


1. Introduction

Constrained systems are often considered in physics and therefore their
quantization deserves particular attention. To guantize such systems one
usually uses the method of canonical quantization or the method of path
integral quantization. The method of geometric quantization of Kostant
and Souriau [1-4] is a generalization of the standard canonical quantiza-
tioi1 on the curved phase manifolds M. Geometric quantization of the
eonstrained systeins have been considered in Refs.[5-11]. In these pa-
pers it has been supposed that the G-invariant polarization P exists on
the symplectic manifold (A, w). We consider a positive I{ahler polar-
ization corresponding to the complex structure J on M and impose the
weakened form of the synunetry requirement. Namely, we describe the
homomorphisim 70 & — AutP of the group G into the group of the auto-
torphisis of the bundle P = P{AL, Sp(2n, R)) over M and impose the
condition of invariance of the complex structure J under the group 7(G)
(weak G-invariance). In this paper we present the geometric quantiza-
tion scheme of the Kahler manifolds (Af,w, J) with weakly G-invariant

complex structure J.
2. Marsden-Weinstein reduction

2.1. On a symplectic manifold Af with a 2-form w for two arbitrary
functions f and h one can define a Poisson bracket {f, h} = w(Xy, X3).
lere a vector ficld Xy is defined by the formula Xj|w = —df. A corre-
spondence f — Xy maps a Lie algebra C*(Af) of functions on A (with
the Poisson bracket) to the Lic algebra of the Hamiltonian vector fields
on M (with the ordinary commutator).

2.2. Let G be a Lic group and «(G) a representation of G in the group
of the symplectomorphisms of M., Then a Lie algebra a.(G) of the Lie
group ofG) acts on M as a Lic algebra of vector fields. This action is
called a Hamiltonian action if to each vector field X, (£ € G) one may
correspond a function g¢ € C*(M) by the formula

XeJw = —dep (2.1)

2.3. Let G* be a space dual to G. Using functions ¢ on Af one may
define @ momentum map p: M — G* by the formula

< p(x), & >= pe(), (2.2)
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where € € G, (1) € G*.
2.4. Let us cousider a constraint set e = 0, V&€ € ¢. In such a
situation the reduced phase space Mg is obtained as the quotient [12]

Mg = My/a(G), (2.3)

where Afy = ¢ (0). For the description of conditions under which Afy;
will be a mnanifold, see [6, 13]. It may be shown [12. 4] that there is a
natural symplectic structure wg on the space Al

3. Geometric quantization

3.1. To quantize a classical system with the phase space (47, w) means
to coustruct an irreducible unitary Lie algebra representation

r: C*(AM) — EndH, (3.1)

of the algebra C*(A[l) in the algebra EndHy of linear self-adjoint oper-
ators in some complex Hilbert space Hy. To do this, it is necessary to
introduce

1) a prequantization bundle L over Af;

i1} a polarization P of Af;

1ii} a wetaplectic structure on L.

3.2. We define the prequantization bundle L over A as a complex line
bundle with the covariant derivative ¥V (the connection) compatible with
the Hermitian structure <, > in fibres, the curvature 2-form Fg of which
(Fo(X.Y) = [Vy,Vy] - Vixy]) coincides with the symplectic 2-form w
on M.

Proposition [1-4]. The prequantization bundle L over (M, w) exists
if and only if the cohomology class of w is integral

3.3. Take for the Hilbert space H of prequantization the space £2(Af, L)
defined as the completion of the space of smooth sections of L over M
with comupact supports with respect to the inner product

(s,t) = / < st > wh, (3.2)
D

where <. > is given by the Hermitian structure of L. Then we define the
Kostant-Souriau prequantization r: C*(M) — EndH by sctting

r(f)=f—-1iVy, (3.3)



The introduced Hilbert space H is too large to represent the phase space
(M. ) and we ueed a polarization.

3.4. Let TN be a tangent bundle over M and T°M = TM @ C
its complexification.  We call by a polarization of (A{,w) a subbundle
P C TY)M such that

i) a fibre P, C TEMM is a Lagrangian subspace in TEM for all z € M,
i.e. the restriction of o to P, vanishes and diinP, = n;

i1) a space of sections of the bundle P is closed under the Lie bracket.

