subbundle P will also be 

a polarization. The polarization P is called the Kaiiler polarization if 
P П P = 0. i.e. T(/M = Pz Ф P,. for any x E M. 

3.5 . Let P be a polarization P С Тс .\f of a symplectic manifold 
(Л/.-1)- Then we can introduce the Hilbert space of quantization 

HP = { e £ £'"'(Л/. I ) : V . Y 0 = 0, VX G Г(Л/, Р ) } , (3.4) 

where by Г(1Г, У) we denote the space of sections of a bundle V over W. 
3.G. The introduction of a metaplectic s t ructure on M is equivalent 

to the extention of the structure group of the bundle TM from the sym­
plectic group Sp('2u, P) to the rnetaplectic group Mp(2n, R) which is the 
connected double covering of Sp(2n,R). 

P r o p o s i t i o n [1—4]. A metaplectic structure on M exists if and only 
if the 1st Chern class of M is even. 

3.7 . For the fixed positive Kahler polarization P of M (see [14]) we 
consider the spaces P* and P* of the 1-forms dual to Px and Px. These 
spaces are sections of the bundles P* and P* accordingly. Now let us 
introduce the determinant bundles Det*p = Д " P* and Detp — Д п Р* [4]. 

The existence of the rnetaplectic structure on (M,u>) is equivalent to 
the existence of a line bundle Pfp over M such that (Pfp)2 = Detp [3, 
4]. Analogously, there exists Pfp : {Pfp)2 = Detp. 

3.8 . Let us now consider the bundle L ® Pfp. A connection in L 
can be extended to the connection in L ® Pfp (see [4]) and we obtain a 
covariant derivative V acting on the sections s' of the bundle L ® Pfp. 
In a corrected quantization scheme, the P wave functions are denned to 
be the smooth sections of L <g> Pfp such that V^-s' = 0, VX € P . 
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4. G - i n v a r i a n t p o l a r i z a t i o n s 

4 .1 Let M be a symplectic manifold possessing a connected Lie group 
G of symmetries. Let G x M —> M be; a Hamiltonian action of G on M 
and 9 : M —* Q* be the associated momentum map (see Sect.2). There 
is a canonical representation of the Lie algebra Q on smooth sections of 
L given by the operators (see Sect.3.3): 

*•(¥>{) = S 3 « - i V x { , (4.1) 

where ^ 6 С°*{М) and X^ G а-ДС) correspond to £ G C/ (see (2.1)). We 
suppose tha t there exists a global action of G on L such tha t the induced 
action of Q is given by (4.1). 

4.2 Consider the submanifolds M 0 = ^ - 1 ( 0 ) a l l ( 1 - W G = MQ/a{G) in 
Л/. Let \ : Mo —* M G be the projection map and 77: MO —> M be the 
inclusion map. 

T h e o r e m [ 6 ] . There, is unique line bundle (LG,^G) with connection 
V е on MG such that 

X*LG = rfL and x ' V G = rj*V. (4.2) 

The curvature of the connection V е is the symplectic form u>c-
Since the Hcrmitian inner product < , > is G-invariant, there is a 

unique Hermitian inner product < , >g on LQ such tha t x* < > >c= 

T;* < , > . Thus LQ, V е and < , > c are i)requantum da t a of MQ. 
4 .3 Let P be a polarization of M . It is clear tha t we may associate 

with P a polarization PQ of the reduced space MG if and only if the 
polarization P is invariant with respect to the action of the group G 
[G 12]. In particular, in [6] the following theorem has been proved: 

T h e o r e m . Let G be a connected compact Lie group, M a Hamiltonian 
G-space and P a G-invariant, positive definite К aider polarization of M. 
Then there is ca'iionicully associated with P a positive definite polarization 
PG of the reduced space MG-

4 .4 . Having polarizations P and PG, one may introduce the following 
Hilbert spaces 

н? = {феНР: г{п)ф = о, щед} 
HPtl = {Ф£ C'\MG, LG) • V $ 0 = 0, VX £ PG} (4.3) 
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In [G 11] it has been proved that these spaces are isomorphic as vector 
spaces: 

nf, ^ и;.,.. 
We shall not discuss here the more difficult questions connected with the 
introduction of an inner product on II\', and II\\. (see [4. 6-11]). 

