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1 Introduction 

In the last years a considerable number of works was devoted to the quantum theory on 

space times with conical singularities [1]-[12]. The line element on a conical space can be 

written in a form like on the plane in polar coordinates 

da2 = dr2 + r 2 V . 0 < r < oo (1.1) 

but with a polar angle if ranging from 0 to an arbitrary positive parameter or. Besides, 

the cone (1.1) can be considered as a space whose curvature is completely concentrated 

at the apex г = 0 and looks like a delta function [13]. Singularities of that sort arise 

at the points on the world sheet of idealized cosmic strings with zero thickness [13],[14]. 

Even if the string space-time is flat out the world sheet, its topology is non-trivial and 

therefore the spectrum of vacuum fluctuations gets modified as compared to the case of 

the Min4owsky space. This effect has been investigated by many authors [3]-[6] who have 

determined the expectation value of the renormalized energy momentum tensor. Also of 

interest is quantum theory on orbifold factors of the Riemannian manifolds [9]-[12] where 

conical singularities appear at fixed points of the corresponding isometry groups. 

In the present paper we investigate the global effects of vacuum polarization around 

a cosmic string by using the trace of the heat kernel on the cone (1.1) that is shown to 

look essentially different at asymptotically small values of the proper time as compared to 

the plane heat kernel. For this reason, the effective action obtained on its base includes 

a surface divergent functional given on the string world sheet. It is interesting that these 

surface infinities can be removed by renormalization of the string tension rendering finite 

the total renormalized energy. 

This indicates a close analogy with quantum theory on manifolds with boundaries 

[15],[16] where similar divergent terms appear on boundary surfaces giving rise to renor

malization of bare surface gravitational actions. The analogy can be continued further 

to demonstrate that the total renormalized energy is finite owing to cancellation of the 

non-integrable divergence in the energy density with a surface counterterm resulting from 

the bare string tension. 

The remainder of this paper is organized as follows. In Section 2, an asymptotic 
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expansion of the trace of the heat kernel on a cone in powers of the proper time is found. 

To characterize the effect of singularity at the apex, a more general problem is worth to 

be set up. In its framework 'he diagonal part of the kernel is considered as a functional 

and the heat coefficients turn out to have a delta function behavior at the cone tip. It is 

used in Section 3 to derive the renormalized effective action, including a surface term, and 

the total energy of a self-interacting scalar field around infinitely thin straight string. The 

approach by Critchley, Dowker and Kennedy [15] is explored then in Section 4 to reconcile 

our result with calculations [3]-[6] that have demonstrated a non-integrable character of 

the renormalized energy density. Conclusions and remarks are presented in Section 5. 

The effects of the curvature are partially considered in Appendix A for the case of the 

sphere with two conical singularities at its poles and some exact results concerning the 

generalized zeta-function are presented. 

2 The heat kernel on a cone 

The heat kernel A'„ of the Laplace-Beltrami operator Д„ on the cone (1.1) is a solution 

of the Schrodinger-like equation 

{d/ds + &a(z))Ka(x,x',s) = 0 (2.1) 

with the boundary condition 

Ka(x,x',0) = Sa(x,x') . 

(Sa is the delta function on (1.1)). 

Let us define the diagonal part of the heat kernel Ka(x,x,s) as a functional on the 

functions / ( r , ip) integrable on the cone and such that the product r / ( r , 9 ) is an infinitely 

differentiable function at zero radius r = 0. Then, as it will be shown below, the following 

expansion 

Tr (е-л»/) = [ V9W ** Ka(x,x,s)}(x) = р Г и / К " + ES (2.2) 

as s —• 0 holds, where yg(x) <Px = rdrd<j> is the integration measure on the cone (1.1), 

aa,„(/) are functional on the chosen space of functions and ES means the terms that 
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vanish exponentially as з —» 0. It is interesting to mention that this series includes half-

integer powers of the proper time s and has therefore the form of an expansion on a 

two-dimensional manifold with a boundary [17]. 

