

сообщения объединенного института адерных ивследовании

A.D.Popov

GEOMETRIC QUANTIZATION OF SYMPLECTIC MANIFOLDS WITH SYMMETRY

1. Introduction

Const minced systens are often considered in physics and therefore their fuantization drserves particular attention. To quantize such systems one unnally uses the method of canonical quantization or the method of path integral quantization. The method of geometric quantization of Kostant and Souriau [$1-4]$ is a generalization of the standard canonical quantization on the curved phase manifolds M. Geometric quantization of the constrained systems have been considered in Refs.[5-11]. In these papers it has been supposed that the G-invariant polarization P exists on the symplectic manifold (M, ω). We consider a positive Kähler polarization corresponding to the complex structure J on M and impose the weakened form of the symunctry requirement. Namely, we describe the lamomorphism $\tau: G \rightarrow A u t P$ of the group G into the group of the automorphisms of the bundle $\mathcal{P}=\mathcal{P}(M, S p(2 n, R))$ over M and impose the condition of invariance of the complex structure J under the group $\tau(G)$ (weak G-insariance). In this paper we present the geometric quantizalion scheme of the Kähler manifolds (M, ω, J) with weakly G-invariant complex structure J.

2. Marsden-Weinstein reduction

2.1. On a symplectic manifold M with a 2 -form ω for two arbitrary functions f and h one can definc a Poisson bracket $\{f, h\}=\omega\left(X_{f}, X_{h}\right)$. IIere a vector field X_{f} is defined by the formula $\left.X_{j}\right\rfloor \omega=-d f$. A correspondence $f \rightarrow X_{f}$ mapls a Lie algebra $C^{\infty}(M)$ of functions on M (with the Poisson bracket) to the Lic algebra of the Hamiltonian vector fields on M (with the ordinary commutator).
2.2. Let G be a Lie group and $\alpha(G)$ a representation of G in the group of the symplectomorphisms of M. Then a Lie algebra $\alpha_{*}(\mathcal{G})$ of the Lie group $\alpha(G)$ acts on M as a Lie algebra of vector fields. This action is called a Hamiltonian action if to each vector field $X_{\xi}(\xi \in \mathcal{G})$ one may correspond a function $\varphi_{\xi} \in C^{\infty}(M)$ by the formula

$$
\begin{equation*}
\left.X_{\xi}\right\rfloor \omega=-d \varphi_{\xi} \tag{2.1}
\end{equation*}
$$

2.3. Let \mathcal{G}^{*} be a space dual to \mathcal{G}. Using functions φ_{ξ} on M one may define a momentum map $\varphi: M \rightarrow \mathcal{G}^{*}$ by the formula

$$
\begin{equation*}
<\varphi(x), \xi>=\varphi_{\xi}(x) \tag{2.2}
\end{equation*}
$$

Where $\xi \in \mathcal{G}, \mathcal{Y}(x) \in \mathcal{G}^{*}$.
2.4. Let us consider a constraint set $\vartheta \xi=0, \forall \xi \in \mathcal{G}$. In such a situation the rechuced phase space M_{G} is oltananed as the quotient [12]

$$
\begin{equation*}
M_{C}=M_{0} / a(G) \tag{2.3}
\end{equation*}
$$

where $M_{0}=\varphi^{-1}(0)$. For the deseription of conditions under which M_{G} will be a manifold, see $[6,13]$. It may be shown $[12,4]$ that there is a natural symplectic structure ω_{G} on the space M_{G}.

3. Geometric quantization

3.1. To quantize a classical system with the phase space (M, ω) means to construct an irreducible unitary Lie algebra representation

$$
\begin{equation*}
r: C^{\infty}(M) \rightarrow E n d H_{0} \tag{3.1}
\end{equation*}
$$

of the algebra $C^{\infty}(M)$ in the algebra $E n d H_{0}$ of Iinear self-adjoint operators in some complex Hilbert space H_{0}. To do this, it is necessary to introduce
i) a prequantization bundle L over M;
ii) a polarization P of M;
iii) a metaplectic structure on M.
3.2. We define the prequantization bundle L over M as a complex line bundle with the covariant derivative ∇ (the connection) compatible with the Hermitian structure $<,>$ in fibres, the curvature 2-form F_{∇} of which $\left(F_{\Gamma}\left(X, Y^{\prime}\right)=\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}\right)$ coincides with the' symplectic 2-form ω on M.

Proposition [1-4]. The prequantization lundle L over (M, ω) exists if and only if the cohomology class of ω is integral.
3.3. Take for the Hilbert space H of prequantization the space $\mathcal{L}^{2}(M, L)$ defincel as the completion of the space of smooth sections of L over M with compact supports with respect to the inmer product

$$
\begin{equation*}
(s, t)=\int_{D}<s, t>\omega^{n} \tag{3.2}
\end{equation*}
$$

where $<,>$ is given by the Hermitian structure of L. Then we define the Liostant-Souriau prequantization $r: C^{\infty}(M) \rightarrow E n d H$ by setting

$$
\begin{equation*}
r(f)=f-i \nabla_{x_{f}} \tag{3.3}
\end{equation*}
$$

The int roduced Hilbert space H is too large to represent the phase space $\left(1 /, w^{\prime}\right)$ and we need a polarization.
3.4. Let $T . M$ be a tangent bundle over M and $T^{C} M=T M \otimes C$ its complexification. We call by a polarization of (M, ω) a subbundle $P \subset T^{C} M$ such that
j) a fibre $P_{x} \subset T_{x}^{C} M$ is a Lagrangian subspace in $T_{x}^{C} M$ for all $x \in M$, i.r. the restriction of \lrcorner to P_{x} vanishes and $\operatorname{dim} P_{x}=n$;
ii) a space of sections of the bundle P is closed under the Lie bracket.

If $\mathrm{Y} \rightarrow \overline{\mathrm{X}}$ is a complex conjugation then a subbundle \bar{P} will also be a polarization. The polarization P is called the Kähler polarization if $P \cap \bar{P}=0$. i.c. $T_{r}^{C} M=P_{x} \bar{P}_{x}$ for any $x \in M$.
3.5. Let P be a polarization $P \subset T^{C} M$ of a symplectic manifold (M.w). Then we can introduce the Hilbert space of quantization

$$
\begin{equation*}
H_{P}=\left\{\zeta \in \mathcal{C}^{2}(M, L): \quad \nabla_{X} \psi=0, \forall X \in \Gamma(M, P)\right\}, \tag{3.4}
\end{equation*}
$$

whereby $\Gamma(W, V)$ we denote the space of sections of a bundle V over W.
3.6. The introduction of a metaplectic structure on M is equivalent tw the extention of the structure group of the bundle $T M$ from the symplectic group $S_{\mu}(2 n, R)$ to the metaplectic group $M p(2 n, R)$ which is the connceted double covering of $S_{p}(2 n, R)$.