4 .5 . Generally speaking, it is difficult to properly correlate the quan­
tization of the extended phase space M and the reduced phase space 
Л/,,-. In Sect .4.2-4.4 it was accomplished by requiring that the auxiliary 
structures on (.1/.-') necessary for quantization (in particular --- polar­
ization P) be G-invariant. Then they can be projected to compatible 
quantization structures on (МС;.^\;)- But the condition of G-invariance 
of polarization P does not always take place and we shall consider the 
possibility of its weakening. 

5. W e a k l y 6'-invariant c o m p l e x s t r u c t u r e s 

5 .1 . Suppose we choose a positive Kahler polarization of the symplec-
lic manifold M. This polarization is in the one-to-one correspondence 
wilh the complex structure ./ on M. It consists of a linear operator J 
from TM to itself such that ./'-' = - 1 and 

{.IX..IV] = [X,Y] + J[JX.Y] + J[X.JY]. X,Y £ Ц.М,ТМ) (5.1) 

Condition (5.1) means that the almost complex structure J is integrablc 
and one may introduce the Kahler metric 

!,(X,Y)=«.iX,JY) (5.2) 

with Kahler form u>. 
5.2. Let. / be a diffeomorphism of the manifold M and / , an isomor­

phism of the tangent, space Tf-ц^М onto the tangent space TXM. This 
isomorphism may be extended up to the isomorphism of the tensor alge­
bra in Tf-ц^Л! and the tensor algebra in ТХМ [15]. This isomorphism 
we shall denote by / . For any tensor field В we shall define the tensor 
field / В in the following way: 

( /Д)х = / ( Д / - ( , ) Ь j - e . 1 / . (5.3) 

5 .3 . Let A be a vector field on Д/ and / ( — с ' л a one-parameter group 
of transformations, generated by A'. For each / we have an automorphism 
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ft of the tensor algebra on . 1 / . For any tensor field В on M a Lie derivative 
£.\-JB is defined by the formula [15]: 

CxD = -lim^[ftB-B\. (5.4) 

If the ^-parameter subgroup a(G) of the symplectomorphisms group 
acts on A/ then we have к Hamiltonian vector fields X^ (f 6 Q), to which 
the one-parameter group of transformations fg (g = exp(t^), a(g) = 
fg = exp(tX^)) corresponds. Thus, we may define the derivatives Cx.B 
for any tensor field B. 

5.4. Consider the principal Sp(2ri,i?)-buii(lle 

p : V —> M (5.5) 

of symplectic frames on A/ and the group Aut'P of all automorphisms 
of V (which are bundle maps) . A map Л of V onto V will be called an 
automorphism of principal fibration if \{qb) — X(q)b for every q Q.V,b £ 
Sp[2n,R). Each automorphism A determines a transformation of the 
base A/ — V/Sp(2n, R); we shall denote this transformation by p(A). 

The group of automorphisms of the principal fibration V determining 
an identity transformation of the base will be denoted by Gauge Sp{2n, R). 

Gauge transformations of the space V are defined by smooth functions 
T(X) on A/ with values in the group Sp(2n, R) and a set Gauge Sp{2n, R) 

of all T(X) may be identified with the space of sections of the associated 
bundle V Xsp(2n,R) Sp(2n,R) —* M. 