The kernel Ka can be constructed explicitly if the eigenfunctions and eigenvalues of the 

Laplace-Beltrami operator on the cone are known. We shall consider the Friedrichs self-

adjoint extension of the operator Aa so far as in this case it is positive. This corresponds 

to the wave functions regular at the conical singularity [8]. 

The solution of the problem (2.1) can be given then in an integral form by using the 

heat kernel Ki-, = К of the Laplace operator Д on the plane [1],[2] 

Ka(x,x',s) = ~ / cot (тгоГ'ш) K(x{w),x',s)dw , (2.3) 
2o Jc 

where x(w) = (r cos(y? + u;),r sin(y> + w)),x' = (r'cosy>',r'siny>') and 

/ ^ , х ' , , ) = ^ - е х Р ( - ^ ^ ) . (2.4) 

The contour С in (2.3) has two branches, one in the upper half complex plane of the 

parameter w going from (—т — Дуз + too) to (тг — Ду? -f too) and the other in the lower 

half-plane from (л- — Дуг — too) to (—IT — Дур — too), see Appendix A and Fig.l.b. in [2]. 

It follows, in particular, form the representation (2.3) that Ka can also be written as an 

infinite periodicity sum 

oo 

Ka(x,x',s) = Yl l<«,(x(ma),x\s) (2.5) 

of the heat kernel Л'то = lima.,,» Ka on an infinitely-sheeted Riemann surface [1]. 

It is useful to represent (2.3) for |Дуэ| = |y — tfi'\ < ir in a bit different form 

Ka(x,x',s) = K(x,x',s) + ^- I cotUa'iw)I<{x(w),x',s)dw , (2.6) 
2a Jr 

by explicitly writing the contribution of the plane heat kernel. In the remaining integral 

contour Г consists now of two curves, going from (—ir — Дуз + гоо) to (—тг — Ду? — ioo) and 

from (тг — Ду> - too) to (я- - Ду; + ioo) and intersecting the real axis between the poles 

of the integrand — a, 0 and 0, a respectively. The equation (2.6) can easily be obtained 

from (2.3) by transformating of the contour C. 
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Let us return now to tile asymptotic expansion (2.2) and calculate the heat coefficients 

"=.."(/)• I' turns out chat aa<0(f) is determined by the heat kernel on a plane due to the 

first term in (2.6) and simply is 

*.Af) = J V9 **/(') , (2.7) 
whereas the other coefficients a 0 , n ( / ) , n > 1, result from the integral term in (2.6). 

'Го evaluate them, when the singularity at г = 0 is taken into account, we restrict the 

integration in (2.6) by a final part Гд of the contour Г of a size Й, passing then from Гц 

to Г. One can thus write for the difference 

/ 
^/y d2x (Ka{x,xss) — K(x,x,s)) f(x) •• 

г [x f ( r 2 s i n 2 w / 2 \ 
= lim / rdrfa{r) / cot (тгшсГ1) exp — ) dw , (2.8) 

r „ - r STTOS J0 JrR V s I 

fu(r) s J° dp f{r,ip), and change the order of integration. So far as Г can be chosen so 

that /ic(sin2 tu/2) > 0, then as s —» 0 the following expansion 

r=0 s' + ES Г i r t \ ( r*sm2w/2\ 1 ^ Г((п + 1)/2) «f (r/„(r)) 

(2.9) 

holds (Г(х) denotes the gamma-function). The sign in the square root of sin2 iu/2 in (2.9) 

has to be chosen from the conditions that are determined b} the properties of the integral 

over г 

(sin2u)/2) ' / 2 = siniu/2, ftesinu)/2>0, (2.10) 

(siii2iu/2)1/2 = - s in iu /2 , flesinu;/2 < 0, 

where the upper one is valid for the right part of Г; whereas the lower, for the left. By 

using (2.9) it is not difficult to show now that the action of the other functionals aan on 

the considered space of functions gives 

П"/2) n , i Г А ^-'(г/(г,^)) , <f\ ^ " / 2 ) ^ , ^ / " . « * - ' ( г / ( г , у ) ) . 

where Cn(a) are the following integrals 

(2.11) 

C„{a) = -— f coi{-Kwa->)(s\n'w/2)-"/2dw . (2.12) 
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For a = 2ir the integrand in (2.12) is a 2ir-periodic function of w and Г can be deformed 

so as the contributions of both its parts to cancel each other. In this case all Cn(a) and 

consequently a o n ( / ) for n > 1 turn out to be zero leaving the only contribution in (2.12) 

provided by the kernel K(x,x',s). 

