


1. INTRODUCTION

The Nambu-Jona-Lasinio (NJL) model (1], and other models motivated by it [2]-
[10] are powerful instruments for the study of the composite siructure of hadrons.
Actually, the first success of this model has been related to the explanation of the
spontancous breaking of chiral symmetry and the small pion mass [2].

To give a sense to various loop integrals arising in this approach, a momentum
cutofl is usually introduced and the detailed momentum dependence of the hadronic
vertices which characterize the composite structure of hadrons is neglected. In this
rough approximation it was shown that the NJL-model reproduces the standard
formulation of the g-mudel [2].

More realistic generalizations of the NJL-model use the nonlocal four-quark in-
teractions, usually in a separable form. In this way hadron wave functions and global
hadronic characteristics can be connected (3]-[5],[15, 16].

There exist more fundamental approaches [6] which realize the NJL mechanism
starting from the QCD hosonization, but this requires to introduce bilocal hadronic
fields producing equations that are difficult to solve. Any simplifications of this
approach yield a kind of NJL-model with nonlocal interactions and/or modified
quark propagators.

Using QCD bosonization a special formulation of juark confinement has been
introduced in (9, 10, 15]. It was assumed thal the hadron-quark vertices are local
but the quark propagators inside the quark luop are described by entire analytical
functions providing both a quark confinement and ultraviolet convergence of all
diagrams.

The main goal of this paper is to give a Lagrangian formulation of the NJL-model
with separable interaction both for mesons and for the first time for baryons. We
check the Goldstone theorem in this approach which means that a zero-mass pion
appears in the chiral limit.

In fact, we do not pay much attention to the Schwinger-Dyson (SD} equation for
constituent quark masses and the Bethe-Salpeter(BS) equation for hadron masses

because they have too many free parameters to be predictive. Actually, these equa-



tions may be considered only as the self-consistent constraints which connect the
quark and hadron masses with the NJL coupling strength.

All important information about the composite structure of hadrons is concen-
irated in the matrix elements of the physical processes, in particular in the electro-
magnetic form factors characterizing the response of a bound state to the interaction
with a photon. Here, we introduce the electromagnetic interactions by means of the
time-ordering P-exponent in the nonlocal quark currents. This reproduces automat-
ically the Ward-Takahashi identities and electromagnetic gauge invariance in each
step of calculation.

There are two adjustable parameters, a range paramcter A appearing in the
scparable interaction and a constituent quark mass 1e,. As in the papers [4, 5],the
weak decay constant f,, the two-photon decay width "o, as well as the charge
form factor F,(g?) and the v*#° — 5 trausition form factor I,,(¢?) are calculated.
Here we consider monopole form factors. We do not take into account p-meson

contributions because they are small (see, . g. {4]).
2. THE NJL-MODEL WITH SEPARABLE INTERACTION

For the convenience of the reader we give the Lagrangian of the N JL-model with

separable interaction (S1) [3]

G,
Ly = ¢ e+ 5 {JE+ Ji) (1)

with J given by

Js

I

/ dyilz + v/ 2 (5 )lx — y/2)
2)

I

Jb ] dyalz + ¥/ (i Tl - 1/2).

Here the form factor f(y) characterizes a region of a quark-antiquark interaction.

In the original NJL-model the form factor was chosen to be a é-function (or unity



in momentum space). The Lagrangian (1) is invariant under the global axial (¢ —

c"’sf”-q and vector (¢ — €'™q) transformations.
q q

The standard way of the bosonization of the NJL-model may be found in many
papers (sce for instance [2, 3]) so that we just give a short sketch of some points

which will be needed further. Let us consider the vacuum generating functional

2= [dg [saexvti [ astst) 3)

(an infinite renormalization constant is omitted).
Using the Gaussian transiormation for the quadratic interaction of quark currents

and then integrating over quark fields one obtains

Z= /50/61?cx;){i1’VJ[0, 7]} (4)

witli the eflectlive action W.q given by

2
Welo, 7] = ~1r22—°/dz[az(r) + w*(z)] -~ iNtrln[i @ — & — iy’7), (5)
where N, is a number of colors, m3 = 1/G is a bare mcson mass, and the fields &

and T arc given by

Ty + I

2

Assuming that the field o has a nonvanishing vacuum expectation oy

Wiz =) = I (@ -2 (6)

&(11112) = G(

o(z) = s(z) + o0 (M

and varying the action (5) §Wer{oq,0]/80a = 0, one obtains a gap equation

[ Ak )
I =4GNcNﬂf@,‘):PTT:7(F) o

with the quark mass operator defined by
£(k?) = oof (K*) (9)
where f(k*) is the Fourier-transform of the vertex form factor.
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In the calculation of physical values {4], the momentum-dependent mass upcrator
is approximated by an effective mass < L(k*) >= m, (we neglect here the bare
quark masses). The integral (8) is calculated by transition to the Euclidean region
k° — iky, so that &% —+ —k%. This procedure is well-defined for a wide class of form
factors f(k?) decreasing rapidly in the Euclidcan region (sce, for details [9)).