Proposition [1-4]. A metaplectic structure on M exists if and only if the 1 st Chern class of M is evern.
3.7. For the fixed positive Kähler polarization P of M (see [14]) we consider the spaces P_{x}^{*} and \bar{P}_{x}^{*} of the 1 -forms dual to P_{x} and \bar{P}_{x}. These spaces are sections of the bundles P^{*} and \bar{P}^{*} accordingly. Now let us introduce the determinant bundles $\operatorname{Det}_{P}^{*}=\bigwedge^{n} P^{*}$ and $\operatorname{Det}_{P}=\bigwedge^{n} \bar{P}^{*}[4]$.

The existence of the metaplectic structure on (M, ω) is equivalent to the existence of a line bundle $P f_{P}$ over M such that $\left(P f_{P}\right)^{2}=\operatorname{Det}_{P}[3$, 4]. Analogously, there exists $P f_{P}^{*}:\left(P f_{P}^{*}\right)^{2}=D e t_{P}^{*}$.
3.8. Let us now consider the bundle $L \otimes P f_{P}$. A connection in L can be extended to the connection in $L \otimes P f_{P}$ (see [4]) and we obtain a covariant derivative ∇^{\prime} acting on the sections s^{\prime} of the bundle $L \otimes P f_{P}$. In a corrected quantization scheme, the P wave functions are defined to be the smooth sections of $L \otimes P f_{P}$ such that $\nabla_{X}^{\prime} s^{\prime}=0, \quad \forall X \in P$.

4. G-invariant polarizations

4.1 Let M be a symplectic manifold possessing a connected Lic group G of symmetries. Let $G \times M \rightarrow M$ be a Hamiltonian action of G on M and $\varphi: M \rightarrow \mathcal{G}^{*}$ be the associated momentum map (see Sect.2). There is a canonical representation of the Lic algebra \mathcal{G} on smooth sections of L given by the operators (see Sect.3.3):

$$
\begin{equation*}
r\left(\varphi_{\xi}\right)=\varphi_{\xi}-i \nabla_{X_{\xi}}, \tag{4.1}
\end{equation*}
$$

where $\varphi_{\xi} \in C^{\infty}(M)$ and $X_{\xi} \in \alpha_{*}(\mathcal{G})$ correspond to $\xi \in \mathcal{G}$ (see (2.1)). We suppose that there exists a global action of G on L such that the induced action of \mathcal{G} is given by (4.1).
4.2 Consider the submanifolds $M_{0}=\vartheta^{-1}(0)$ and $M_{C}=M_{0} / \alpha(G)$ in M. Let $\chi: M_{0} \rightarrow M_{G}$ be the projection map and $\eta: M_{0} \rightarrow M$ be the inclusion map.

Theorem[6]. There is unique line bundle $\left(L_{C}, \nabla^{G}\right)$ with connection ∇^{G} on M_{G} such that

$$
\begin{equation*}
\chi^{*} L_{G}=\eta^{*} L \quad \text { and } \quad \chi^{*} \nabla^{G}=\eta^{*} \nabla \tag{4.2}
\end{equation*}
$$

The curvature of the connection ∇^{G} is the symplectic form ω_{G}.
Since the Hermitian inner product \langle,$\rangle is G$-invariant, there is a unique Hermitian inner product $<,>_{G}$ on L_{G} such that $\chi^{*}<,>_{G}=$ $\eta^{*}<,>$. Thus L_{G}, ∇^{G} and $<,>_{G}$ are prequantum data of M_{G}.
4.3 Let P be a polarization of M. It is clear that we may associate with P a polarization P_{G} of the reduced space M_{G} if and only if the polarization P is invariant with respect to the action of the group G [6-12]. In particular, in [6] the following theorem has been proved:

Theorem. Let G be a connected compuct Lie group, M a Hamiltonian G-space and P a G-invariant, positive definite Kähler polarization of M. Then there is canorically associated with P a positive definite polavization P_{G} of the reduced space M_{G}.
4.4. Having polarizations P and P_{G}, one may introduce the following Hilbert spaces

$$
\begin{gather*}
H_{P}^{G}=\left\{\psi \in H_{P}: r\left(\varphi_{\xi}\right) \psi=0, \forall \xi \in \mathcal{G}\right\} \\
H_{P_{i} ;}=\left\{\phi \in \mathcal{C}^{2}\left(M_{G}, L_{G}\right): \nabla_{X}^{G} \phi=0, \forall X \in P_{G}\right\} \tag{4.3}
\end{gather*}
$$

In [G 11] it has becen proved that these spaces are isumorphic as vector slaters:

$$
H_{i}^{(i} \cong H_{l_{i} ;}
$$

Wi shall mot discuss here the more difficult (fuestions connected with the int mintion of an inner protuct on $\Gamma_{p}^{(;}$and $\Pi_{p_{i}}$ (see [4.6-11]).
4.5. Gemerally speaking. it is difficult to properly correlate the quantization of the extended phatse space M and the reduced phase space M_{6} : In Sect.t.2-t.t it was accomplished be reguring that the auxiliary tructures on (M, w^{\prime}) necessary for quantization (in jarticular -an polarization P) b_{0} (G-invariant. Then they (an be projected to compatible (quantiation structures on ($\left.M_{G} \cdot w_{i}\right)$. But the condition of G-invariance ol polatization P does not always take plate ancl we shall consider the pessibility of its weakening.

5. Weakly C_{i}-invariant complex structures

5.1. Suppose we choose a positive Fähler polarization of the symplecfic manifold M. This polarization is in the une-tu-one correspondence with the comple \times structure J on M. It consists of a lincar operator J from TM to itself such that $J^{2}=-1$ and

$$
\begin{equation*}
[J X, J]=\left[\mathrm{K}, \mathrm{Y}^{\prime}\right]+J[J \mathrm{X}, \mathrm{Y}]+J[\mathrm{X}, J \mathrm{Y}] . \quad \mathrm{X}, \mathrm{Y}^{\prime} \in \Gamma(M, T M) \tag{5.1}
\end{equation*}
$$

Condition (5.1) means that the almost complex structure J is integrable and once may introduce the Fälher metric

$$
\begin{equation*}
y(X, Y)=\mu(X, J Y) \tag{5.2}
\end{equation*}
$$

with Kähler form ω.
5.2. Let f be a diffeomorphism of the manifold M and f_{*} an isomorphisin of the tangent space $T_{f^{-1}(x)} M$ onte the tangent space $T_{r} M$. This isomorphism may be extemded up to the isomorphism of the tensor algebra in $T_{\int^{-1}(x)} M$ and the tensor algebra in $T_{x} M$ [15]. This isomorphism we shall denote by \bar{f}. For any tensor fied B we shall define the tensor field $\dot{f} B$ in the following way:

$$
\begin{equation*}
(\tilde{f} B)_{x}=\bar{f}\left(B_{f^{-1}(x)}\right), \quad x \in M \tag{5.3}
\end{equation*}
$$

\bar{f}_{t} of the tensor algebra on M. For any tensor field B on M a Lie derivative $\mathcal{L}_{X} B$ is defined by the formula [15]:

$$
\begin{equation*}
\mathcal{L}_{X} B=-\lim _{t \rightarrow 0} \frac{1}{t}\left[\bar{f}_{t} B-B\right] . \tag{5.4}
\end{equation*}
$$