It is important that according to (2.11) the heat coefficients aa-„(f), n > 1 act like a 

delta function and don't depend on the behavior of / at regular points on a cone. They 

would never appear if the integration over the cone in (2.2) were stopped short before the 

point r = 0, by no matter how close. 

Integrals of the type (2.12) have been discussed in [3]. For even values of indices 

n = Ik they can be converted to the following form 

C2jt(a) = — /cot(7rtuQ-1)(sin2w/2)-"du; (2.13) 
4o/ J 

and represented in terms of polynomials of the order 2fc in powers of or-1. We list here 

the values of the first two ones for к = 1,2 

C2(a)=l-((2nc-l)2-\) , (2.14) 

Ct(a) = щ ( ( 2 ™ - 1 ) 2 - l ) ( ( 2 ™ - 1 ) 2 + l l ) (2.15) 

to be required for the further analysis. However, as for the odd indices, the quantities 

t"2ic+i(a) can be given only in an integral form, see [3]. 

For a particular but important case when the function in (2.2) is assumed to be equal 

to unity in a domain of V of the cone including its apex and zero at other points the 

series is truncated and one gets the expression exact up to the ES terms 

T r ( e - , A = / V ) =-~{V + aC2(a) s) + ES . (2.16) 

This result can be immediately checked for certain values a = 27rn-1 (n = 2,3,...) when 

I\„(x,x',s) is explicitly presented as a finite periodicity sum of K(x,x',s). 

It is worth also to point out that expression (2.2) can trivially be generalized to the 

heat kernel on the space product of a cone and a smooth manifold. For instance, if the 

latter is the d — 2-dimensional Euclidean space Я ' ' - 2 with the Laplace operator Д^_2, one 

can write, by using (2.16), 

r r ( e - ^ - J + A o ) ) = _ L _ ( n , + E j _ 2 a C 2 ( a ) a ) + £ 5 , (2.17) 
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where Ud = £j.-2V is the volume of the total space and effect of the conical singulari

ties consists in appearing of the "surface" term proportional to the volume S^_2 of the 

hypcrsurface г = 0. 

So far as the space is non-compact, flj and Ej are to be infinite and thus (2.17) has 

to be treated in a regularized sense like (2.16). In this case the ES terms are significant. 

If L is a typical size of the space (the length at which the integrals are cut off), then ES 

terms in (2.17) can be shown to be of the order s~^d~2^2 exp(—L2 / s). From now on we 

drop ES as negligible in the limit L —» oo we are interested in. 

3 Quantum field near cosmic string 

Let us consider a quantum scalar field near a cosmic string being in the flat space-time. 

For simplicity we confine the following analysis to the case of an infinitely thin straight 

string that is at rest along the z axis. The metric around it can be written in the form 

ds2 = dt2 -dz2 -dr2 -r2d<?2 , 0 < ^ < a (3.1) 

and it is a solution of the Einstein equations [13],[14] 

Я^-\д^Л = -^ОТ^ (3.2) 

where the energy-momentum tensor of the string, T^ , has only two non-zero components 

Г„ = - 7 ' „ = !iS2{r) , [ d<p П rdr i , ( r ) = 1 . (3.3) 

Jo Jo 

(£г(г) can be represented with the help of the one-sided delta function; 4i(r) = 

= {ar)~16(r + 0).) From (3.2) the string tension /i turns out to be immediately related 

to the polar angle deficit [13]-[14] 

, = ^ ( 2 , - « > . (3.4) 

In this Section we concern the global effects of the vacuum polarization on the string 

space-time (3.1) that are displayed in the integral quantities like the effective action W 

or the ground energy Eo(o) of a quantum field around the string. 