If X — X is a complex conjugation then a subbundle P will also be
a polarization. The polarization P is called the Kahler polarization if
PP =0.ic TEM = P, P, for any x € M.

3.5. Let P be a polarization P C TCAM of a symplectic manifold
(M.). Then we can introduce the Hilbert space of quantization

Hp={pe ¥ ML): Vyv=0,VX€ET(M,P)}, (3.4)

where by (1, 17) we denote the space of sections of a bundle V' over W.

3.6. The introduction of a metaplectib structure on M is equivalent
to the extention of the structure group of the bundle TAf from the sym-
plectic group Sp(2n, R) to the metaplectic group Mp(2n, R) which is the
connected double covering of Sp(2n, R).

Proposition [1-4]. A metaplectic structure on M exists if and only
if the 1st Chern class of M is even.

3.7. For the fixed positive Kahler polarization P of M (see [14]) we
consider the spaces Py and f’; of the 1-forms dual to P, and 2,. These
spaces are scctions of the bundles P* and P* accordingly. Now let us
introduce the determinant bundles Deth = A" P* and Detp = A™ P* [4].

The existence of the metaplectic structure on (M,w) is equivalent to
the existence of a line bundle Pfp over M such that (Pfp)? = Detp |3,
1]. Analogously, there exists Pfp : (Pfp)? = Det}.

3.8. Let us now consider the bundle L @ Pfp. A connection in L
can be extended to the connection in L ® Pfp (see [4]) and we obtain a
covariant derivative V' acting on the sections s’ of the bundle L @ Pfp.
In a corrected guantization scheme, the P wave functions are defined to
be the smooth sections of L ® Pfp such that Viys' =0, VX € P.



4. G-invariant polarizafions

4.1 Let M be a symplectic manifold possessing a connected Lie group
G of symmmetries. Let G x A — Al be a Hamiltonian action of G on A
and @ : M — G* be the associated momentum mnap (sce Sect.2). There
is a canonical representation of the Lic algebra § on smooth sections of
L given by the operators {see Scct.3.3):

r(pe) = e — 1V x,, (4.1)

where e € C*(M) and X; € 0.(G) correspond to £ € G (sce (2.1)). We
suppose that there exists a global action of G on L such that the induced
action of G is given by (4.1).

4.2 Consider the submanifolds My = »~}(0) and Mg = My/a(G) in
AL, Let x: My — Mg be the projection map and n: Ay — M be the
inclusion map.

Theorem[6]. There is unigue line bundle (Lg, VY) with connection
V¢ on Mg such that

x'Le=nL and x*'V¢=7'V. (4.2)

The curvature of the connection VS is the symplectic form wg.

Since the Hermitian inner product <, > is G-invariant, there is a
unique Hermitian inner product < , >¢ on L such that x* <, >g=
n* <, >. Thus Lg, V¢ and <, >¢ are prequantumn data of M.

4.3 Let P be a polarization of M, It is clear that we may associate
with P> a polarization Fg ef the reduced space Mg if and only if the
polarization [? is invarlant with respect to the action of the group G
[6-12]. In particular, in [6] the following theorem has been proved:

Theorem. Let G be a connected compact Lie group, M a Hemiltonian
G-space and P a G-invariant, positive definite Kahler polarization of M.
Then there is canonically associated with P a positive definite polarization
Ps of the reduced space Mg.

4.4. Having polarizations P and P, one may introduce the following
Hilbert spaces

HE = {¢ € Hp: »(pe)y =0, VE € G}
Hp,={¢ € L% (Mg, Lg): V5¢=0, VX € Pg} (4.3)



In [6 11] it has been proved that these spaces are isomorplic as vector
spaces:

Hi= Uy,
We shall not discuss here the more difficult guestions connected with the
introduction of an inner product on HE and Hp, (see [4. 6-11]).