If the k-parameter subgroup $\alpha(G)$ of the symplectomorphisms group acts on M then we have k Hamiltonian vector fields $X_{\xi}(\xi \in \mathcal{G})$, to which the one-parameter group of transformations $\tilde{f}_{g}(g=\exp (t \xi), \alpha(g) \equiv$ $\left.f_{g}=\exp \left(t X_{\xi}\right)\right)$ corresponds. Thus, we may define the derivatives $\mathcal{L}_{X_{\xi}} B$ for any tensor field B.
5.4. Consider the principal $S p(2 n, R)$-bundle

$$
\begin{equation*}
\rho: \mathcal{P} \longrightarrow M \tag{5.5}
\end{equation*}
$$

of symplectic frames on M and the group Aut \mathcal{P} of all autonorphisms of \mathcal{P} (which are bundle maps). A map λ of \mathcal{P} outo \mathcal{P} will be called an automorphism of principal fibration if $\lambda(q b)=\lambda(q) b$ for every $q \in \mathcal{P}, b \in$ $S_{p}(2 n, R)$. Each automorphism λ determines a transformation of the base $M=\mathcal{P} / S p(2 n, R)$; we shall clenote this transformation by $p(\lambda)$.

The group of automorphisms of the principal fibration \mathcal{P} determining an identity transformation of the base will be denoted by Gauge $S p(2 n, R)$. Gauge transformations of the space \mathcal{F} are defined by smooth functions $\tau(x)$ on M with values in the group $S p(2 n, R)$ and a set Gauge $S p(2 n, R)$ of all $\tau(x)$ may be identified with the space of sections of the associated bundle $\mathcal{P} \times_{S_{p}(2 n, R)} S p(2 n, R) \rightarrow M$.

We have a homomorphism α of the connected Lie group G into $\operatorname{Symp}(M$, $\omega)$. The group $\operatorname{Symp}(M, \omega)$ of the canonical transformations of the manifold M is a subgroup in the group $p(A u t \mathcal{P})$ which preserves the symplectic form ω. Thus we defined the action of two groups on \mathcal{P} : the action of the group $\alpha(G) \subset S y m p(M, \omega) \subset A u t \mathcal{P}$ and the action of the group Gauge $\operatorname{Sp}(2 n, R) \subset A u t \mathcal{P}$. Let us also consider a group $A u t_{G}=\alpha(G) \times$ Gauge G, where Gauge $G \subset \operatorname{GaugeSp}(2 r, R)$. The group $A u t_{G}$ is the group of pairs $(\alpha(g), \tau(x))$, where $\alpha(g) \in \alpha(G)$, $\tau(x) \in$ Gauge G and the product of pairs $\left(\alpha\left(g_{1}\right), \tau_{1}(x)\right) \in$ Aut $_{G},\left(\alpha\left(g_{2}\right)\right.$, $\left.\tau_{2}(x)\right) \in A u t_{G}$ is a pair $(\alpha(g), \tau(x))$ given by formula

$$
\begin{equation*}
\alpha(g)=\alpha\left(g_{1}\right) \alpha\left(g_{2}\right), \quad \tau(x)=\tau_{1}(x) \tau_{2}(x) \tag{5.6}
\end{equation*}
$$

5.5 The action of $a(G)$ on.W induces an action on J. This action on the tensor of the complex structure is given by

$$
\begin{equation*}
a(g) J:=\bar{f}_{g} J \tag{5.7}
\end{equation*}
$$

Analogonsly; the action of Gauge G on \mathcal{P} induces the fullowing action on $J \in$ Guuge $\operatorname{Sp}(2 n, R)$:

$$
\begin{equation*}
\tilde{\tau} J:=\tau J \tau^{-1} \Longleftrightarrow(\tilde{\tau} J)_{x}=\tau(x) J_{x} \tau^{-1}(x) \tag{5.8}
\end{equation*}
$$

Finally, the action of the group $A^{\prime} t_{G}$ on J has the form

$$
\begin{equation*}
\gamma(g, \tau) J:=\bar{\tau}(\alpha(g) J) \tag{5.9}
\end{equation*}
$$

Suppose that there exists a homonorphism $g \rightarrow\left\{\tau_{g}(x)\right\}$ of the group G into the group G auge $G \subset G$ Guge $S p(2 n, R)$. Then we may define a homomorphism T of the group G into the group $A u t_{G}$ by the correspondence of an rement

$$
\begin{equation*}
\tau(g)=\left(\alpha(g), \tau_{y}(x)\right) \in A u t_{G} \tag{5.10}
\end{equation*}
$$

to the element $g \in G$ (cf. [16]). The action of $\tau(G)$ on \mathcal{P} induces the following action of the group $\tau(G) \subset A u t_{G}$ on J :

$$
\begin{equation*}
\tau(g) J:=\tilde{\tau}_{g}(\alpha(g) J) \Longleftrightarrow(\tau(g) J)_{x}=\tau_{g}(x)\left(\tilde{f}_{g} J\right)_{x} \tau_{y}^{-1}(x) \tag{5.11}
\end{equation*}
$$

5.6. The usual G-invariance of the complex structure means (see $[6$, 17]) that J is invariant under automorphisms $\alpha(g) \in \alpha(G)$, i.e.

$$
\begin{equation*}
\alpha(g) J=J, \quad \forall g \in G \tag{5.12}
\end{equation*}
$$

Locally the condition (5.12) is equivalent to the following condition:

$$
\begin{equation*}
\mathcal{L}_{X_{\xi}} J=0, \quad \forall \xi \in \mathcal{G}, \tag{5.13}
\end{equation*}
$$

where $\mathcal{L}_{X_{\xi}}$ is a Lie derivative along the Hamiltonian vector field $X_{\xi} \in$ $\alpha_{*}(\mathcal{G})$ on M.

From (5.12) it follows that $G \subseteq U(n)$ and therefore

$$
\tau(g) J=\tilde{\tau}_{g}(\alpha(g) J)=\tilde{\tau}_{g} J=\tau_{g} J \tau_{g}^{-1}=J, \quad \forall g \in G
$$

because $\tau_{y}(x) \subset G_{x} \subseteq(U(n))_{r}$. Thus, from the invariance of J under $\alpha(G)$ follows the invariance under the group $\tau(G)$.
5.7. We would like to impose the weakened form of the symmetry reguirement. We shall weaken the conditions (5.12) demanding the invariance of the complex structure J only under the τ-automorphisms:

$$
\begin{equation*}
\tau(g) J=J, \quad \forall g \in G . \tag{5.14}
\end{equation*}
$$

We shall call condition (5.14) the weak G-invariance condition of the complex structure. We have already noticed that the weak G-invariance follows from the standard G-invariance, but the converse is not true.