As for E0(a), two different ways can be used to calculate this quartity. The first 

one is to obtain £0(0;) as the integral of the renormalized energy density < Tool1) >"ui-
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However this method cannot be applied immediately so far as the renormalized energy 

momentum tensor has a non-integrable infinity at the string axis [3]-[6] and an additional 

regularization will be shown in the next Section to be needed. Here we consider another 

way based on the thermodynamical relation between the internal energy Ep-> of the 

system at a temperature / ? - ' and the partition function Zp 

£ „ - > = < # > „ = - ^ log Ze (3.5) 

where Я is the Hamiltonian. In such approach the ground energy E0 is the energy at zero 

temperature E0 = lim^_oo Ep-i and to get it in the one-loop approximation the equation 

(2.17) for the trace can be used. 

The partition function is known to be represented in the form of a functional integral 

by passing to an imaginary time. In particular, for a self-interacting scalar field ф around 

the string with a potential V(^) one has 

Z„ = Tr(e-0") = I D4-e-s«M , (3.6) 

where йф is an integration measure and the action in the exponential 

S.W = / V^*4* faw + V(<«) (3.7) 

is given on the Euclidean section of the space-time around the string 

ds2 = dr2 + dz2 + dr2 + r 2 ( V . 0 < v > < a , 0 < т < /? (3.8) 

with periodicity in т. 

Another quantity we are interested in is the effective action IV that can be also defined 

for a finite temperature with the help of the partition function 

W = -\oSZ0 , (3.9) 

by taking next the limit /J —» oo. Its variations coincide with the thermal average of the 

functional SSC that is interpreted as a quantum operator 

SW = Zg1 j Рф JS„№]e-s-M = < 6S. >l3 . (3.10) 
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Strictly speaking, IV is an Euclidean form of the effective action but transition to the 

convenient definition [16],[24] doesn't make any difficulty for the static space like (3.1). 

To obtain W and Eo(a) in the one loop approximation let us consider the system in 

a large but finite volume f!4 of the space (3.8) that includes the string and expand the 

action Sc near its minimum 9 up to the second order terms 

SC[V + Ф1] = S,[V] + \J у/д#хф'[Ь + М2]ф' 

M2 = V"(v) 

(A denotes the Laplace operator on (3.8)). Assuming 9 to be a constant configuration 

and by integrating in (3.6) over ф' one gets 

lV[v>] = n4 K(¥>) + | l o g d e t ( A + A/2) + 0(ft2) , (3.11) 

Ea = Tpw (/?_,<X5) ( ? , 2 ) 

where П4 = /? J dv and the Planck constant ft is introduced explicitly to emphasize the 

quantum corrections. 

The second term in (3.11) is ultraviolet divergent and to get a finite expression we 

have to renormalize the effective action W[v]. To this end the dimensional 1 egularization 

[19], for instance, can be used. It suggests in our case that the space (3.8) has to be 

changed to the space product R!1'2 ® Cone, passing to arbitrary values of the parameter 

d. The quantity logdet(A + M2) can be evaluated then with the help of the following 

representation [21] 

l o g d c t ( A 4 ^ / 2 ) = 2Ylog(A + A/2) = - / — Tr (e-'A) e~M*' , (3.13) 

Jo s 

where at low temperature (/3 —» 00) the equation (2.17) for the trace of the heat kernel 

on Rd~2 ® Cone is valid. Besides, in (2.17) the "regularized" volumes П^, and S^-2 are 

expressed through the physical volume fi4 = /? J dv and the area S 3 = 0 J dz of the 
surface r = 0 

П^ = 1/'П4 , £«,_, = ! / £ , , £ = 4 - d . (3.14) 

Here an additional parameter v with the mass dimension is introduced to adjust the 

dimensions of the left and right sides of these equalities. After the integration in (3.13) 

8 



the regularized logdet(A + M2) at /9 —* oo reads 

/47ri/2V / 2 M* 
log det(A + Л/2) = - f i 4 (j^) I g ^ r ( e / 2 - 2) 

/ 4 J T J / 2 Y / 2 Л'/2 

~ E 2 ( A F 5 - J i 6^^ a ( e ) r ( e /2 - l ) . (3.15) 

From (3.11) and (3.15) one can see that in our case as distinct from the theory in the 

Minkowsky space an additional surface term proportional to Ej appears in the effective 

action W. After passing from the metric (3.8) to (3.1) the new term in W is represented 

by an integral over the string world sheet. Consequently it is worth to unify it with the 

string action ^ S 2 that can be added to W. This gives rise to a surface effective action in 

the total functional. 