4.5. Generally speaking, it is difficult to properly correlate the quan-
tization of the extended phase space M and the reduced phase space
Mo In Seet 4.2-404 1t was accomplished by requiring that the auxiliary
striuctures on (ML o) necessary for quantization (in particular --- polar-
ization ?) be G-invariant. Then they can be projected to compatible
quantization structures on (Mg.w). But the condition of G-invariance
ol polarization P does not always take plice and we shall consider the

possibility of its weakening.
5. Weakly G-invariant complex structures

5.1. Suppose we chioose a positive Kithler polarization of the symplee-
tic manifold M. This polarization 1s in the vne-tu-one correspondence
with the complex structure JJ on M. It consists of a linear operator J
from TA/ to itself such that J* = ~1 and

(TN JY] = [N Y]+ JJX. Y]+ JINJY] XY eDOLTM) (5.1)

Condition {5.1) means that the alnost complex structure J is iutegrable

and one may introduce the Kahler metric

gL Y) = (X JY) (

M
o
—

with Killer form w.

5.2. Let f be a diffcomorphism of the manifold AF and f, an isonior-
phisu of the tangent space Ty-1;) M ontu the tangent space T:AL. This
isomorphisin may be extended up to the isomorphism of the tensor alge-
bra in Ty-i(,yM and the tensor algebra in T, A1 [15]. This isoworplism
we shall denote by f For any tensor ficld B we shall define the tensor
ficld fB in the following way:

(fB)e=f(Byjry), « €M (5.3)

5.3. Let X bea vector field on M and f; = Y w one-paranceter group
of trapsformations, generated by X For cach £ we have an automorphism



f of the tensor algebraon M. For any teusor ficld B on M a Lie derivative
Lx B is defined by the formula [13]:

L 1g; )
£xB =l /B -B]. (5.4)

If the E-parameter subgroup a(G) of the sywinplectomorphisms group
acts on J1f then we have & Hamiltonian vector fields X¢ (€ € G), to which
the one-parameter group of transformations fg (g = exp(t€), alg) =
fo = exp(tX¢)) corresponds. Thus, we may define the derivatives Lx B
for any tensor field B.

5.4. Consider the principal Sp(2n, R)-bundle

p:P— A (5.5)

of symplectic frames on Al and the group AutP of all automorphisms
of P (which are bundle maps). A map A of P outo P will be called an
autornorphism of principal fibration if A(qb) = A(¢)b for every ¢ € Pl €
Sp(2n, R). Each automorphisin A determines a transformation of the
base A/ = P/Sp(2n, R); we shall denote this transformation by p(}).

The group of automorphisms of the principal fibration P determining
an identity transformation of the base will be denoted by Gauge Sp(2n, ).
Gauge transformations of the space 7 are defined by smooth functions
7(x) on M with values in the group Sp(2n, R) and a set Gauge Sp(2n, R)
of all 7(x) may be identified with the space of sections of the associated
bundle P X gpom ) Sp(211, R) — M.

We have a homomorphism « of the connected Lie group G into Symp( M,
w). The group Symp(M,w) of the canonical transformations of the
manifold M is a subgroup in the group p(AutP) which preserves the
symplectic forin w. Thus we defined the action of two groups on P:
the action of the group a(G) C Symp(M, w) C AutP and the ac-
tion of the group Gauge Sp(2n, R) C AutP. Let us also consider
a group Aulg = o(G) x GaugeG, where GaugeG C GaugeSp(2n, R).
The group Autg is the group of pairs (a(g),7(z)), where a(g) € a(G),
7(x) € GaugeG and the product of pairs (a{g1), ni(z)) € Autg, (a{g2),
m9(z)) € Autg is a pair (a{y), 7(z)) given by formula

alg) = a{g)algs), 7(z) = n()7e(x). (5.6)



5.5 The action of a{G) on M induces an action on J. This action on

the tensor of the complex structure is given by
a(g)J == f,J (5.7

Analogously, the action of Gauge G on P induces the fullowing action on
J € Guuge Sp(2n, R):

7= 1 = (7)) = 7(2) 77 (2) (5.8)
Finally, the action of the group Aufg on J has the formn
¥(g, 7)J = 7{alg)J). (5.9)

Suppose that there exists a homomorphism g — {7,(z)} of the group

G into the group Gauge G C Gauge Sp(2n, R). Then we may define a

honwomorphism r of the group G into the group Autg by the correspon-
dence of an element