To define the τ-automorphisms one must require the existence of the fields $\tau_{g}(x)$ on M. Let us suppose that a symplectic connection $\hat{\nabla}$ is defined on M. Let us also suppose that there are $k=\operatorname{dim} G$ covariantly constant tensors $W_{\xi}=\left\{W_{\xi}(x)_{\mu}^{\nu}\right\}, \hat{\nabla} W_{\xi}=0, \xi \in \mathcal{G}$, which constitut, a basis of the Lie algebra $\mathcal{G}_{x} \subset s \mu_{x}(2 n, R)$ for cvery $x \in M$. Then for $g=\exp (\xi)$ the function $\tau_{y}(x)$ may be expressed in the form

$$
\begin{equation*}
\tau_{g}(x)=\exp \left(W_{\xi}(x)\right) \tag{5.15}
\end{equation*}
$$

It is clear that in virtue of covariant constancy of the tensors W_{ξ}, all such functions τ_{g} are completely determined by their walue at the point $x=0$ and patametrized by the group manifold G.
5.8. Consider the transformation (5.7). Let us denote by $\alpha\left(K^{*}\right)$ the subgroup in $\alpha(G)$ under which the complex structure J is invariant. The group) $\alpha\left(K^{\prime}\right)$ is the image under the homomorphism α of the subgroup K of the group G. The Lie algebra \mathcal{G} may be decomposed in the following way

$$
\begin{equation*}
\mathcal{G}=\mathcal{K} \oplus \mathcal{Q}, \tag{5.16}
\end{equation*}
$$

where \mathcal{K} is a Lic algebra of the Lie group K, and \mathcal{Q} is a tangent space in the origin of the homogeneous space $Q=G / K$.

We shall number the subspace \mathcal{K} in \mathcal{G} by the indices $i, \jmath, \ldots=1, \ldots, k-l$, and the subspate \mathcal{Q} in \mathcal{G} - by the indices $\alpha, \beta, \ldots=1, \ldots, l$. Then locally the condition (5.14) of the weak G-invariance may be written in the form:

$$
\begin{equation*}
\mathcal{L}_{X_{i}} J_{\mu}^{\nu}=0, \quad \mathcal{L}_{X_{\alpha}} J_{\mu}^{\nu}=J_{\mu}^{\lambda}\left(W_{\alpha}\right)_{\lambda}^{\nu}-\left(W_{\alpha}\right)_{\mu}^{\lambda} J_{\lambda}^{\nu}, \tag{5.17}
\end{equation*}
$$

where $\left(X_{i}, X_{0}\right)$ are the Haniltonian vector fields on M constituting the hasis of the subspaces $a_{0}(\mathcal{K})$ and $\alpha_{*}(\mathcal{Q})$ in the Lic algebra $\alpha_{*}(\mathcal{G})$.
5.9. Taking the Lid derimation of the identity $J^{2}=-1$, we have

$$
\begin{equation*}
\left(\mathcal{L}_{X_{u}} J_{\mu}^{\prime}\right) J_{\lambda}^{\prime \prime}+J_{\mu}^{\lambda}\left(\dot{L}_{K_{0},}, J_{\lambda}^{\prime \prime}\right)=0 . \tag{5.18}
\end{equation*}
$$

$$
\dot{L}, I \in S^{(1.1}\left(M . T^{(1, n)} M\right)
$$

 that [18.19]:

$$
\begin{equation*}
L_{u_{.,}} J=B_{1,1}^{\prime \prime} w^{\prime}, \frac{\partial}{\partial z^{\prime \prime}} \quad d= \tag{5.19}
\end{equation*}
$$

$$
B_{a}=B_{a}^{a b} \frac{\partial}{\partial z^{a}} \therefore \frac{\partial}{\partial a^{a}}
$$

atr the C^{\prime} sections of the bmatle $T^{(1,0)}-\because \because T^{(1,(1)} M$ over M. Tensors B_{α} are symmetric (i.e. $B_{a}^{a b}=B_{a}^{b, d}$) and may also be decomposed with respect

$$
\begin{equation*}
B_{a}^{\mu \nu}=\left\{J_{\hat{p}}^{\lambda}\left(11_{a}\right)_{A}^{\prime \prime}-\left(I I_{a}\right)_{j}^{\prime} J_{i}^{\prime \prime}\right\} w^{\prime \mu} . \tag{5.21}
\end{equation*}
$$

5.10. As alleady mond. 1he conditions (.5.1.1) and (0.17) mean that there ane k tonsor fields $\mathrm{HE}_{\text {e }}$ on the manifold M. In particular, there
 $B_{n}=\left\{B_{n}^{\prime \prime \prime}\right\}$. Which are the global sections of the bumple

$$
\begin{equation*}
R \times_{1 ;} G / H \longrightarrow M \tag{5.22}
\end{equation*}
$$

wor M, asobeciated with the primeipal G-humdle $R(M, G)$ ower M.
Ler us denote the total space of the bumble (5.22) by Z. Frone the purely differential geometric point of riew, this space is the product

$$
\begin{equation*}
Z=M \times G / K \tag{5.23}
\end{equation*}
$$

i.e. the trivial bundle.

The comelitions (5.14) (and (5.17)) mean that the complex structure J depends on the $l=d i m G / K$ parameters $t_{a}($ coordinates on $G / K)$ and may he repersented in the form

$$
\begin{equation*}
J=\tau_{g}^{-1} J_{0} \tau_{g}, \tag{5.24}
\end{equation*}
$$

where J_{0} is a fixed (canonical) complex structure and the element $\tau_{y} \in$ Gauge G has been written out in (0.15). The complex structure J given by this formula coincides with J_{0} if and only if $\tau_{y}(x)$ belongs to the subgroup $K_{x} \subset G_{x}$. Hence, on M we have the l-parametric family of covariantly constant complex structures which are weakly G-invariant by construction. Notice that the weak G-invariance of the complex structure introduced by us is analogous to the generalized G-invariance of the connection in the principal fibre bundles studied in the papers $[16,20]$.

6. Symplectic twistors

In Sect.5, the bundle (5.23) $\pi: Z \rightarrow M$ appeared when we were describing the weakly G-invariant complex structure J. Here, we shall describe this bundle in more details.
6.1. Denote by $R^{2 n}$ the real vector sipace of dimension $2 n$ with coordinates $(p, q)=\left(p_{1}, \ldots, p_{n}, q_{1}, \ldots, q_{n}\right)$ and the standard symplectic structure

$$
\begin{equation*}
\omega_{0}=d p_{a} \wedge d q^{a} \tag{6.1}
\end{equation*}
$$

Let $S\left(R^{2 n}\right)$ be the space of Kähler structures on $R^{2 n}$, i.e. complex structures J on $R^{2 n}$ compatible with the symplectic structure ω_{0}. It means that $J \in E n d\left(R^{2 n}\right)$ belongs to the group $S p(2 n, R)$ of linear symplectic transformations of $R^{2 n}$.