To investigate now the renormalization let us consider a simple model of a real scalar 

field with the potential 

VM = Y^ + Uvi ' TO,'A>0 • <3-16) 
In this case the total regularized one-loop effective action expressed through the bare 

parameters AB ,mg,jia looks as follows 

wM[v] = w\v] + ivfl,aur/M = 

= Ъ (^Y^B + ̂ V*B) + \ bgdet(A + M1) + 0(ft2) + £,_, fa + овЧ>в) (3.17) 
where apart from the bare string action an additional term tjgtpB is included in the bare 

surface functional Wn,,Urj = "£-d-i(lLB + ffflVs) t o eliminate the corresponding divergence. 

To remove 

the pole part of logtlet(A -f M2) = 

= i [-"«ТГ̂ "1* + V/2)2 + ^ ^ W + \v*/2) 
С [ 107Г' 10Л"' 

from the functional W[tp] the bare constants Ад,т2
3,/хд,<тв have to be expressed through 

the rcnormalized ones A,m2,/j,cr 
\2 



/.B = , - ( / . - ^ g 2 ) + 0 ( A ' ) ) , (3.20) 

h \2oC2{a) 
32?r2 4"-" Г; + '̂) • <3-21) 

The above definitions correspond to a rcnormalization recipe in which the finite parts of 

the counterterms are assumed to be equal to zero [19]. As for the bare field yJg, it is 

related to the renormalized one ip by the equality tfg = v~'^<p because any counterterms 

in 9 B can always be removed, shifting the variable of integration in (3.6). Differentiating 

the equations (3.18)-(3.21) with respect to the parameter и it is easy to get apart from 

the standard renormgroup equations for Л and m2 the new ones for the string tension ц 

and a. 

The total one-loop effective action Wiol written in terms of the renormalized quantities 

defined by (3.18)-(3.21) can be represented as a sum of the volume and surface parts 

IV,o,M = Wvol[v] + W,UTj[v\ = Cl< VtJI(v) + У.г /i(y>) (3.22) 

where for a constant argument the functional IV,,,,/^] is expressed through the renormal

ized effective potential of the system Ve//[<|!>] ' ' l a ' '°°ks the same as in the Minkowsky 

space. This fact can be used to fix the value of the renormalization parameter v. For 

instance, in the considered model one can identify m with the physical mass, that is 

equivalent to the following normalization condition [20] 

v;; ;(0) = m2 (3.23) 

at the minimum if = 0 of V^JJ. It gives the relation inv2 = m 2 cxp( l /2 + 7), where 7 is 

the Euler constant, and 

Besides, it results to the renormalized surface effective action that can be represented as 

follows 

W.„,M = E ^ M = /« + * / - ^C2(a) (mJ + A9'/2) (log ("'2 +
Г О У / 2 ) - \) • 

(3.25) 
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Finally, the total renormalizcd energy of the string and quantum field can be obtained 

in accordance with (3.12) replacing thuie the functional W[ip\ to the total renormalized 

effective action W|„t[^]. This is the same as if we changed the definition (3.6) of the 

partition function Zg and added to the functional S,.[</>] the surface action S,urj[(p] — 

f dTdzdi + сф2). Thus, after subtracting the vacuum energy Egjfink = J Л>К//(0) in the 

Minkowsky space, we come to result 

E'°' = MW'°'^ " E°-Mink = M ( 0 ) / dz • ( 3 - 2 6 ) 

This quantity is taken at the minimum ip — 0 of the potential Vc//(v) that corresponds 

to a field configuration with zero average field strength < ф >= 0 [20]. It follows from 

(3.26) that renormalized energy per unite length turns out to be finite and equal to 

H(0) = » +-—rn*aC2(c) + 0(h2) . (3.27) 

So far as p(0) occurs from the surface functional (3.25) the non-zero value of Eiot is 

completely provided by the energy density at the string axis. 