We have a homomorphism a of the connected Lie group G into Symp(M, 

UJ). The group Symp(M,tj) of the canonical transformations of the 
manifold M is a subgroup in the group p(AutV) which preserves the 
symplectic form ш. Thus we defined the action of two groups on V: 
the action of the group a(G) С Symp{M, w) С AutV and the ac­
tion of the group Gauge Sp{2n, R) С AutV. Let us also consider 
a group Autc = a{G) x GaugeG, where GaugeG С GaugeSp(2n, R). 
The group Autc is the group of pairs (а(д),т(х)), where a(g) 6 ct(G), 
T(X) £ GaugeG and the product of pairs {a(gi), TI(X)) € Auto, {a{gi), 

т2(а-)) £ AutG is a pair {a{g), r(x)) given by formula 

<*(</) = cv(f/i)a(<j2), r{x) = TI(X)T2{X). (5.6) 
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5.5 The action of <i(G) on Л/ induces an actioii on ,7. This action on 
I In1 tensor of the complex .structure is given by 

a(g)J := fgJ (5.7) 

Analogously, the actioii of Gauge G on V induces the following action on 
.7 e Gauge Sp{2n,R): 

fj := TJT~1 «=> {fJ)x = T{X)JZT~\X) (5.8) 

Finally, the action of the group Aut<j on J has the form 

1ig,r)J:=f(a(g)J). (5.9) 

Suppose that there exists a hoiiioinorphism g —> {тд(х)} of the group 
G into the group Gauge G С Gauge Sp(2n,R). Then we may define a 
hotuoinoiphisin r of the group G into the group Autg by the correspon­
dence of an eleinent 

Ф ) = (а(!/),г»(1')) € Л " * С (5.10) 

to the element g £ G (cf. [16]). The action of r ( G ) on V induces the 
following action of the group r{G) С Aide on J : 

r(g)J := f,(a(g)J) ^ ( r ( f l ) J ) x - r ^ X V ) ^ ; 1 ^ ) - (5-11) 

5.6. The usual G-invariance of the complex structure means (see [6, 
17]) that J is invariant under automorphisms a(g) € a ( G ) , i.e. 

a(g)J = J, V5 6 G. (5.12) 

Locally the condition (5.12) is equivalent to the following condition: 

CX(J = Q, V ( e ( ? , (5.13) 

where Cx( is a Lie derivative along the Hamiltonian vector field X$ £ 
a,{Q) on M. 

From (5.12) it follows that G С U(n) and therefore 

r{g)J = fg(a{g)J) = f , J = T^Jr"1 = J, V</ € G, 
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because та(х) С Gx С (U(n))x. Thus, from the invariauce of J under 
a(G) follows the invariance under the group T ( G ' ) . 

5 .7. We would like to impose the weakened form of the symmetry 
requirement. We shall weaken the conditions (5.12) demanding the in-
variance of the complex structure J only under the r-automorphisms: 

T(<J)J = J, V f f e G . (5.14) 

We shall call condition (5.14) the weak G-invariauce condition of the 
complex structure. We have already noticed that the weak G-invariance 
follows from the standard G-invariance, but the converse is not true. 

To define the т-autornorphisms one must require the existence of the 
fields TS(X) on M. Let us suppose that a symplectic connection V is 
defined on M. Let us also suppose that there are к = dimG covariantly 
constant tensors Wc = {И^(а;)д}, VU^ = 0, £ € Q, which constitute 
a basis of the Lie algebra Qx С apx{2ii,R) for every x 6 M. Then for 
<j ~ exp{£) the function тДх) may be expressed in the form 

тя{х) = ехр(Щ{х)). (5.15) 

It is clear that in virtue of covariant constancy of the tensors Wj , all such 
functions тд are completely determined by their value at the point x = 0 
and parametrized by the group manifold G. 

5 .8 . Consider the transformation (5.7). Let us denote by a(K) the 
subgroup in a ( G ) under which the complex structure J is invariant. The 
group о (A) is the image under the homoiuorphism a of the subgroup Л" 
of the group G. The Lie algebra Q may be decomposed in the following 
way 

G = K.(bQ, (5.16) 

where /C is a Lie algebra of the Lie group Л", and Q is a tangent space in 
the origin of the homogeneous space Q = G/K. 