The space $S\left(R^{2 n}\right) \cong S_{p}(2 n, R) / U(n)$ of the Kähler structure is a Hermitean symmetric domain of dinension $n(n+1) / 2$ which can be identified with the Siegal unit disc S_{n}. This dise consists of complex $n \times n$ matrices D subject to

$$
\begin{equation*}
D^{t}=D, \quad I-D^{+} D \gg 0 \quad \text { (positive definite) } \tag{6.2}
\end{equation*}
$$

where D^{l} is the transposed matrix of D, D^{+}- its Hermitian conjugate. For proof of the identification $S_{\nu}(2 n, R) / U(n) \cong S_{n}$ note that the action of $S_{p}(2 n, R)$ on $R^{2 n} \simeq C^{n}$ can be given (in coordinates z^{a}, \bar{z}^{a} on C^{n}) by the block :natrices

$$
g=\left(\begin{array}{cc}
A & B \tag{6.3}\\
\bar{B} & \bar{A}
\end{array}\right)
$$

presorving the matrix $\left(\begin{array}{cc}0 & 1_{n} \\ -1_{n} & 0\end{array}\right)$ of the symplectic form $\omega_{0}: g \omega_{0} g^{t}=\omega_{0}$, i.r. subject to the relations

$$
\begin{equation*}
A B^{t}=B^{t} A, \quad A A^{+}-B B^{+}=I \tag{6.4}
\end{equation*}
$$

The group $S_{p}(2 n, R)$ acts transitively on the Siegel disc S_{n} by the fractional linear transformation

$$
\begin{equation*}
D \rightarrow(A D+B)(\bar{B} D+\bar{A})^{-1} \tag{6.5}
\end{equation*}
$$

:and the isotropy group of the point $D=0$ is $U(n)$.
6.2.. Let (M, ω) be a symplectic manifold of dimension $2 n$. We introduce the bundle

$$
\begin{equation*}
\pi_{0}: S(M) \rightarrow M \tag{6.6}
\end{equation*}
$$

of almost Kähler structures on M associated with the principal $S p(2 n, R)$ bundle $\mathcal{P}=\mathcal{P}\left(M, S_{p}(2 n, R)\right)$ over M (symplectic frame bundle). The tibre $\pi_{0}^{-1}(x)$ in a point $x \in M$ is the space $S\left(T_{x} M\right)$ of Kähler structures on $T_{x} M$ defined above.

As in the Riemannian case, taking a symplectic connection on M we can provide $S(M)$ with a natural almost complex structure. In fact, let us denote by $\hat{\nabla}$ the symplectic connection on M. It generates the splitting of the tangent bundle $T S(M)$ into the direct sum

$$
\begin{equation*}
T S(M)=\mathcal{H} \oplus \mathcal{V} \tag{6.7}
\end{equation*}
$$

of horizontal and vertical subbundles of $T S(M)$. The fibre \mathcal{V}_{p} in $p \in$ $S(M)$ is tangent to the fibre $\pi_{0}^{-1}\left(\pi_{0}(p)\right)$ of $S(M) \rightarrow M$ through the point p. Recall that the fibre of $S(M) \rightarrow M$ over $\pi_{0}(p)$ is identified with $S\left(T_{x} M\right) \approx S p(2 n, R) / U(n)$ so it has a natural complex structure \mathcal{J}^{v}. Hence we can define an almost complex structure \mathcal{J} on $S(M)$ using the decomposition (6.7) by setting

$$
\begin{equation*}
\mathcal{J}=\mathcal{J}^{h} \oplus \mathcal{J}^{u} \tag{6.8}
\end{equation*}
$$

where \mathcal{J}^{h} is an almost complex structure equal at a point $p \in S(M)$ to the complex structure \mathcal{J}_{p}^{h} on $\mathcal{H}_{p} \approx T_{\pi_{0}(p)} M$ given b : the point $p=\left(x, J_{x}\right)$.
6.3. In Sect.3.7 we introduced the half-form bundle $P f_{P}$ over M for the fixed positive Kähler polarization P of M. Polarization P is totally
fixed ly the complex structure J on M. that is why we shall denote the half-form bundle by $P f_{J}$. As fibres of the bundle $P f_{J} \rightarrow M$ in a point $x \in M$ we have $P f_{J}(x) \in C$.

We lave the bundle $S(M) \rightarrow M$ of positive Kähler structures on M. Let us introduce the complex line bundle [1-1, 1]

$$
\begin{equation*}
P f \rightarrow S(M) \tag{0.5}
\end{equation*}
$$

over $S(M)$, which has fibre $P f_{J}(x)$ at $(x, J(x)) \in S(M)$. The buntle (6.9) defines a metaplectic structure on M. The restriction of $P f$ to thar fibre of $S(M)$ over some $x \in M$ is simply the half-fonn bunde on the space $S\left(T_{r} M\right) \approx S p(2 n, R) / U(u)$ (see [14, 4]). The restriction of $I f$ to the base of the bundle $S(M)$ is the hall-form bundle $P f_{J}$ introduced in Sect.3.7.
6.4. The space $S(M)$ has a matural almost complex structure \mathcal{J}; using it we can analye the real geonetry of M hirongla the complex geonetry of $S(M)$. Unfortumately, this almost comples structure is almost never integrable (it is integrable $\Longleftrightarrow M$ is conformally symplectic flat, cf. [21 21_{j}), so $S(M)$ is only an almost complex manifold. However, it is possible to define the symplectic twistor bundle of M as the bundle

$$
\begin{equation*}
\pi: \quad Z \rightarrow M \tag{6.10}
\end{equation*}
$$

together with the filse preserving mat,

$$
j: \quad Z \rightarrow S(M)
$$

owe M. Otherwize, we define Z as a subbundle in $S(A)$ with complex fibres. Eadh z in the fibre Z_{x} over $x=\pi(z)$ then deffines a symplectic complex structure on $T_{x} M$ via the isomorphism witl the complex vector space $T=Z / V_{z}$.

Conditions of the integrability of the complex structure on Z are more weak than on $S(M)$, and in [22-24] one may find a number of examples of the manifolds M which are not conformally flat and to which the twistor spaces Z with the integrable complex structure \mathcal{J} correspond. Namely, in [22] it lath becu shown that the almost complex structure \mathcal{J} on Z is integrable if the curvature R^{∇} and the torsjon T^{∇} of the symplectic connection $\bar{\nabla}$ on M satisfy the equations

$$
\begin{equation*}
J_{s}^{+} T_{s}^{\nabla}\left(J_{s}^{-} X, J_{s}^{-} X\right)=0 \tag{6.11a}
\end{equation*}
$$

$$
\begin{equation*}
J_{s}^{+} R_{v}^{\Gamma}\left(\cdot J_{2}^{-} X \cdot J_{s}^{-} X\right) \cdot J_{s}^{-}=0, \tag{6.11b}
\end{equation*}
$$

fior all $J_{F} \in Z_{J}=\pi^{-1}(x)$:und $X, Y \in T_{x} M$. Here $J^{ \pm}=\frac{1}{2}(1 \mp i J)$ are tha assuciated projecturs onto $\pm i$ digemisaces of J. For examples of the manifokls. comacetion Γ on which satisfies condition (6.11), see [21-24].
6.5. In this paper we shall consider the twistor manifolds Z introhaced in Sect 5 by describing the walkly G-invariant complex structures. A comected Lie group G is a closed subgroup of $S_{p}(2 n, R)$. Let us considhr a G-intariant subnamifold Q of $S\left(R^{2 n}\right)$ witl a G-invariant complex sructure whtained berestriction to () of the complex structure \mathcal{J}^{ν} on $S\left(R^{2 / u}\right)$. Wi abou suppeste that $(Q$ is a reductive lomogencous space G / K. where K° is a subgronp in G. The Lie algebra \mathcal{G} of G may be split as $G=A \because Q$ then the complex stincture \mathcal{J}_{Q} on Q is detemmed by the - plittim:

$$
\begin{equation*}
Q^{+}=Q^{+} \therefore Q^{-} . \tag{6.12}
\end{equation*}
$$