The constant /i(0) should be considered as an effective tension of the string that 

includes quantum corrections to the classical tension /i related with the parameter a by 

(3.4). It is interesting that the renormalized surface action IV.,,,,./}^] depends on \p even if 

<7 = 0 and therefore in general case the effective tension /i(ip) varies if the average value 

of the field < ф > = ip changes that happens in the case of a phase transition. 

4 Total energy end energy density 

Until now we dealt with the integral quantities like the effective action and total energy 

using for their calculation the trace of the heai kernel. The surface terms appearing in 

these quantities have a global origin: they would have not arisen, if we had excluded, 

from the integrals over the space-time, the region around the string world sheet. The 

local renormalized energy momentum tensor near the cosmic string was calculated by a 

number of authors [3]-[6j. Let us find out a connection between their and our results 

and demonstrate that the local non-intcgrable divergence in the average energy density 

arising as the siring is approached can be removed by a suitable renormalization of the 
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bare string tension so that the total energy turns out to be finite. What we are going to 

do is to explore the same approach as used in [15] in quantum theory with boundaries. 

We consider a real massless scalar field for which the energy density can be obtained 

in the closed form [3] 

< fto(*) >°u6= j g ^ j (2(1 - 4flC,(a) - C4(o)) (4.1) 

expressed in terms of the polynomials (2.14),(2.15). The value £ = 1/6 corresponds to 

a conformally invariant field. The local energy is evaluated in a standard way from the 

Green function G°{x,x') = i~l < Т(ф(х),ф(х')) > as a coincidence limit 

< Гоо(ж) >?„ь= ljm T o o G ^ * , * ' ) (4.2) 
x'—x 

where Too denotes a second order differential operator [22] depending on the type of field 

and the divergences are removed by subtracting from the Minkowsky Green function 

Ga=u from G" 

G*ub(x,x') = G°(x,x')-Ga=2'(x,x') . (4.3) 

It is obvious that the local divergence of the energy density (4.1) at г = 0 can be 

regularized if we restrict the domain of integration in the total energy by the values of 

coordinates r > rQ where r0 is a positive small parameter that can be treated as the string 

radius. Moreover the regularization suggested also makes finite the surface term in the 

effective action. To see this it is worth to use tlie equation (2.6), which gives, instead of 

(2.17), 

7У(е- я ( д " + д '>) = ( ,-dr f d? I<a(x,x,s)Tr(e-'*) = 
J T 0 JO 

= 77—5 n " + ^ T / • г /o CXP '—)dw) . 4.4 
(47TS)2 V 4 J r sin' ui/2 V s J J 

Then for a free scalar field the total one-loop effective action (in the case when <rg = 0) 

can be defined like (3.17) and takes the form 

WM = \ logdetf Д + n,\0 + ^ B v 2 = ~ \ [ у Г г {e-l*-+*>\ e"»'* + ,«„£, = 

= Wvol + Wro,,u,, (4.5) 

It is separated into the volume part Wvoi proportional to fi4 and the surface part WTOinrf 

given on the world sheet E2. As distinct from iV„„f developing the standard divergences, 
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the surface action Wr0iJ„,./ now turns out to be finite while r0 ф 0 and in the massless 

case m2 = 0 its expression results from (4.4) 

WTt>,,urJ = £2 U a - — / r—r^ / — r - j — ^ — exp I 1 dw 1 = 
V 8 y0 (4?rs)2 Jr sin" ш/2 \ -s / / 

-(-•-'№• • «"> 
It follows from (4.6) th?t the divergence in Wro-51ir/ at r0 —» 0 can be removed by replacing 

as before the bare string tension //g by the renormalized ц 

^ = ̂  + ̂ е т а С < ( о ) • (4-7) 

Taking this into account one can write the local renormalized energy as the sum 

< Too > r 0 , r e n = 7oO.B+ < Too >r„,.Ub ( 4 - 8 ) 

of the string energy Too.s = Рв&г[г) concentrated at the string axis and the renormalized 

energy density of the quantum field in the domain г > TQ. TWO densities, < Too >?uk 

given by (4.1) and < Too >°0 ,„ь coincide everywhere except the region near the string. 