Further we would like to show how to extract the kinetic terms from Eq. (5).

To do this, consider the leading order in the series of Eq. (5)

(2> —mO/dz s + 7%) A Ar[S(E + iy° )7 (10)

where we have introduced the nolation for the quark propagator

S(z)=[i - E(=0")]'é(x). (11)

After simple transformations, onc obtains

Vc‘fr) =3 Z /d_ljl/dl'2¢ T1) —mub(l] —z9) + () ~ 22)}d(22) (12)

d=s,m
with T(z) given by

Nty Lo
S (=

) = ity [ | dartd) sttt SBE e, )

where
Iy = I(¢ =s), or iv*(¢=m).
Further we represent the Fourier-transforn of the two-point function of Eq. (13)

in the form

1,(p%) = /dze"”ﬂas( ) = Myim3) + M, (2 )p? —m? 2+ Uy,

wliere i3 is the physical meson mass. Using this expansion one obtains

wd = - Z{/dm (=12 + Uy(me)) + (T — )y (m2)] $(x) + (14)

é—a LS

+/d1'|/(l:ngqb(.r,)ll:;"‘(rl — )Py}
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It is readily seen that if we require fulliliment of the condition

Gllyg(m3) (18)

:lk
iGNcN,/(gﬂ)J (k%)

{ [H #2-% ;

the physical pole appears in the meson Green function.

i

((k+p/2) ] [lf ﬁ/’—lk—pP) )]}pz:m:

Ll

Putting the pion mass in Eq.(16) to zero one has the gap equation (8), thereby
reproducing the Goldstone theorem.
Scaling the fields ¢ (s or 7) in Eq. (3) by the factor 1/,/114(m3) one obtains

Wer

L 1, s |
Werls, 7] = = ([ deo(e)(Q ~ — —| }. (16)
aE .»:Z / ¢ z:j K V’“fb(m.»)

One can sce that the only connection of this expression with the original NJL-
Lagrangian is via the quark mass operator £(4?) in the gap equation (8). Hereafter
we shall use the approximationi < S(k*} >= my, (see, [, 5] for details) for the
calculation of physical observables.

We would like to remark that the ellective action (17) can be obtained {from the

gquantum ficld theory defined by the following Lagrangian

[ = I'U + Lmt ‘ “7)
where
- ! 2 i, 2\
Lo = g0 §~mglg+ 550 —nij)s + ;n(D —ma)7
(18)
Lt = \/: s(r)Js(r) + ——j (r)Tplr) (19)

it the renonmalization constants of the meson fields are set equal to zero



g 2 '
Zy=1- _.é_“’o(’”::zj ={. (20)

This condition reflects the composite nature of the hadrons (dressed states in quan-
tum field theory). Iu is the so-called compositeness condition discussed in many
papers (see, for instance {11, 12] and the applications in [9, 10]).

Our formulation of the NJL-imnodel with separable interaction may be extended
to describe the interactions of any physical states. Ior instance, we give hicre the
Lagrangians describing octets of vector (axial), pseudoscalar {scalar) mesons, and

baryons.

8
1. Mesons A = 7’:}:*'0"-
)

. 1
L%(#) £suM(z)(D - k)M (o) (+ for S, P —for V, A) (21)

Lyi (x)

gm /dyf(y"')fi(r +y/2 M hgle = y/2). (22)
8 ..