Let $\mathcal{R} \rightarrow$ M be a principal bundle over M with a structure group G, which is a subbunclle in the principal bundle $F \rightarrow M$. We slall introduce a bundle.

$$
\begin{equation*}
\pi: \ddot{Z}=R \times_{G} Q \longrightarrow M \tag{6.13}
\end{equation*}
$$

which is the associater bundle with a fibre Q. In this way we shall not consider the bundle $S(M)$ of all ahnost Kähler structures on M, but the subbuntle Z in $S(M)$.

7. Double twistor fibration

7.1. The twistor bundle introduced by us is trivial: $Z=M \times$ G/K. The $\hat{\nabla}$-parallel complex structures J on $I I$ under consideration are parametrized by the space G / Λ^{\prime}. That is why we may define a projection

$$
\begin{equation*}
\rho: Z \rightarrow G / \kappa \tag{7.1}
\end{equation*}
$$

by correspondence a point ($0, J_{5=n}$) of the manifold G / K to each point $\left(x, J_{x}\right)$ of the manifold Z, transfering $\left.J_{x}\right\rangle$-parallel to the origin $x=0$, where all non-equivalent structures are paranctrized by the manifold G / K°. We shall denote a penint $J \in G / K^{*}$ and the corresponding complex stincture on M by the same letter J. The fibre $\rho^{-1}(J)$ in a point $J \in$ G / Λ^{-}can be identified with the complex manifold $M_{J}=(M, J)$, i.e. M provided with the complex structure corresponding to $J \in G / K$.

Thus. We hatre a double fibmam

$$
\begin{gather*}
Z \quad H \quad G i / H^{-} \tag{7.2}\\
\bar{Z} \\
\vdots
\end{gather*}
$$

Which is concial for our considerations. Domble fibration similar to (7.2) arises nat urally m different prollens of the twistor theory. In particular, Hitchin las defined [17] a double fibration of the type (7.2) where M is substituted by a du-dimensional hyer-Kähler manifold and $G / K^{\circ}=$ $S C^{\circ}(2) / L^{-}(1)=C P^{1}$. In this (asce Z appears to be a $(2 n+1)$-dimensional complex manifold and points of M are identificed with real holomorphic sections of $Z \rightarrow C P^{1}$. The main difference betweco these constructions and our diagram (7.2) is that the twistur spaces, considered in [17], consist of ahmost complex structures compatihle with a Ricmamian metric while ours are of complex structures compatible with a symplectic form. So it is natural to call the twistor space under consideration by a symplectic twistur space.
7.2. Let us describe the definition of the almost complex structure on Z by the use of the structure of the double fibration (7.2). Consider the bundles $\pi^{-1}(T M)$ and $\rho^{-1}(T Q)$ over Z which are the pullbacks of the tanment bundles of M and $Q=G / K$ respectively. The projections π and ρ generate the natural bundle homomorphisms

$$
\begin{equation*}
\pi_{*}: T Z \rightarrow \pi^{-1}(T M), \quad \rho_{*}: T Z \rightarrow \rho^{-1}(T Q) \tag{7.3}
\end{equation*}
$$

We call the kernel of π, the vertical subtundle \mathcal{V} of $T Z$ and the kernel of ρ. the horizontal subbundle \mathcal{H} of $T Z$. Note that the fibre \mathcal{V}_{z} in a wint $z \in Z$ is identifical by ρ with the tangent space space $T_{J} Q$ in the point $J=\mu(z) \in\left(Q\right.$ and so has the complex structure \mathcal{J}_{Q} defined on $Q=G / K$. Now we cand define an almost complex structure \mathcal{J} on Z in exactly the sann waty as in Sect. G. The projection $\rho: Z \rightarrow G / K$ will becomer a holomorphic map w.r. to this structure \mathcal{J}.
7.3. Let $L \rightarrow M$ be the prepuantization line bundle over M with the comatection ∇^{\prime}. Denote by $\dot{L} \rightarrow Z$ the pull-back of L to Z. Then \tilde{L} is a holomorphic bundle. It is essentially Ward's construction from twistor theory (cf. [25]).

Tu prove the assertion denote by $\bar{\nabla}$ the pull-back of the connection ∇
to \tilde{L} and define a $\dot{\partial}$-operator on section \tilde{s} of $\tilde{L} \rightarrow Z$ by setting

$$
\begin{equation*}
\bar{\partial} \tilde{s}:=\dot{\nabla}^{(0,1)} \bar{s}, \tag{7.4}
\end{equation*}
$$

where $\dot{\nabla}^{(0,1)}$ is the (0,1)-component of $\dot{\nabla}$ w.r. to an almost complex structure \mathcal{J} on Z introduced above. The symplectic structure ω on M being compatible with all Kalller structures on M has the type (1,1) w.r. to any such structure, lience the curvature F_{∇} also has the type (1,1) w.r. to any Kälher structure. According to the definition of an almost complex structure on Z it means that the curvature $F_{\bar{\nabla}}$ of the pulledback connection $\dot{\bar{V}}$ on \dot{L} has the type (1,1) w.r. to the almost complex structure of Z It follows that

$$
\begin{equation*}
\bar{\partial}^{2} \tilde{s}=F_{\bar{\nabla}}^{(0,2)} \tilde{s}=0, \tag{7.5}
\end{equation*}
$$

i.e. the introduced $\bar{\partial}$-operator satisfies the integrability condition of Newlander-Nirenberg.
7.4. In Sect.6.3 we have introduced the half-form bundle Pf over $S(M I)$. We have the map $j: Z \rightarrow S(M)$ (see Sect.6.4) and, hence, we have a pull-back bundle $j^{*} P f \rightarrow Z$ over Z. We shall denote this line bundle by $\widetilde{G} h:=j^{*} P f$

$$
\begin{equation*}
\widetilde{G} \rightarrow Z \tag{7.6}
\end{equation*}
$$

which will be called, following the physical tradition, the ghost bundle of Z (or the restricted latf-forms bundle).

The restriction of $\widetilde{G} h$ to the fibre of Z over some $x \in M$ will be denoted ly $\widetilde{G} l_{x}$. The restriction of $\widetilde{G} h$ to the base M of the bundle Z we shall denote by Gh_{J} (cf. with Sect.6.3).

