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1. I N T R O D U C T I O N 

The Xambu-Jona-Lasinio (NJL) model [1], and other models motivated by it [2]-

[1U] are powerful instruments for the study of the composite structure of hadrons. 

Actually, the first success of this model has been related to the explanation of the 

spontaneous breaking of chiral symmetry and the small pion mass [2]. 

To give a sense to various loop integrals arising in this approach, a momentum 

cutoff is usually introduced and the detailed momentum dependence of the hadronic 

vertices which characterize the composite structure of hadrons is neglected. In this 

rough approximation it was shown that the NJL-model reproduces the standard 

formulation of the u-rrudel [2]. 

More realistic generalizations of the NJL-model use the nonlocal four-quark in

teract ions, usually in a separable form. In this way hadron wave functions and global 

hadronic characteristics can be connected [3]-[5],[15, 16]. 

There exist more fundamental approaches [6] which realize the NJL mechanism 

starting from the QCD bosonization, but this requires to introduce bilocal hadronic 

fields producing equations that are difficult to solve. Any simplifications of this 

approach yield a kind of NJL-model with nonlocal interactions and/or modified 

quark propagators. 

Using QCD bosonization a special formulation of quark confinement has been 

introduced in [9, 10, 15]. It was assumed that the hadron-quark vertices are local 

but the quark propagators inside the quark loop are described by entire analytical 

functions providing both a quark confinement and ultraviolet convergence of all 

diagrams. 

The main goal of this paper is to give a Lagrangian formulation of the NJL-model 

with separable interaction both for mesons and for the first time for baryons. We 

check the Goldstone theorem in this approach which means that a zero-mass pion 

appears in the chiral limit. 

In fact, we do not pay much attention to the Schwinger-Dyson (SD) equation for 

constituent quark masses and the Bethe-Salpeter(BS) equation for hadron masses 

because they have too many free parameters to be predictive. Actually, these equa-
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tions may be considered only as the self-consistent constraints which connect the 

quark and hadron masses with the NJL coupling strength. 

All important information about the composite structure of hadrons is concen

trated in the matrix elements of the physical processes, in particular in the electro

magnetic form factors characterizing the response of a bound state to the interaction 

with a photon. Here, we introduce the electromagnetic interactions bymeansofthc 

time-ordering P-exponent in the nonlocal quark currents. This reproduces automat

ically the Ward-Takahashi identities and electromagnetic gauge invariance in each 

step of calculation. 

There are two adjustable parameters, a range parameter Л appearing in the 

separable interaction and a constituent quark mass mq. As in the papers [4, 5],the 

weak decay constant / „ , the two-photon decay width Г „о _.,.,, as well as the charge 

form factor F„(g2) and the 7*7r° —» -у transition form factor I'\^{q2) are calculated. 

Here we consider monopole form factors. We do not take into account /э-meson 

contributions because they are small (see, e. g. [4]). 

2. T H E N J L - M O D E L W I T H S E P A R A B L E I N T E R A C T I O N 

For the convenience of the reader we give the Lagrangian of the ;\'.JL-model with 

separable interaction (SI) [3] 

LS
N'jL = qih+~{Jl + Jl) (1) 

with J given by 

Js = J dyq(x + y/2)f(y2)<l(x-ym 
(2) 

J'P = J d»fl(* + y/2)/(ya)i7V,(*-j/2). 

Here the form factor f(y) characterizes a region of a quark-antiquark interaction. 

In the original NJL-model the form factor was chosen to be a 6-function (or unity 
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in momentum space). The Lagrangian (1) is invariant under the global axial (q —> 

cn rt>q) and vector (q —> e'rSq) transformations. 

The standard way of the bosonization of the NJL-model may be found in many 

papers (see for instance [2, 3]) so that we just give a short sketch of some points 

which will be needed further. Let us consider the vacuum generating functional 

Z = j Sq J Sqexp{i J dxLS
N'JL} (3) 

(an infinite renormalization constant is omitted). 

Using the Gaussian transformation for the quadratic interaction of quark currents 

and then integrating over quark fields one obtains 

Z= f So f 6ircxp{iWc„[a,*]} (4) 

with the effective action W^n given by 

Wctt[a,*\ = -'Y f dx[a2(x) + тг2(х)] - i7Vctrln[t ф - a - i-ybi\, (5) 

where Nc is a number of colors, m j = 1/G is a bare meson mass, and the fields a 

arid T! are given by 

* ( * i , * j ) = a ( ^ y ^ ) / l ( * i - * * ) ' ) * = T J f ( ^ i - ^ ) / U x , - z 2 ) a ) . (6) 

Assuming that the field a has a nonvanisliing vacuum expectation <т0 

a{x) = s(x) + CT0 (7) 

and varying the action (5) SWea[a0l(i]/6cr0 = 0, one obtains a gap equation 

^*GN<^l§^iMm (8) 
with the quark mass operator defined by 

£(*») = *„/(**) (9) 

where /(A;2) is the Fourier-transform of the vertex form factor. 

3 



In the calculation of physical values [4], the momentum-dependent mass operator 

is approximated by an effective mass < E(A'~) > = mq (we neglect here the bare 

quark masses). The integral (8) is calculated by transition to the Euclidean region 

k° —> ik^, so that fc2 —> — k\. This procedure is well-defined for a wide class of form 

factors /(A,-2) decreasing rapidly in the Euclidean region (see, for details [9]). 

Further we would like to show how to extract the kinetic terms from Eq. (5). 