To demonstrate this let us calculate the classical energy-momentum tensor of the field 

in this domain defined by the functional differentiation of the action that we take in the 

same form as in [15] 

S=-\f #х,/=дФ(х)1п + (ЙМх) (4.9) 
1 Л>Г 0 

where D = i/—g _ 1 d„-/^gg1"'3„ is the D'Alambertian and R is the scalar curvature. The 

variation of this functional SS under changing the metric Sg"" consists of two parts 

6S=\I fx-J^g T^(xW(*) + i,uriS (4.10) 
1 Jr>r„ 

where T^ stands for the normal expression of the stress tensor of a scalar field [21] and 

an additional surface term arises due to the restriction of the domain of integration 

b^iS = 4 / do* [ФЪ^а"" -.г + *„ V .,) 
г Л = г 0 

+ ( ( l / 4 - 0 ( * a ) „ j „ , + ( { - l / 2 ) ( * a ) , . s M T ) « s r ] (4.11) 
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{daJ is the area element). So far as there is no real boundary of the space on the surface 

г = г0, the variations of the metric ig"" | r = r o don't vanish on it. They are independent of 

its normal derivatives on the surface and thus the last ones can be ignored. As a result, 

6,urfS produces the additional term in the energy density 

— = ̂ ^ = ( 1 / 4 - ^ ( r - r o ) i ^ Too*.,/ = - = - = = £ - = ( ! / 4 - № - r o ) X ( ^ ) 2 (4.12) 

giving rise to the distinction between the average density in the domain, < 7Ьо >?0|,„я 

and the local energy (4.1) 

< too > ° ..„*=< too >°»ь + '(1/4 - «* ( r - ro) Jim, (± + -^j G"„b{x,x') (4.13) 

(6(r — r0) is the one-sided delta-function). For its calculation the proper-time represen

tation for the Green function [23],[24] written in the form 

G = -(D + m 2 ) - ' = - Г da e - ( 0 + m > 
Jo 

can be used. It gives, together with (2.6), the subtracted Green function at t = t',z = z' 

and <p = if' by the integral 

™ , n •' f°°ds • f , 1 ч ( r2 + г* - 2rr'cos u>\ , ,M1M. СЫг,г<) = - _ У о - - ^ с о ^ а ' Ч е х р ^ ) dW (4.14) 

which can be substituted into (4.13) to obtain 

< t » > ° , , „ t = < f o o > ^ - ( l / 4 - O ^ J * ( r - r 0 ) . (4.15) 

Integrating now the renormalized quantity (4.8) over the space 

Еш = J < too >?„.„„ dv = цв + j f rdr J Лр<Тж >° ,,u6] J dz (4.16) 

and using (4.7),(4.15) we find that the counterterm in the bare tension цв cancels exactly 

the term proportional to Гц"2 in the integrated energy of the field rendering finite the 

renormalized total energy at ro —» 0 

Eb^pjdz . (4.17) 

This shows explicitly that finiteness of the total energy derived in the previous Section 

is a consequence of renormalization of the bare string tension. There is also quantitative 

agreement between (4.16) and equation (3.26) where for zero mass ц(0) — fi and in both 

cases the parameter p. has to be identified with the classical string tension. 
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5 Conclusions and remarks 

In this work a close analogy between quantum theory on the space with conical singu

larities and quantum theory with boundaries was outlined. In both cases the one loop 

quantum corrections result to divergent surface functionals in the effective actions. The 

renormalization of these functionals can be used to remove non-integrable divergence in 

the energy density and to obtain the finite total energy of the system. However, this 

analysis concerns the idealized objects, strings and boundaries of zero thickness. In effect 

one might expect that for the real string of a finite size the divergent terms on its world 

sheet give large but still finite contributions to the renormalized energy. 