7(9) = (a(y), 7,(z)) € Autg (5.10)

to the element g € G (cf. [16]). The action of 7(G) on P induces the
following action of the group 7(G) C Autg on J:

r(g)d = 7,(alg)]) == (r(9)]), = 74()(f;])er; Hz). (5.11)

5.6. The usual G-iuvariance of the complex structure means (see [6,
17}) that J is invariant under automorphisms a(g) € a(G), i.e.

alg)yJ =J, VYged. (5.12)
Locally the coudition (5.12) is equivalent to the following condition:
LxJ=0, Ve, (5.13)

where Ly, is a Lie derivative along the Hamiltonian vector field X¢ €
a,(G) on M.
From (5.12) it follows that G C U(n) and therefore

T(g)J = Ty(a(g)]) = T,J = TgJTg_l =J, VgeGqa,



because 7,(2) € Gy C (U(n)):. Thus, from the invariance of J under
a(G) follows the invariance under the group 7(G).

5.7. We would like to lmpose the weakened form of the symmetry
requirement. We shall weaken the conditions (5.12) demanding the in-
variance of the complex structure J only under the 7-automorphisins:

T(g)J =J, VgeaG. (5.14)

We shall call condition (5.14) the weak G-invariance condition of the
complex structure. We have already noticed that the weak G-invariance
follows from the standard G-invariance, but the converse is not true.

To define the T-automorphisins one must require the existence of the
fields 7,(a) on Af. Let us suppose that a symplectic connection vV is
defined on AL, Let us also suppose that there are k = dimG covariantly
coustant tensors e = {I‘VE(I‘)Z}, @IVE = 0, £ € ¢, which constitute
a basis of the Lie algebra G, C sp,(2n, R) for every & € AL, Then for
g = cxp(€) the function 7,(x) may be expressed in the formn

Ty(2) = exp(We(x)). (5.15)
It is clear that in virtue of covariant constancy of the tensors We, all such
functions 7, are completely determined by their value at the point « =0
and paramnetrized by the group manifold G.

5.8. Counsider the transformation (5.7). Let us denote by a(l) the
subgroup in o(G) under which the complex structure J is invariant. The
group (') is the image under the homomorphism « of the subgroup K
of the group G. The Lie algebra G may be decomposed in the following
way

G=K®Q, (5.16)
where K is a Lic algebra of the Lie group IV, and Q is a tangent space in
the origin of the homogeneous space @ = G/K.

We shall nuniber the subspace X in G by the indices 4, 3, ... = 1, ..., k=1,
and the subspace @ in G — by the indices @, 3, ... = 1,...,{. Then locally
the condition (5.14) of the weak G-invariance may be written in the form:

Ly J; =0, Ly J; = JI;\(‘VG)’X — (I'Va);}Jj’, (5.17)

~where (WY, X, ) are the Hamiltonian vector fields on M coustituting the
basis of the subspaces a,(K) and «,(Q) in the Lic algebra o, (G).



5.9. Taking the Lic derivative Ly, of the identity J¥ = =1, we have
(Lx, J2) TV + Ty (Lx,d5) = 0. (5.18)

Condition {(5.18) means that £y J transfonus the (—i) cigenspace TW bAf
of J to the (+7) cigenspace T and Lience

Ly J e Q™QnTtg

where T denotes the holomorphic vector hundle of the (1.0) tangent
vectors. Lincarizing the condition (X, 7Y )+ «(JX, YY) = 0. we find
that [18.19]:

. , Y : .
Oy =Dt = de (5.19)
o ():n
where o= wyd=t Ad:z" is the Kihler forn acboo= 100, and
J J
B,=DBY—  — (5.20
' C g O ' )
are the C sections of the bhundle T3 TN over M. Tensors B,
are symmetric (e, B2 = B) and may also be decomposed with respect
to the basis D% o u'T'v with cotponents
’ SRR AR -
Bi = {008 — (00507 (5.21)

5.10. As already noted. the conditions (2.11) and {5.17) mean that
there are b tensor fields We on the manifold M. In particular, there
are [ = dimG [N tewsor fields 117, = {(H",)j;} or, equivalentlyv. 7 fields
B, = {13} which are the global sections of the budle

R X (1'/1\- — .‘1 (f

22)

<t

over M, associated with the principal G-bundle R(, G) over M.
Let us denote the total space of the bundle (5.22) by Z. From the
purcly ditferential geometric point of view, this space is the product

Z=MxG/K. (5.23)

L.e. the trivial bundle.