We shall number the subspace /C in Q by the indices i, j , . . . = 1,..., k — l, 
and the subspace Q in Q — by the indices tv,/3,... = 1, . . . , / . Then locally 
the condition (5.14) of the weak G-invariancc may be written in the form: 

£.v,j; = 0. Cxj; = J*(Wayx-(Wapl (5.17) 

where (A'i,.\ 'u) are the Hamiltonian vector fields on M constituting the 
basis of the subspaces o,(/C) and « , ( Q ) in the Lie algebra a,(Q). 
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5.9. Taking tin' Lie derivative C\ , of l he identity Ji = —1, we have 

( - C . V „ ^ ) - / ; ' + ^ I ^ V . . V A ) = 0 . (5.18) 

Com lit ion (5. IS) inean.s that C\ J transforms the ( —/') eigenspacc 7/lU-1,Jl/ 
iif ./ to the ( + /) cigvnspace 'Л1д) 'Л/ and h e m e 

£ . v . / € ! ! l u ( J / . r l l l " . l / ) 

where 7 ' l l ' " ' . \ / denotes t lie holoniorphie veil or bundle of the (1.0) tangent 

vectors. Linearizing the roiidition „-(.V. J У)+ _'(.7.Y, У) = 0. we find 
tliat [18. \'.)}: 

/J: 
where „• =- w'(i;,i/c" A i l ; ' is the Kahler ionu. ti.li. ... — 1 n, and 

IL = B;:"^~ : # r (5.20) 

are the С ч sections of t he bundle 7'<lll).U У 7^U" .U over M. Tensors Ba 

are symmetric (i.e. B''j' •=• B\'*) and may also be decomposed with respect 
to the basis T— У) -т~: with conipouents 

^ ; " = { ^ ( Ч " „ ) л - ( и ; , ) л . ; г } ^ " - (5.2i) 
5.10. As already noted, the conditions (5.11) and (5.17) mean that 

tin-re are /.' tensor fields W'c on the manifold M. In particular, there 
are / = iliiuG/K tensor fields 1Г„ = {0'".i)Ji} °i'. equivalently. / fields 
Д , = {ВЦ"}, which are the global sections of the bundle 

R.x(!G/K — > M (5.22) 

over M. associated with the principal G'-bundle 1\(M,G) over M. 
Let us denote the total space of the bundle (5.22) by Z. From the 

purely differential geometric point of view, this space is the product 

Z = M x G/K. (5.23) 

i.e. the trivial bundle. 
The conditions (5.Ы) (and (5.17)) mean that the complex structure ,/ 

depends on the / — dimGjK parameters /,, (coordinates on G/K) and 
may lie represented in the form 
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J = T-1JUT3, (5.24) 

where Ju is a fixed (canonical) complex structure and the element ry £ 
GauijeG has been written out in (3.15). The complex structure J given 
by this formula coincides with Jy if and only if TtJ(x) belongs to the 
subgroup Kx С Gx . Hence, on M we have the /-parametric family of 
covariantly constant complex structures which are weakly G'-invariant by 
construction. Notice that the weak G'-kivariance of the complex struc­
ture introduced by us is analogous to the generalized G-invariance of the 
connection in the principal fibre bundles studied in the papers[16, 20]. 

6. S y m p l e c t i c t w i s t o r s 

In Sect.5, the bundle (5.23) тг : Z —> M appeared when we were 
describing the weakly G-invariant complex structure J. Here, we shall 
describe this bundle in more details. 

6 . 1 . Denote by Rin the real vector space of dimension 2n with coordi­
nates ii>,q) = (pi,..-,pn,4i,---,(Ji,) and the s tandard symplectic structure 

*)0 = dpa Л dqa. (6.1) 

Let S(Rln) be the space of Kiihler s tructures on R2n, i.e. complex struc­
tures J on R2" compatible with the symplectic s t ructure UJQ. It means 
that J g End{R'2n) belongs to the group Sp[2n,R) of linear symplectic 
transformations of R~". 