Let us also introduce the product of the bundles \tilde{L} and $\widetilde{G h}$:

$$
\begin{equation*}
\tilde{L} \otimes \tilde{G} h \longrightarrow Z \tag{7.7}
\end{equation*}
$$

The restriction of this bundle on M will be the following bundle

$$
\begin{equation*}
L \otimes G h_{J} \longrightarrow M, \tag{7.8}
\end{equation*}
$$

and its restriction on fibre $Q_{x} \quad(x \in M)$ will be

$$
\begin{equation*}
\tilde{L}_{x} \otimes \widetilde{G} h_{x} \longrightarrow Q_{x} \tag{7.9}
\end{equation*}
$$

So, we have a double fibration (7.2) . that is why we may transfer the bundle (7.9) to the point $x=0$ and obtain a holomorphic line bundle

$$
\begin{equation*}
L^{\prime} \odot G l^{\prime} \longrightarrow Q, \tag{7.10}
\end{equation*}
$$

where $L^{\prime}:=\tilde{L}_{x=0}, G l^{\prime}:=\widetilde{G} l_{x=0}, Q:=Q_{x=0}$.

8. Fock bundle

8.1. Let us consider the space H_{J} given by formula (3.4). It is the space of holomorphic (w.r. to the complex structure J) sections of the bundle L over $M_{J}=(M, J)$, i.e. M provided with the complex structure corresponding to $J \in G / K^{\circ}$. In other words. H, consists of holomorphic sections of \tilde{L} over $\rho^{-1}(J)=M_{J}$:

$$
\begin{equation*}
H_{I}=\mathcal{O}\left(M_{J}, \bar{L}\right) \tag{8.1}
\end{equation*}
$$

In particular, we shall consider $H_{0}:=H_{j^{0}}$.
The space G / h° is a prameter space of Kähler polarization J. As J varies over $Q=G / K$, the vector space H_{J} defines a vector bundle

$$
\begin{equation*}
\tilde{H} \longrightarrow Q \tag{8.2}
\end{equation*}
$$

over Q with the fibres H_{J} in points $J \in Q . \tilde{H}$ is a subbundle of the trivial Hilbert bundle with a total space $Q \times \mathcal{L}^{2}(M, L)$.
8.2. The space \tilde{H} coincides with the space of sections holomorphic w.r. to the almost conplex structure J on Z of the bundle \tilde{L} over Z : $\tilde{H}=\mathcal{O}(Z, \tilde{L})$. The bundle (8.2) is the homugeneous G-bindle over G / K^{-} (see, c.g., $[2 G]$) and we may use this for its description.

Let us identify the group G with its image a (G) in $\operatorname{Symp}(M, \omega)$ on homomorphisma.

We denote by K° a subgroup in G preserving the complex structure J_{0}. Fommala (4.1) gives the representation of the Lie algebra \mathcal{K} of this group in I_{0} from which, by the exponentiating, we may obtain the representation:

$$
\begin{equation*}
\kappa \ni k \longrightarrow R(k): \quad H_{0} \longrightarrow I_{0} \tag{8.3}
\end{equation*}
$$

of the group is in $H_{0}:=H_{J_{0}}$.
Now consider the product space $G \times H_{0}$. The group K^{\prime} acts on $(g, \psi) \in$ $G \times I_{U}$ as follows:

$$
\begin{equation*}
\left.l: \circ(g, \psi)=(g) i, R\left(l^{-1}\right) \psi^{\prime}\right) \tag{8.4}
\end{equation*}
$$

This allows us to define the complex vector bundle over G / K° :

$$
\begin{equation*}
\dot{H}=G \times{ }_{k} H_{0} \longrightarrow G / h_{2}^{-} \tag{8.5}
\end{equation*}
$$

with the fibres H_{J} in the points $J \in G / K$.
The Fock bundles like (8.2) and (8.5) were introduced and have been considered in the papers [27, 18, 19]. In these papers the connection in the Fock bundles has been defined: moreover the Bowick-Rajeev approach [27] differs from the approach of Hitchin [18] and Axelrod-Pietra-Witten [19].
8.3. We have a bundle L over M and a comection ∇ in L with a curvature $F_{\Gamma}=\omega$. Because M is the Kähler manifold with a complex structure J then a canonical polarization P is defined by

$$
\begin{equation*}
P_{x}=\left\{Y_{x} \in T_{x}^{C} M: J_{x} Y_{x}=-i Y_{x}, \quad x \in M\right\} \tag{8.6}
\end{equation*}
$$

la Sect.3.7 the anticanunical bundle Detp of antiholomorphic n-form on M has been described. Becanse the Kähler form w defines a cohomology class $\left[u^{\cdot}\right] \in H^{1}\left(M, T^{*}\right)$ where $T \equiv T^{(1,0)} M$, then there exists a number λ such that

$$
\begin{equation*}
\operatorname{Det}_{\rho} \cong L^{\lambda} . \tag{8.7}
\end{equation*}
$$

The carvature of the bundle $D{ }^{\prime} t_{P}$, the Ricei form,

$$
\begin{equation*}
R=\frac{1}{2 \pi} R_{u b} d z^{a} \wedge d z^{b} \tag{8.8}
\end{equation*}
$$

represents the first Chern class of M, and from (8.7) this is colomologous to $\lambda \omega$. Since the Ricci form R and $\lambda \omega^{\prime}$ are colnomologous, we may define a real function Φ characterized by

$$
\begin{equation*}
R_{a \bar{b}}+\lambda \omega_{a \dot{u}}=-2 i \frac{\partial^{2} \Phi}{\partial z^{a} \partial z^{b}} \tag{8.9}
\end{equation*}
$$

and normalized by the condition that its integral over M is zero.
The (0,1)-forms

$$
\begin{equation*}
\theta_{\mathrm{a}}=\left(2 i B_{a}^{u b} \omega^{\prime} b c \frac{\partial \Phi}{\partial z^{a}}+\left(\nabla_{a} B_{a}^{a b}\right)_{\dot{u}^{\prime} b c}\right) d z^{r} \tag{8.10}
\end{equation*}
$$

are $\bar{\partial}$-closed [18] and at least locally there are functions f_{a} stech that

$$
\begin{equation*}
\ddot{\partial} f_{1 a}=\theta_{1 a} . \tag{8.11}
\end{equation*}
$$