The conditions (5.14) (and (5.17)) mean that the complex structure J
depends on the I = dimG /K parameters 1, (coordinates on G/R) and
may he represented iy the form
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J =110 7, (5.24)

where Jy is a fixed (canonical) complex structure and the element 7, €
Guauge@G has been written out in (3.15). The complex structure J given
by this formula coincides with Jy if and only if 7,(z) belongs to the
subgroup X', C G,. Heuce, on M we have the I-paramctric family of
covariantly constant complex structures which are weakly G-invariant by
construction. Notice that the weak G-invariance of the complex struc-
ture introduced by us is analogous to the gencralized G-invariance of the
counection in the principal fibre bundles studied in the papers[16, 20].

6. Symplectic twistors

In Scct.5, the bundle (5.23) 7 : Z — Al appcared when we were
describing the weakly G-invariant complex structure J. Here, we shall
describe this bundle in more details.

6.1. Denote by R?" the real vector space of dimension 2n with coordi-
nates (p, ) = (p1, - Pus 41, -, ¢n) and the standard symplectic structure

wo = dpg A dyg. (6.1)

Let S(R*) be the space of Kihler structures on R®", i.e. complex struc-
tures J on R?" compatible with the symplectic structure wy. It means
that J € End(R*") belongs to the group Sp(2n, R) of linear symplectic
trausformations of R**.

The space S(R?) = Sp(2n, R)/U(n) of the Kahler structure is a Her-
mitean synunetric domain of dimension n(n+1)/2 which can be identified
with the Siegal unit disc S,,. This disc cousists of complex n X n matrices
D subject to

D'=D, [—-D*D>>0 (positive definite), (6.2)

where D! is the transposed matrix of D, Dt — its Herinitian conjugate.
For proof of the identification Sp(2n, R)/U(n) £ S, note that the action
of Sp(2n, R) on R*" ~ C™ can be given (in coordinates z%, 2% on C™) by

=3 Ij) (6.3)

the block matrices
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: . 1, . ¢
preserving the matrix of the symplectic form wy: gwog” = wo,

_171
[.e. subject to the relations

AB'=DB'A, AA*-BBY =1 (6.4)

The group Sp(2n, 2) acts transitively on the Siegel disc S, by the
fractional linecar transformation

D — (AD + B)(BD + A)™! (6.5)

anel the isotropy group of the point D = 0 is U(n).

6.2.. Let (M,w) be a symplectic manifold of dimension 2n. We intro-

duce the bundle

wp: S(M) — M (6.6)
of almost Kahler structures on M associated with the principal Sp(2n, R)-
bundle P = P(AL, Sp(2n, R)) over A (symplectic frame bundle). The
libre 73 }(z) in a point 2 € M is the space S(T. M) of Kahler structures
on T, M defined above.

As in the Riemannian case, taking a symplectic connection on M we
can provide S(M) with a natural almost complex structurc. In fact, let us
denote by V the symplectic connection on M. It generates the splitting
of the tangent bundle TS(A) into the direct sum

TS(M)=H®V (6.7)

of horizontal and vertical subbundles of T'5(M). The fibre V, in p €
S(M) is tangent to the fibre 75! (mo(p)) of S(M) — M through the point
p- Recall that the fibre of S(M) — A over my(p) is identified with
S(TM) = Sp(2n,R)/U(n) so it has a natural complex structure J".
Hence we can define an almost complex structure J on S(M) using the
decomposition (6.7) by setting

TJ=J"a&J", (6.8)

where J” is an almost complex structure equal at a point p € S(M) to
the complex structure jp" on H, = TrypM given by the point p = (z, J;).

6.3. In Sect.3.7 we introduced the half-form bundle Pfp over M for
the fixed positive I{ahler polarization P of M. Pnlarization P is totally
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fixed by the complex structure J ou . that is why we shall denote the
Lhalf-fortn bundle by Pf,. As fibres of the bundle £f; — Al in a point
z € M we have Pf,(x) € C.