The space S(R'2") = Sp(2n, R)(U{n) of the Kahlcr s t ructure is a Her-
initean symmetric d<jmain of dimension n(n + l)/2 which can be identified 
with the Siegal unit disc 5„. This disc consists of complex nxn matrices 
D subject to 

Dl = D, I - D+D » 0 (positive definite), (6.2) 

where Dl is the transposed matr ix of D, D+ — its Hermitian conjugate. 
For proof of the identification Sp(2n, R)jU{n) = S„ note tha t the action 
of Sp(2n,R) on Л2" ~ C" can be given (in coordinates za, za on C") by 
the block matrices 

-{АЛ) <») 
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preserving the matrix I " I of the symplcctic form LJQ: gtoog' = OJQ, 

i.e. subject to the relations 

ЛВ' = B'A, AA+ - BB+ = I. (6.4) 

The group S]>(2n,ll) acts transitively on the Siegel disc Sn by the 
fractional linear transformation 

D-+{AD + B)(BD + A)-1 (6.5) 

and the isotropy group of the point D = 0 is U(n). 
6.2. . Let (M,UJ) be a symplectic manifold of dimension 2n. We intro­

duce the bundle 
7г0 : S{M) -+ M (6.6) 

of almost Kahler structures on M associated with the principal Sp(2n, R)-
bundle V = V{M,Sj>(2n,R)) over M (symplectic frame bundle). The 
librc ~Q1(X) in a point x G M is the space S{TXM) of Kahler structures 
on TZM defined above. 

As in the Riemannian case, taking a symplectic connection on M we 
can provide S(M) with a natural almost complex structure. In fact, let us 
denote by V the symplectic connection on M. It generates the splitting 
of the tangent bundle TS(M) into the direct sum 

TS{M) =H®V (6.7) 

of horizontal and vertical subbundles of TS{M). The fibre Vp in p € 
S(M) is tangent to the fibre ТГ^Н^ОСР)) OI S(M) —• M through the point 
]>. Recall tha t the fibre of S(M) —> M over щ(р) is identified with 
S(TXM) и Sp(2n,R)/U(n) so it has a natural complex structure J". 
Hence we can define an almost complex s t ructure J on S(M) using the 
decomposition (6.7) by setting 

J = Jh © J\ (6.8) 

where Jh is an almost complex structure equal at a point p € S(M) to 
the complex structure Jrft on Hp и TT^P)M given b; the point p = (x, Jx). 

6 .3 . In Sect.3.7 we introduced the half-form bundle Pfp over M for 
the fixed positive Kahler polarization P of M. Polarization P is totally 
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fixed by the complex structure J on M. that is why we shall denote the 
half-form bundle by Pfj. As fibres of the bundle Pfj —> M in a point 
x eM we have P / jU ' ) €-С. 

We have the bundle S ( ^ / ) —» Л/ of positive Kahler structures on M. 
Let us introduce the complex line bundle [14. 4] 

Pf^S(M) (G.O) 

over S(M), which has fibre Pfj(x) at (x,J(x)) G S( .U) . The bundle 
(G.O) defines a melaplectic structure on M. The restriction of Pf to the 
fibre of S{M) over some x 6 i\/ is simply the half-form bundle on the 
space S{TJ:M) « Sp{2u,n)/U{n) (sec' [14, 4]). The restriction of Pf to 
the base of tin; bundle S(M) is the half-form bundle Pfj introduced in 
Sect.3.7. 

G.4. The space S(M) has a natural almost complex structure.' J\ using 
it we can analyze the real geometry of M through the complex geometry 
of S(M). Unfortunately, this almost complex structure is almost never 
integrable (it. is integrable -$=*> Л/ is conformally symplectic flat, cf. [21 
24]), so S(M) is only an almost complex manifold. However, it is possible 
to define the symplectic twistor bundle of M as the bundle 

7Г : Z -» M (CIO) 

together with the fibre preserving map 

j : Z-*S(M) 

over M. Otherwi/.e, we define Z as a subbundle in S(M) with complex 
fibres. Each z in the fibre Zx over x = тг(г) then defines a symplectic 
complex structure on TZM via the isomorphism with the complex vector 
space T.Z/V:. 