2. Baryons B = 715 3 ATyt
1

LY{(z) = trB(z)(i @ — mp)B(r), (23)

@%):BWu/m/@JWw@—ﬁggﬂ) (24)

Y3~ ¥z Yatys— 2y,
MGy UG ==
Aigv T (yr v2,ys) + g1 I35 (0 e ) + cirele(1,2,3)} + he.

wlere

JPMynyas) = AT () (G (va) €A Oyt gl (y)) €192, (25)
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JEH Y1, vaps) = AT gl (11) (472 (y2)e AT Coth gl (ya)) €71°2°Y(26)

The notation implied is as follows: k,m,n and « are flavor and color indices,
o* = $[v*,7"]. and C is the charge conjugation matrix, respectively. The choice of
variables in the form factor of the separable interaction implies the use of the center

of mass frame

1=z -2 y2=-‘-’+fl—\/§fz y3=l‘+fl+\/§fz

so that
fl:yz+ys—2yl BTl
6 2v3

Now we introduce the electromagnetic interaction into this scheme. Note that
this was done in Ref.[4] by using the minimal substitution & — 8* — ie;A* both
in the free quark Lagrangian and in the interaction part which has a form factor.
Restoring gauge invariance in this case requires a complicated procedure which is
fairly arbitrary.

Here we would like to suggest to introduce the clectroinagnetic fields t~ the
interaction Lagrangian using the timc-ordering P-exponent. In this case the gauge

invariant meson-quark vertex has the form

L) = on [ [ dind (5= P52 ) 1 (- (27)

-q(yy) 1" exp ieQ/dz“A“(z) I'yM(z)Pexp ieQ/dz“A“(z) q(y2)

where @ = 1()® + %)= diag(2/3,-1/3,-1/3).

For neutral mesons one obtains

1) = ou [[dn [ et (2= L) £ (@3 - waP) (28)



v
qw)PexpieQ [ a(z) p TauMO(2)aty)
)
For baryons this interaction is introduced in a similar way.

We shall use the S-matrix defined by

S = Texp{z'feri"'(z)} (29)

to derive one-loop guark diagrams describing the physical processes. The T-product

is defined in a standard manner

S ey .
('.Z?r)"iL my— (30)

The hadron-quark coupling constants gas in Eq. (23) and gg in Eq.(25) are

< o)) >=
defined from the compositeness condition (21).
3. MODEL PARAMETERS AND PION DECAY CONSTANTS

First we would like to discuss the model parameters. Of course, the form factor
f(k?) characterizing the composite structure of hadron is an unknown function.
Detailed analysis of form factors is presented in [17]. Ilere, we consider one of kinds

of widely used form factors :

e monopole f(k?) = T{‘_—?k—f

All Feymnan diagrams are calculated in the Buclidean region (4% = —4%) where the
form factors decrease rapidly so that no ultraviolet divergences arise. For conve-
nicuce the form factors are chosen to be dimensionless.

The three-dimensional Fourier-transforms of the form factors can be cousidered

as nourelativistic potentials (in Born approximation). Putting 4% = 0 one can get

EE e ,
Vir) = /fgﬂ.—)iclkr-ﬁ—kl) = Ao(rA). (31)

We obtain



e monopole v(r) = 2«

Thus there are two adjustable parameters, A characterizing the region of quark-
antiquark interaction, and the constituent quark mass ne,. We shall define these
parameters by fitting the experimental pion decay constant f, (fe*P'= 132 MeV)
and groy (95784= 0.276 GeV™!).

We shall imply that all masses and momenta inside the Feynman integrals are
expressed in the unit A. Also we shall neglect the pion mass when calculating the

physical pion deray constants.
1. Pion-quark coupling constants.

As mentioned above the pion-quark coupling constants are defined from the

compositeness condition (21} with the pion mass operator given by

d'k ., . [ I
2y _ 2Ly 4 A5 5 . 9
ot =6 | g e s o) [l ) @
Neglecting the pion mass one has

2.2\ —1 . 2
(3{],) = l/duuf’(-u)gm—qiim—). (33)

42 T (122 + u)®
0

2. Pion weak decay

The weak decay of the pion is defined by the diagram of Fig.1. After simple

transformations of the Feynman integral, we lhave

_ gm d'h J(k) a,
fx = m?”:,/;TI-[m: “h ¥ 11/2)2][711: — (k= p/2)7] (34)

o

3‘(}—Em,,/d'uuf(—u)[ !

4m? m o+ ou)?
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k+ p/f2

flk?2)

k- p/2

Fig.1. The diagrams describing the weak pion decay.

f{k2)

k+p/2

k-p/2

q

kf‘th -q1)/2

q,

Fig.2.The diagrams describing the pion two-photon decay.