In the theory with boundaries the surface actions are known to essentially depend on 

which of the boundary conditions, Dirichlet or Neumann, are imposed. As for the string 

case, we used the finite boundary condition on the string axis taken in Section 2 and 

others possibilities are worth to be investigated as well. For example, the possibility of 

logarithmically divergent conditions has been pointed out in [8] in connection with the 

self-adjoint extensions of the Laplace operator on a cone. A hypothesis has been made 

there that effects of the true interaction of the cosmic string with the field can be taken 

into account by choosing one of the suitable extensions provided we are intereslf'i jn what 

happens in sufficiently large length scales. 

It is to be also mentioned that our consideration was virtually confined to conical 

singularities in the flat space and incorporation of the curvature effects represents an 

interesting problem. 
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Appendix A. The zeta-function on a cone and on a sphere wi th 
conical singularities 

The generalized zeta-function on a cone can also be considered as a functional on the 

chosen space of functions and related with the heat kernel via the Mellin transform [18] 

^ * - Я = щ ^ " * , _ , « - т , * Г г ( е - л - / ) , (A.l) 

with a mass m providing convergence of the integral as s —» со. As the cone is a non-

compact space, the convenient eeta-function, that is introduced through the trace of the 

heat kernel [18], can be defined as (,a(z,fv) with the help of the function fv used in 

Section 2. It follows immediately from (2.16) that 

U*,fv) = ̂  (V[fJ\" +"..3(fr)("2r) • (A.2) 

In particular, taking into consideration (2.14) one gets from (A.2) at m = 0 the finite 

expression that doesn't depend on the volume V 

«•>-&(£)'-') • <"> 
To take in our analysis the effects of curvature of the space, although simple ones, it 

is worth to compare Ci(0) a l ' " = 0 W ' th the zeta-function of the Laplace operator on 

the unit "sphere" with two conical singularities at "south" and "north" poles, where the 

corresponding line element r^-ads 

ds2 = cos2 x<V2 + dx
2, 0 < 9 < a, \x\ < т /2 (А.4) 

and takes the form (1.1) as |\-| —> 7r/2. Everywhere at the other points the metric (A.4) 

is regular and the space has a finite constant curvature, the same as the curvature of the 

ordinary unit sphere. 

This example is interesting since the spectrum of the Laplace-Beltrami operator on 

(A.4) can be calculated exactly. It is determined by two non-negative integers n and m 

V m = (n + (2тга-1)т) (n + (2ira_ ,)m + 1) (A.5) 
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with the double degeneracy for m ф 0. Using the same transformations that were carried 

out in [11] for the case of four-dimensional analog of this "sphere", one can represent the 

zeta-function for z —> 0, — 1, —2,.. by the scries 

СГ"С(г) = £ A"'m = 

q ^ ^ r ( * + fc)r(2» + 2fc + 2 n - l ) , B2n (2*Vn 

= - E L 2»**!Г(г)Г(2* + 2Ц Cn(22 + 2* + 2 " - ' ' 1 / 2 ) ( 2 ^ ) ! U J (A'6) 

where ("/i is the Riemannian zeta-function and #2n a r e the Bernulli numbers. It is not 

difficult to show in particular that for z = 0 it is given by the simple expression 

.+j((!)'-.)] • 
Apart from the contribution [18] 

6ir ix J VJ 6 ' 

determined at the points where the metric (A.4) is regular by the scalar curvature of the 

sphere II = - 2 , it contains also an additional term, appearing because of the conical 

singularities at \\ | = тг/2 and equal exactly to the doubled value of the zeta-function on 

a cone 2C„(0). 

This result could be anticipated in advance, by taking into account that near each of 

the points x = ±7r/2 the heat kernel expansion on the space (A.4) can be approximated 

by the expansion on a cone (2.2). 

C'"(o) = j -
07Г 
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