Conditions of the integrability of the complex structure on Z are more 
weak than on S(M), and in [22-24] one may find a number of examples of 
the manifolds M which are not conformally flat and to which the twistor 
spaces Z with the integrable complex structure J correspond. Namely, 
in [22] it has been shown that the almost complex structure J on Z 
is integrable if the curvature R v and the torsion T v of the symplcctic 
connection V on M satisfy the equations 

J ; T 7 ( J ; . Y , J ; . Y ) = O. (c.iia) 
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./;у?;(./;Л'../;Л')./; = о, (б.Ш) 
for all ./, £ Zx = -~](.r) and Л", У е Г,Л/ . Here J * = 1(1 =f iV) are 
the associated projectors onto ± / eigenspaccs of J. For examples of the 
manifolds, connection V on which salisiies condition (G. 11), see [21-24]. 

G.5. In this paper we shall consider the twistor manifolds Z intro­
duced in Sect.5 by describing the weakly G'-invariant complex structures. 
A connected Lie group G is a dosed subgroup of Sp{2n,R). Let us con­
sider a G'-invariant submauiiold Q of S(R-") with a G-invariant complex 
structure obtained by restriction to Q of the complex structure J" on 
S(R2"}. We also suppose that Q is a reductive homogeneous space G/K, 
where Л is a subgroup in G. The Lie algebra Q of G may be split as 
[i — К •';• Q then the complex structure JQ on Q is determined by the 
split t in;', 

Ql = Q + ••• Q". (G.12) 

Let R —> M be a principal bundle over . ) / with a structure group G, 
which is a subbundle in the principal bundle P —> . 1 / . We shall introduce 
a bundle 

~:Z=RxcQ—>-U (6.13) 

which is the associated bundle with a fibre Q. In this way we shall not 
consider the bundle S(M) of all almost Kahler structures on M, but the 
subbundle Z in S(.M). 

7. D o u b l e twis tor f ibrat ion 

7.1 . The twistor bundle introduced by us is trivial: Z = M x 
G/K. The V-parallel complex structures ,/ on M under consideration are 
parametrized by the space G/K. Tha t is why we may define a projection 

/>:Z-*G/K (7.1) 

by correspondence a point (0, Jr-п) of the manifold G/K to each point 
(J\ Jt) of the manifold Z , transfering Jx V -parallel to the origin x — 0, 
where all non-equivalent structures are parametrized by the manifold 
G/K. We shall denote a point .7 £ G/K and the corresponding complex 
st» net ure on Л/ by the same letter J. The fibre />"'(J) in a point J £ 
G/K can be identified with the complex manifold Mj = (M,J), i.e. M 
provided with the complex structure corresponding to J £ G/K. 
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Thus, we have a double lihratiou 

Z - ^ G/K 
- I (7.2) 

M 

which is crucial for our considerations. Double fibration similar to (7.2) 
arises naturally in different problems of the twistor theory. In particular, 
Hitchiu has defined [17] a double fibration of the type (7.2) where M 
is subst i tuted by a 4»-diinensional hyper-Kahlcr manifold and G/K — 
Si'('2)/L'{l) = CP1. In this ease Z appears to be а (2п + l)-dimeiisional 
complex manifold and points of M are identified with real holomorphic 
sections of Z —> CP1. The main difference between these constructions 
and our diagram (7.2) is that the twistor spaces, considered in. [17], consist 
of almost complex structures compatible with a Riemaunian metric while 
ours are of complex structures compatible with a symplectic form. So it 
is natural to call the twistor space under consideration by a symplectic 
twistor space. 

7 .2 . Let us describe the definition of the almost complex structure on 
Z by the use of the structure of the double fibration (7.2). Consider the 
bundles ~~X(TAI) and p~](TQ) over Z which are the pullbacks of the 
tangent bundles of M and Q = G/K respectively. The projections n and 
l> generate the natural bundle homornorphisms 

*.:TZ->*-\TM), i>t:TZ-*p-\TQ). (7.3) 

We call the kernel of ж, the vertical subbundle V of TZ and the kernel 
(jf i>, tin; horizontal subbundle. 7i of TZ. Note that the fibre V.- in a 
point z € Z is identified by p with the tangent space space TjQ in the 
point ./ = p(z) G Q and so has the complex structure JQ defined on 
Q — G/K. Now we can define' an almost, complex structure J on Z in 
exactly the same way as in Sect.6. The projection p: Z —» G/K will 
become a holoinorphic map w.r. to this s tructure J. 