Table 1
Form f» (MeV) groyy (GeVTH)
Factors | A (MeV) | my (MeV) | NJL SI | EXP [14] { NJL SI | EXP [14]
monopole 400 267 132 132 0.251 0.276
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3. Pion two-photon decay

The two-photon decay of the pion is defined by the diagram of Fig.2. After

similar transformations we have

. 2 2 2y __ r Mg jd‘l_l” f(kz)
L I~ o et i i

1
(m ~ (k+ (0 — 22)/2)°]

The two-photon decay coupling constant is obtained from Eq. (36) where both

photons are on the mass shell:

oC

2 gr My 1
- ~ b R —_) ———
Gryy = Gy (m2,0,0) o / u f( u)( Ty (36)

o
The numerical results for the physical observables for the best fit are shown in

Table 1. Inserting the best values for A and m, into the gap equation (8), gives
G = 3.03972A? for the monopole form factor. One can check also that the low-

energy relation fygpyy = 1/(2\/§1r2) is reproduced with good accuracy (< 7%).
4. The y*7® — v form factor

The form factor for the 4*x® — v transition was measured for space-like mo-
mentum transfer Q2 > 0 of the virtual photon {13] by making use of the two-photon
process vy — 7°, where the two photons are radiated virtually by colliding e*e~
beams.

In the extended NJL model this form factor is expressed as

Fon(Q?) = €3Gy (m?, —Q%,0) ~ e Z-T4R_(Q?/A?) (37)

2272 A?
with the structure function R,., given in the Appendix.
Our results for monopole form factor are shown in Fig.3. The experimental data

are described by the monopole fit with

€%gr
PQY) = .l_+—22—7/\-_,2, Ay = 0.77GeV. (38)
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The F,,(Q°) Form Factor (Monopole)

10
) Our
i ---. Expt
= \ A=0.4 GeV
v N\
1 m,=0.267 GeV
& ¥
=4 L
e :
~
=
<
© 0.1 f
~ 3
“ L
E b
St -
0.01 a
0.0 5.0 10.0

2 2
= Q" (GeVY)
Fig.3.The form factor of the y"7° — ~ transition for spacelike photons 0 < Q? <
5GeV2Z. The dashed line is the result of the monopole fit with A = 770 MeV. The
solid lines are our predictions for monopole form factors. The experimental data are

from [13].

Table 2

Vertex Tny (fm)

Function | NJI.

monopole | 655 | 0.65+ 0.03

EXP [14]
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The radius for 4*7% — v transition is defined by

F' (0
<1t >= —GF""EO; - (39)

where

R D (" IS Ly S () I
[rr»'(o) = /duum Im(O) = - 1 /duu( (40)
0

The numerical results for the radius 7., are given in Table 2. Excellent agreement

with the available experimental data is reached.
5. The pion electromagnetic form factor

The pion charge form factor is defined by the diagrams of Fig.4. These diagrams

are not gauge invariant separately. The sum of the diagrams can be written as

N
A*(p,p') = ‘(1{7[1-1,“,2)-11,(,;2)“ (41)

A L (1) s ([+4])

r [755'“- +) (w“ - ’—[—’!> Stk + p)vSS(k)] +

T Ik
L ’J"/’ /u/w(qu ?)

712 172 | 47

ey tr {755 <l.' + g) 78 (’f - jl)]
eprses (-]

where we use the following notation

D .
= P gH

P=p+yp.

The Ward-"Takahashi identity directly follows from ¥q.(42)

du A (0, ) = 1L — 1L (0%). (12)

13



koDI/Z

p-

Hk’)\r

el k-p/2 t((k+qt/2)?)

Fig.4.The diagrams describing the pion charge form factor.

f'(tx +qt/21?)

Taking ¢ = 0, one obtains on the onc hand

9T (p* 9%, (p
W(p.p) = T = P, (43)

where £,(p?) = (3¢%/47%)[1,(p?), and, on the other hand,

A¥(p, p) = 29" F.(0), (49)

where F»(0) is the pion charge form factor at the origin. It follows from the compar-
ison of Eq.(44) and Eq. (45) on the pion mass shell that the compositeness condition
£'{m%) =1 is equivalent to the normalization of the pion form factor at the origin
Fl(0)=1.

Note that the implementation of gauge invariance in the context of the minimal

substitution (4] leads to

y ; k 2y _ k?
/dtf'((k + gt/2)* + 21 - t)/1) = il +k:/42~)q2)/4 /(*)
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in Eq.(42) while the gauge invariant vertex {28) leads to

)
[+ azr).
)
For practical purposes this difference is not importaut in our case.