We have the bundle S{M) — A of positive Kiahler structures on M.
Let us introduce the complex line bundle {14, 4]

Pf — SN (6.9)
over S{A), which has fibre Pf;{«) at (o, J(z)) € S{A). The bundle

(6.9) defines a metaplectic structure on M. The restriction of Pf to the
fibre of S(A) over some x € A is siwply the half-form bundle on the
space S(T ALY = Sp(20, R)/U(n) (sce [14, 4]). The restriction of Pf to
the base of the bundle S(Af} is the half-form bundle Pf, mtroduced in
Sect.3.7.

6.4. The space S{A) has a natural alinost complex structure J; using
it we can analyze the real geometry of M through the cotuplex geownetry
of S{A). Unfortunatcly, this almost complex structure is alinost never
integrable (it is integrable <= M is conformally syplectic flat, of. [21
2141, 50 S(A1) is ouly an almost complex wanifold. However, it is possible
to define the symplectic twistor Lundle of M as the bundle

T Z—M {6.10)
together with the fibre preserving map
j:  Z— S{A)

over AL Otherwize, we deline Z as a subbundle in S{Af) with coruplex
fibres. Each z in the fibre Z, over o = 7(z) then defines a symplectic
complex structure on T, A1 via the isoworphism with the complex vector
space T2 Z2/V..

Counditions of the integrability of the complex structure on Z are more
weuk than o S{AT), and in [22-24] one way find @ number of examples of
the maniflolds A7 whichh are not conforinally flat and to whicli the twistor
spaces Z with the integrable complex structure J correspond. Naely,
in [22] it lax been shown that the almost complex structure J on Z
is integrable if the curvature RY and the torsion TV of the symplectic
connection V on M satisly the equations

JATYICXICX) =0, (6.11a)
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JIRY (TN )T =0, (6.11b)
for all J, € Z;, = =7 o) aud XY € T,M. Here JE = %(1 F ¢J) are

the associated projectors onto i eigenspaces of J. For examples of the
manifolds. connection ¥ on which satisties condition (6.11), see [21-24].
6.5. In this paper we shall consider the twistor manifolds Z intro-
duced in Seet.d by deseribing the weakly G-invariant complex structures.
A connected Lie group G is a closed subgroup of Sp(2n, R). Let us con-
sider o G-invariant submanifold  of S{7*") witl: a G-invariant complex
structure obtained by restriction to @ of the complex structure JY on
SeR*y. We also suppose that Q 1s a reductive homogeneous space G/IV,
where A is a subgroup in . The Lie algebra G of G may be split as
G o= A Q then the complex structure Jg on Q) is determined by the

splitting,
Q' =Qr Q. (6.12)

Let B — A be a principal bundle over M with a structure group G,
which is a subbuudle iu the principal bundle 7 — 37, We shall introduce
o bundle

7 2=RxeQ — M (6.13)
wliclt 1s the associated bundle with a fibre . Iu this way we shall not
consider the bundle S(A7) of all almost Killer structures on A/, Lut the
subbundle Z in S(AT).

7. Double twistor fibration

7.1. The twistor bundle introduced by us is trivial: Z = M x
G /K. The V-parallel complex structures J on I under consideration are
parametrized by the space G/, That is why we may define a projection

piZ —=GIN (7.1)

by correspondence a poiut (0, J;-n) of the manifold G/R to cach point
(r,.J;) of the manifold Z, transfering J, V¥ -parallel to the origin z = 0,
where all non-equivalent structures are parametrized by the manifold
G/L. We shall denote a point J € G/ aud the corresponding complex
stincture on M by the same letter J. The fibre p~Y(J) in a point J €
G/I can be identificd with the complex manifold ALy = (M, J), t.e. M
provided with the complex structure corresponding to J € G/ K.
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Thus. we Lave o double fibration

z -~ G/K
| {
M

-1
[§V)

which is cructal for our consideratious. Double fibration shuilar to (7.2)
arises naturally i different problemss of the twistor theory, In particular,
Hitchin has defined [17] a double fibration of the type (7.2) where M
is substituted by a dn-dimensional hyper-Rabler manifold and G/ =
SU23/U(1) = CPY I this case Z appears to be a (2n + 1)-ditwensional
complex manifold and potuts of A7 are identified with real hiolontorphic
sections of Z — CPY. The wain differcuce between these coustructions
and our diagratun (7.2) is that the twistor spaces, cousidered in [17], consist
of adiost cotplex structures cowpatible witl a Rictiauniau metrie while
ours are of complex structures compatible with a syuplectic form. So it
is naturad to call the twistor space under cousideration by a symplectic
twistor space.