7 .3 . Let L —t M be the prequantization line bundle over M with 
the connection V. Denote by L —* Z the pull-back of L to Z. Then L is 
a holomorphic bundle. It is essentially Ward 's construction from twistor 
theory (cf. [25]). 

To prove the assertion denote by V the pull-back of the connection V 
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to L and define a <D-operator on section s of L —> Z by setting 

ds := V'0 '1 '!, .(7-4) 

where V'0'1' is the (O,l)-component of V w.r. to an almost complex 
structure J on Z introduced above. The symplectic structure u> on M 
being compatible with all Kahler structures on M has the type (1,1) w.r. 
to any such structure, hence the curvature Fy also has the type (1,1) 
w.r. to any Kahler structure. According to the definition of an almost 
complex structure on Z it means that the curvature Fy of the pulled-
back connection V on L has the type (1,1) w.r. to the almost complex 
structure of Z It follows that 

ВЧ = 4° '2 ) l = 0, (7.5) 

i.e. the introduced 3-operator satisfies the intcgrability condition of 
Newlander-Nireuberg. 

7.4. In Sect.6.3 we have introduced the half-form bundle Pf over 
S(M). We have the map j : Z —» S(M) (see Sect.6.4) and, hence, we 
have a pull-back bundle j*Pf —> Z over Z. We shall denote this line 
bundle by Gli := jTf 

Qx-^Z (7.6) 

which will be called, following the physical tradition, the ghost bundle of 
Z (or the restricted half-forms bundle). 

The restriction of Gli to the fibre of Z over some x £ M will be denoted 
by Qix . The restriction of Gli to the base M of the bundle Z we shall 
denote by Glij (cf. with Sect.6.3). 

Let us also introduce the product of the bundles L and Gh: 

L®Gh—>Z (7.7) 

The restriction of this bundle on M will be the following bundle 

L®Ghj —+ M, (7.8) 

and its restriction on fibre Qx (x £ M) will be 

Lx®Ght—*Qx (7.9) 
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So, we h a w a double fibration (7.2). that is why we may transfer the 
bundle (7.9) to the point x = 0 and obtain a holomorphic line bundle 

L'QGIi — * Q , (7.10) 

where L' := Lx =o, GIi' := Qix-o, Q '•— QJ:=Q. 

S. Fock b u n d l e 

8 .1 . Let us consider the space Hj given by formula (3.4). It is the 
space of holomorpliic (w.r. to the coiuplex structure J ) sections of the 
bundle L over Mj = (M, J), i.e. . 1 / provided with the complex structure 
corresponding to J £ G/K. In other words. //.; consists of holomorphic 
sections of L over (>~*{J) = Mj: 

Hj = 0(Mj,L). (S.l) 

In particular, we shall consider Нц := II,]». 
The space G/K is a. parameter space of Kahler polarization J. As J 

varies over Q = G/K, the vector space IIj defines a vector bundle 

II —* Q (8.2) 

over Q with the fibres Hj in points J £ Q. II is a subbundlc of the trivial 
Hilbert bundle with a total space Q x £2(M,L). 

8.2. The space H coincides with the space of sections holomorphic 
w.r. to the almost complex structure J on Z of the bundle L over Z: 
II = 0{Z,L). The bundle (8.2) is the homogeneous G-bundle over G/K 
(see, e.g., [20]) and we may use this for its description. 

Let us identify the group G with its image (\(G) in Synip(M,u>) on 
hoinoinorphism n. 