The numerical computation of the pion charge form factor is performed in the

Breit frame

g =1(0,9), p={1,q4/2) P =1 -q/2) E=y/m24+a (15)

The analytical expressions for the form factor are given in the Appendix.

F.(Q°) Form Factor (monopole)

Lo . Full
— A
cee- Int
________ Expt
I A=0.4 Gev
o
=z m,=0.267 GeV
[
S )
0.0 D Wl Tty ey

0.0 2.0 4.0 6.0 8.0 10.0

- 2 2
Fig.5 — Q (GeV’)
Fig.5.The pion charge form factor /4, (Q?) for spacelike photons 0 < Q? < 10GeV?,
Separate contributions from the triangle and bubble diagrams are shown as dashed

and dotted lines, respectively. The solid line is the total result. The experimental

data are from [14].
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Our results for monopole form factors are shown in I%ig.5 to 6. The contributions

to the pion charge radius coming from the triangle (A) and bubble (o) diagrams are

written down
1 &,(0) 2 o o L $2(0) .
2 6 g = —6— . 16
ST T T AR R(0) 1o
where
[ (w1, 8, 8 (w73,
b = _/dHU{(mZ—{-U)S [12u +8mqu+8mq]+uw E)Eu+’3—2-mq]}
R L T L[S,
¢, = fduu E(mg+u)5mq [mg ~u |~ n (m§+u)3u }
g
T Pw 3, u
by = /duu(mg+u)3 [4mq+2]
[
F.(Q%) Form Factor (monopole)
T U Full
1.0 A=0.4 Gev _ A
... Int
m,=0.267 GeV . . Expt
N r
-
[«9]
o)
et I
[a¥]
g
T T T — _
5.0 10.0

2 2
Q7 (GeVT)
Fig.6.The pion charge form factor nmltiplied by Q2 for spacelike photons 0 < Q% <

10GeV?, The notation is the same as in Fig.h,
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The numerical results for the radius are given in Table. 3. One can see that our

results are in good agreement with the available experimental data till 1 GeV?2,

Table 3
Form NJLSI EXP [14]
Factor | <7 >2 (Im?) | <»?>° (fn?) | total (fm?) (fm?)
monopole 0.5145 -0.012 0.533 0.430

6. SUMMARY

We have formulated the Nambu-Jona-Lasinio model with separable interaction
using the Lagrangian with the compositeuess condition and non-minimal inclusion
of the clectromagnetic interaction. This allows to caleulate any low-energy physical
processes on one-loop level maintaining the relativistic and electromagnetic gauge
mvartance in cach step of caleulation. On one hand the form factors in the hadron-
quark verlices take into account the composite structure of hadrous thereby being
related to a quark-antiquark potential, on the other hand, they make the Feynman
integrals convergent.

We have calculated the pion weak decay constant, the two-plioton decay width,
as well as the form factor of the 7% -+ 4-transition, and the pion charge form
factor. The two adjustable paramecters, Lthe range parameter A appearing in the
separable interaction and the constituent quark mass m,, have been fixed by fitting

the experimental data for the pion decay constants.
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APPENDIX
(1) Explicit expression for the form factor of the 477% -~ v transition:

1

1@ = [ a2 fan
o

mg +u 4
1
2
a Y2
\/(mg +u -~ 92—) +2Q%ca
1
= +
\/(mq7+u— 9%) +‘2Q2mga+m3+u+9%

1

+

- .
\/(mg +u-— 9%) +2Q%(m? + 2u(l — a))

1

2
\/(mq2+u—072°’) + 2Q%a’m2 + 2u(l ——a))+m§+u+9;3

(2) Expression for the pion charge form factor. The contributions coming from the

triangle (A) and bubble (o) diagrams are denoted by

ruq) = B

FNQY) =

o0 1 I
0,(Q?) = E/JW/JI = /dy

= i

0 o '

J=k)f (=R = L - kzy /O?)
2 2

e B R0

0 [mg + )2 %kry\/Qz] [m: + K + Lkay Q7 + 943] 1

2
[mZ + k% - %kxy\/Qzl + E‘Ql(l - %)
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oo 1 1 1
$,(Q%) = %\/QZ/dA‘A‘U/d.I: paavsl -—.‘r‘/rlyy/dl
0 0 5 v

oy g2 @ 2
SRS (=K = = = ket /@)
mi+ A2
{(m + K2+ l\ly\/_’) +—Q" I —a? )]

1

[(’"3 + A2~ %krw()’)" + 550 - -1")} :
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