8.4. We have a holmarphic fibsation $Z \xrightarrow{"} Q^{\prime}$ over some open set $Q^{\prime} \subset Q$ with coordinates $\left(t_{1}, \ldots, t_{l}\right)$ such that cath fibre is a complex manifold. A covariant derivative in the Fock bundle $\grave{I} \rightarrow Q^{\prime}$ in coordinates t_{0} on Q^{\prime} may be writen in the form [18, 19]:

$$
\begin{equation*}
D=d f^{\prime \prime}\left[\frac{\partial}{\partial t^{\prime a}}+\frac{1}{(2+\lambda)}\left(i \Gamma_{u}\left(B_{a}^{u l} \Gamma_{b}\right)-2 B_{a}^{a b} \frac{\partial \Phi}{\partial z^{a}} \nabla_{b}-f_{a}\right)\right], \tag{8.12}
\end{equation*}
$$

where λ, B_{12}. Φ and f_{a} were introduced carlier. Because the holonomy of this connection is given by a scalar multiplication, D is projectively flat (see $[18,19]$). Let us consider the bundle $G h^{\prime} \rightarrow Q$ introduced in Sect.i.4. Take the tensor product of \bar{H} with a line bundle $G h^{\prime} \rightarrow Q$, commection of which has the opposite curvature to that of \dot{H}. By certain conditions, the tensor product $\bar{H} \subset G \not h^{\prime}$ will hate a flat connection D^{\prime} (see $[18,19]$) and we may introduce into consideration the bundle

$$
\begin{equation*}
\mathcal{F}=\left\{\Psi \in \Gamma\left(Q, \dot{H} \bigcirc G l^{\prime}\right): \quad D^{\prime} \Psi=0\right\} \tag{8.13}
\end{equation*}
$$

of cotariantly constant sections of the bundle $\hat{H} \bigcirc G h^{\prime}$.
8.5. On the space \mathcal{F} one may define a metaplectic representation of the Lie group $\mathcal{G} \subset S p(2 n, R)$. Using the fact that $\tilde{H} \bigcirc G h^{\prime}$ is a homogeneous G-buadle the action of $g \in G$ on $\Psi \in \Gamma\left(Q, \dot{H} \because G l^{\prime}\right)$ may be defined as [26]

$$
\begin{equation*}
(g \Psi)(J)=g\left(\Psi\left(g^{-1} J\right)\right) \tag{8.14}
\end{equation*}
$$

Where G acts canonically on $J \in G / K$ from the left and the action on $\Psi\left(g^{-1} J\right) \in H_{g^{-1} J}$ is described in [26].

For a physical Fock space \mathcal{F}_{G} corresponding to the guantization of the manifold $M_{G}=\varphi^{-1}(0) / a\left(G^{\prime}\right)$ one should talse

$$
\begin{equation*}
\mathcal{F}_{G}=\{\Psi \in \mathcal{F}: \quad g \Psi=\Psi, \quad \forall g \in G\} \tag{8.15}
\end{equation*}
$$

Thus, we described the pliysical Fock space of the system with the first class constraints as a G-invariant subspace in the space of covariantly constant sections of the Fock bundle over the space of weakly G-invariant complex structures on the plase manifold M.

Acknowledgenents

Auhor is grateful to D.V.Alekseevsky, M.V.harasev, M. de León, A.G.Sererev. J.Sniatycki. S.L. Woronowioz and T. Wurzbacher for valuable momats and uncful comments.

References

1. B. Kinstant. Lect.Notes Math. 1970, v.170, 87-208.
2. J. 1 . Somian. Stracture des sysmes dyamiques. Paris: Dunod, 19 ().
3. J.Sniancki. Geometrie quantization and chantum mechanies, Berlin: Springer. 1980.
 ford, 1092.
4. M.J.Gotay; J.M.Nester aml G.Flinds, J.Math.Phys. 19T8. v.19, N 11. 2385-2399.
5. V.Guillemin and S.Stemberg, Invent.Math. 1982, v.67, 515-i38.
6. J.Sniatycki, Lect.Notes Matlı. 1983. v.1037, 301-3H.
7. A.Ashtekar and M.Stilleman, J. Nath.lphes. 1986. v.27, N 5. 13191330.
8. M..J. Gotay; Math.Pless. 1986. •.27. N 8. 2051-2066.
9. M.13lan, Phys.Letı. 1988. v.20513. N 4. 525-529; Class.Quantum Griav. 1988, v.5, 1033-104.
10. G.M.Tuynman, J.Ahath.Plys. 1900, v.31, N 1, 83-90; P.Schaller and G.Schwarz, J.Matlı.Plıs:. 1990, v.31, N 10. 2306-2377.
11. J.E.Marsden and A. Weinstain, Rep.Math.Plysi. 1974, v.j, 121-130.
12. J.M.Arms, J.E.Marsdenand Y'.Moncriof, Commun. Math. Pliys. 1981. v.78, 455-478; J.Sniatycki and A. Weinstein, Lett.Matlı.Plyss. 1983. v.7, N 2, 15.5-1G1; R.Sjamaar and E.Leman, Ann.Math. 1991, v.134, $375-422$.
1.1. R.J.Blatther. Lect. Notes Math. 1977. v.jot , 11-45.
13. S.Kobayashi and Kixumizn. Fomulations of differential geometry, Interscionce: New York. v.1. 1903, v.2, 1900.

1G. A.S.Schwarz, Commma. Xath.Phys. 1977, v.56, 79-86.
17. N.J.Fitchin, Contemp. Math. 1986, v.j8, 157-178; N.J.Hitchin, A.Karthede, C.Lindströn and M.Roček, Commmn.Math.Phys. 1987 , -103. $335-589$.
18. N.J.Hitchin, Cummum.Math.Phys. 1990, v.131, 347-380.
19. S.Axclrod. S.D.Pictra and E.Witten, J.Diff.Gcom. 1991, v.33, 787902.
20. P.Forgars and N.S.Manton. Commun. Math. Plys. 1980, v.72, 1535: J.Harnad, S.Snider and L. Vinet. J.Math.Phys. 1980, v.21, N 12, $2719-2724 ;$ J.Harnad, S.Snider and J.Tafel. Lett.Math.Phys, 1980, v.t. 107-113; M.Molelekot, J.Math.Plys. 1985, v.26, N 1, 192-197; M.Legare and J.Harmad. J.Math. Plys. 1984, v.25, N 5, 1542-1547; 1986, v.27, N 2, 620-620.
21. L. Berard Bergery and T.Ochiai, On the generalization of the construction of twistor spaces. In: Glob. Ricmannian Geom. Symp., eds. I.J.Willmore and X.J.Hitchin, 1984, N.Y., pp.52-59.
22. N.R. O`Brian and J.H.Rawnsley, Ann.Global Anal.Geom. 1985, v.3, N 1, 29-58.
23. F.E.Burstall, Lond.Math.Soc.Lect.Notes Series, 1990, v.156, 53-70.
24. D.V.Alelseevsky and M.M.Graev, J.Geom. and Phys. 1903, v.10, 203-229; Russian Acaul.Sci.[zv.Math. 1993, v.40, N 1, 1-31.
25. R.S.Ward, Phys.Lett. 1977, v.61A, 81-82; M.F.Atiyah, N.J.Hitchin and I.M.Singer, Proe.R.Soc.Lond. 1978, v.A362, 425-461.
26. V.V.Gorbacewic and A.L.Onišik, Itogi nauki i tekn. Sovr. probl. matem. Fund. napr., v.20, VINITI, Moscow, 1988, 103-240.
27. M.J.Bowick and S.G.Rajeev, Nucl.Pliys. 1987, v.B293, 348-384; 1988, v.B29C, 1007-1033.

Received by Publishing Department on July 27, 1993.