We denote by Л" a subgroup in G preserving the complex structure J0. 
Formula (•1.1) gives the representation of the Lie algebra K. of this group in 
//о from which, by the exponentiating, we may obtain the representation: 

Л' э к — • R(k) : Щ — • IIU (8.3) 

of the group Л' in II(j := Hj0. 
Now consider the product space G X //ц. The group К acts on (g, яр) £ 

G x IIU as follows: 

A-o(r / ,^) = (tfA-,/?(fc-1)0). (8.4) 
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This allows us to define the complex vector bundle over G/K: 

H = GxKH0—>G/K (8.5) 

with the fibres Hj in the points J £ G/K. 

The Fock bundles like (S.2) and (8.5) were introduced and have been 
considered in the papers [27. IS, 19]. In these papers the connection in 
the Fock bundles has been defined: moreover the Bowick-Rajeev approach 
[27] differs from the approach of Hitchin [IS] and Axelrod-Pietra-Witten 
[10]. 

8 .3 . We have a bundle L over M and a connection V in I with a 
curvature Fv = m. Because M is the Kahler manifold with a complex 
structure J then a canonical polarization P is defined by 

Px = {YxeT?M:JxYx = -iYx, xe.M}. (8.6) 

hi Sect.:?.7 the aiiticanonical bundle Deli> of antiholomorphic 72-form on 
M has been described. Because the Kahler form u,' defines a cohomology 
class [u.'] G Hl(M,Tt) where T = Г ( | ' 0 ) М , then there exists a number A 
such that 

Dctp = Lx. (S.7) 

The curvature of the bundle Dct p, the Ricci form, 

R = ±Ral>d;a Л dz\ (S.8) 
27Г 

represents the first Chern class of M, and from (8.7) this is cohomologous 
to \ui. Since the Ricci form R and Xu> are cohomologous, we may define 
a real function <I> characterized by 

дЧ 
^ S + Au,ui = - 2 i ^ ^ - (S.9) 

and normalized by the condition that its integral over M is zero. 
The (0,l)-forms 

ou = Utut^— + (?ав:,ьиЛ </5'- (8.Ю) 
are enclosed [18] and at least locally there are functions /,, such that 

0f„=0n. (8.11) 
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8.4. We have a holoinurphic iibralioii Z —» Q' over some open set, 
(.}' С Q with coordinates (tt //) such that each fibre is a complex man­
ifold. A covariant derivative in the Fock bundle / / —> Q' in coordinates 
ta on Q' may be written in the form [IS, 19]: 

D = (//" |г+(2ТА)(^В-4^-2Д^-/«. (8-12) 

where A, Bu. Ф and /„ were introduced earlier. Because the holonomy 
of this connection is given by a scalar multiplication, D is projectively 
flat (see [ IS. 19]). Let us consider the bundle GJi' —» Q introduced in 
Sect.7.4. Take the tensor product of / / with a line bundle GW —• Q, 
connection of which has the opposite curvature.' to that of H. By certain 
conditions, the tensor product HCGIi' will have a fiat connection D' (see 
[IS, 19]) and we may introduce into consideration the bundle 

T = { ф e r(Q,H G Git1) : £>'Ф = о } (8.13) 

of covariant ly constant sections of the bundle H 0 Gli'. 
8.5, On the space T one may define a metaplectic representation of the 

Lie group G С S]/('2n, R). Using the fact that II Q Gli' is a homogeneous 
G'-bundle. the action of <j G G on Ф G T(Q,H •;•; G7J') may be defined as 
[2G] 

(г /Ф)(7) = у ( Ф ( 5 - 1 / ) ) , (8.14) 

where G acts canonically on J G G/K from the left and the action on 
Ф(г/ -1 J) G #,-! . / is described in [26]. 

For a physical Fock space J-с corresponding to the quantization of the 
manifold MG ~ <p~l(Q)/a{G) one should take 

TG = {Ф G T : </Ф = Ф, V<7 G G} (8.15) 

Thus , we described the physical Fock space of the system with the 
first class constraints as a G-invariant subspace in the space of covariantly 
constant sections of the Fock bundle over the space of weakly G-invariant 
complex structures on the phase manifold M. 
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