7.2. Let us describe the definition of the alinost complex structure on
Z by the nse of the structure of the double fibration (7.2). Consider the
bundles 771 (TAM ) and p~HTQ) over Z which are the pullbacks of the
tangens bundles of AL and @ = G/ respectively. The projections 7 and
g generate the natural hundle homomorphisins

m :TZ — 7 YTM), p:TZ = p H(TQ). (7.3)

We call the kernel of o, the vertical subbundle V of TZ aud the kernel
of p, the horizontal subbundle H of TZ. Note that the fibre V. in a
point z € Z is identified by p with the tangent space space T;Q in the
poiut J = p(z) €  aud so has the complex structure Jp defined on
() = G/I. Now we can define an almost complex structure J on Z in
exactly the sume way as in Sect.6. The projection g1 Z — G/K will
becowe a holomorphic map w.r. to this structure J.

7.3. Let L — A be the preguantization line bundle over Af with
the counection V. Denote by L = Z the pull-back of L to Z. Then Lis
4 liolomorpliic bundle. It is esseutially Ward’s construction from twistor
theory (cf. [2D)). .

Tu prove the assertion denote by ¥ the pull-back of the connection V
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to L and define a d-operator on section § of L—2Z by setting
95 := Vg, ' (7.4)

where V@1 is the (0,1)-component of V w.r. to an almost complex
structure J on Z introduced above. The symplectic structure w on M
being compatible with all Kahler structures on M has the type (1,1) w.r.
to any such structure, lience the curvature Fy also has the type (1,1)
w.r. to any Kéller structure. According to the definition of an almost
complex structure on Z it means that the curvature Fg of the pulled-
back conncction V on L has the type (1,1) w.r. to the almost complex
structure of Z It follows that

0% =F)"5 =0, (7.5)
i.c. the introduced J-operator satisfies the integrability condition of
Newlander-Nirenberg.

7.4. In Sect.6.3 we have introduced the half-form bundle Pf over
S(AI). We have the map j : Z — S(M) (see Sect.6.4) and, hence, we
have a pull-back bundle j*Pf — Z over Z. We shall denote this line
bundle by Gh := j*Pf ~

Gh — Z (7.6)

which will be called, following the physical tradition, the ghost bundle of
Z (or the restricted half-forms bundle).

The restriction of Gh to the fibre of Z over some z € M will be denoted
Ly Gh, . The restriction of Gk to the base M of the bundle Z we shall

denote by Gh, (cf. with Sect.6.3). ) N
Let us also introduce the product of the bundles L and Gh:

LeGh— Z (7.7)
Tle restriction of this bundle on M will be the following bundle
L®Ghy — M, (7.8)
and its restriction on fibre . (z € M} will be
L.®Gh, — Q. (7.9)
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So, we have a double fibration (7.2). that is why we may transfer the
bundle (7.9) to the point z = 0 and obtain a holomorphic line bundle

L'gah — Q, (7.10)
where L' := Lo_g, Gl := Ghymg, Q := Q0.
8. Fock bundle

8.1. Let us consider the space Hy given by formula (3.4). It is the
space of holomorphic (w.r. to the complex structure J) sections of the
bundle L over Al; = (A, J). i.c. Al provided with the complex structure
correspouding to J € G/I. In other words, H, cousists of holomorphic
sections of L over p~NJ) = My

In particular, we shall consider Hy := H jo.
The space G/ is a paramcter space of Niahler polarization J. As J
varies over (Q = G/IV, the vector space I defines a vector bundle

H—2Q (8.2)

over Q with the fibres Hy in points J € Q. H is a subbundle of the trivial
Hilbert bundle with a total space Q x L*(AM, L).

8.2. The space H coincides with the space of sections holomorphic
w.r. to the alinost complex structure J on Z of the bundle L over Z:
H = O(Z,L). The bundle (8.2) is the homogencous G-bundle over G/K
(sce, c.g., [26]) and we mnay use this for its description.

Let us identify the group G with its image o(G) in Symp(M,w) on
Liomomorphism a.

We denote by A a subgroup in G preserving the complex structure J, .
Formula (4.1) gives the representation of the Lie algebra K of this group in
ITy from which, by the expounentiating, we may obtain the representation:

K5k— R(k): Hy— I, (8.3)

of the group A" in Hy = Hy,.
Now consider the product space G x Iy, The group I acts ou (g,9) €
G x Hy as follows:
ko (g,p) = (gh, RUT" ). (8.4)



This allows s to define the complex vector bundle over G/ A
H=GxyHy— G/I (8.5)

with the fibres Hy in the points J € G/IV.

Tlie Fock bundles like (8.2) aud (8.3) were introduced and have been
considered in the papers [27. 18, 19]. In these papers the connection in
the Fock bundles has been defined: moreover the Bowick-Rajeev approach
[27] differs from the approach of Hitchin (18] and Axelrod-Pictra-Witten
[19].

8.3. We Lave a bundle L over Al and a counection V in L with a
curvature Fv = w. Because M is the Kabhler manifold with a complex
structure J then a canonical polarization I is defined by

Po={Y, € TS\ : J,Y, = ~iY,, a€]ll}. (8.6)
L Sect. 3.7 the anticanonical bundle Detp of antiholomorphic n-form on
Al has been deseribed. Because the Kabler form w defines a cohomology
class [w] € HWJ\I.T‘) where T = TU9A7 | then there exists a nunber A
such that

Detp = L. (8.7)

The curvature of the bundle Detp, the Ricei form,

1 o
R= E;Rubd: AdE, (8.8)

represents the first Chern class of A, and from (8.7) this is coliomologous
to Aw. Since the Ricel forin R and Aw are cohomologous, we may define
a real function @ characterized by

) 9P
R+ Au«‘.;l} = *215—:;0—5; (S8.9)
and normalized by the condition that its integral over MM is zero.
The (0,1)-forms
od .

g, = (-21'[3;1%“8—_—“ + (Vaijb),;,,(.) oz (8.10)

are J-closed [18] aud at least locally there are functions f, such that
of., = 0,. (8.11)



8.4. We Lave a holomorphic fibration Z - ) over sume open set
Q' C @ with coordinates (4. ..., #;) such that cacli fibre is a complex mwan-
ifold. A covariant derivative in the Fock Lundle 17 — @' in coordinates
t, on Q' wayv be written in the foru [18, 19):

[4)]

D = dt" [5‘3— + (—2:}\—) ([VU(B;;LW) - ‘ZB"LO—:IV,, - fu)} . (8.12)
where A, B,. ® and f, were introduced carlier. Because the holonomy
of this conncetion 1s given by a scalar multiplication, D is projectively
flat (sce [ 18, 19]). Let us consider the bundle GI' — @ introduced in
Sect.7.4. Take the tensor product of H with a line bundle GI — @,
connection of which has the opposite curvature to that of H. By certain
conditions, the tensor product i ¢ G will have a flat connection D' (see
[18, 19]) and we may introduce into consideration the bundle

F={verQaoa): pv=o0} (8.13)

of covariantly constant scctions of the bundle H @ GV

8.5. Ou the space F one may define a metaplectic representation of the
Lic group G € Sp(2n, R). Using the fact that H @ Gl is a homogencous
G-bundle. the action of y € G on ¥ € T'(Q, H GH') may be defined as
126]

(gV)(J) = g(¥(g™'T)), (8.14)
wlere G acts canounically on J € G/IV from the left and the action on
W(g~'J) € H,-1y is described in [26].

For a physical Fock space F¢ corresponding to the quantization of the
manifold Al = ©~1(0)/a(G) one should take

Fo = {\IJ EF: gl=", Vge G} (8.15)

Thus, we described the physical Fock space of the system with the
first class constraints as a G-invariant subspace in the space of covariantly
constant sections of the Fock buudle over the space of weakly G-invariant
complex structures on the phase manifold Af.
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