To do this, consider the leading order in the series of Eq. (5) 

wW = - у / W + *2) + l^'MS(s + n5*)]2, (io) 
where we have introduced the notation for the quark propagator 

S{x) = [i @-Т,(-д2)]-1ё(т). (11) 

After simple transformations, one obtains 

K , ''« = \ Л j dxi J ^х2ф(х1){-т2
и6(х1 - x2) + ПФ(Х1 - х2)}ф(х2) (12) 

with ПДх) given by 

IU(x) = iNeN, jdyx У Л ; 2 Л У 0 / ( У 2 ) 1 , - [ 5 ( . ' - ^ ~ - ) Г , 5 ( - , - - ^ ± ^ ) Г , ] , (13) 

where 

Г* = 1(Ф = a), or п5(ф = тг). 

Further we represent the Fourier-transform of the two-point function of Eq. (13) 

in the form 

II,(p2) = J йхе""Х\ф{х) = Пф{т$) + U',(ml)(}? - mj) + l l £ V ) > 

where: m j is the physical meson mass. Using this expansion one obtains 

w™ = \ £ (/<^w [(-'«о + ii«(»«i)) + (° - "фи;К)] к*) + (м) 

+ J d x , Jdx24>{ri)l\™(ri - ..•,)</>(,-,)}. 



Il is readily seen that if we require fulfilment of the condition 

l = G I U K ) (15) 

IGN<N> I'(SW) 

•tr 
? + # 2 - E ( i > + ,V2)*) 

1 
jf-t/-2-S((k-p/2F)\ h' = ™l 

the physical pole appears in the meson Green lunction. 

Putt ing the pion mas.', in Kq.(lG) to zero one has the gap equation (8), thereby 

reproducing the Goldstone theorem. 

Scaling the fields ф (л or тг) in \щ. (5) by the factor l / » / l I ^ (mJ ) one obtains 

Wc„ 

ф = 3,7Г 11=2 

1" 

L v n * ( m 2 ) 
}. (16) 

One can see that the only connection of this expression with the original NJL-

Lagrnugian is via the quark mass operator E(A2) in the gap equation (8). Hereafter 

we shall use the approximation < £(fc2) > = 'n , (see, [-1, 5] for details) for the 

calculation of physical observables. 

We would like to remark that the elfective action (17) can be obtained from the 

quantum held theory defined by the following Lagrangiau 

I- - /.„ + L„u (17) 

where 

/,„ = q[i 0 - nt,)q + -*>(° ~'"'D» + Г,*{° ~ »*l)* 

/.„„ - ^=S(x)Js(j-) + ^ir{.r)J,.^) 

il the rriiomializalion constants of the meson lields are set equal to zero 

(IS) 

(19) 
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Z, = \ - | - И > . £ ) = 0. (20) 

This condition reflects tlie composite nature of the hadrons (dressed states in quan

tum field theory). It is the so-called compositcuess condition discussed in many 

papers (see, for instance [11, 12] and the applications in [9, 10]). 

Our formulation of the NJL-model with separable interaction may be extended 

to describe the interactions of any physical states. For instance, we give here the 

Lagrarigians describing octets of vector (axial), pseudoscalar (scalar) mesons, and 

baryons. 

8 
1. Mesons M = ^ E ^ V -

L°M(r) = ±]-uM(x)(a-,nll)M(.c) ( + f o i - S , V - f o r V , Л) (21) 

/-A/W = 9M j dyfbr)<j(x +у/2)]',,.\l(:> г)ф-у/2). (22) 

8 
2. Baryons B= - т г £ А ' ^ ' -

L°B(x) = UB(x)(i9-mH)B{x), (23) 

\4lv • /"*(». , » 2 , Ы + 9i lrkbh,Vi,!h) + circlc( 1,2,3)} + h.c. 

Jv'iVt.VfV*) = Кт'1^ЬС'М('С1(У2)ект'пКтзСГС3
3Ы)^",а\ (25) 
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^(УиУг-Уз) = \ m m ' ^ " 7 5 < ' ( ! / i ) ( С ( ^ ) £ * т г п А Г 3 С < т " Ч ? ( ! / з ) ) £ а 1 а 2 ^ ( 2 6 ) 

The notation implied is as follows: k,m,n and a are flavor and color indices, 

au" = ^[7", 7"], and С is the charge conjugation matrix, respectively. The choice of 

variables in the form factor of the separable interaction implies the use of the center 

of mass frame 

yi = x - 2f! 2/2 = 2 + 6 - \ / 3 6 Уз = x + f j + \ /3& 

so that 
, _ J/2 + Уз - 2 y i _ 2/з - J/2 

Now we introduce the electromagnetic interaction into this scheme. Note that 

this was done in Ref.[4] by using the minimal substitution d" —» d* — ieqAt' both 

in the free quark Lagrangian and in the interaction part which has a form factor. 

Restoring gauge invariance in this case requires a complicated procedure which is 

fairly arbitrary. 

Here we would like to suggest to introduce the electromagnetic fields t" the 

interaction Lagrangian using the time-ordering P-exponent. In this case the gauge 

invariant meson-quark vertex has the form 

LMW = 9м jdylJdy26(x-y-^^jf{{yi-yif) (27) 

• « Ы / ' е х р | ieQ Jdz"A"(z) 1 ГмМ(х)Рехр j ieQ f dz»A»{z) 1 q(y2) 

where Q = | (A 3 + J -A 8 )= diag(2/3, - 1 / 3 , - 1 / 3 ) . 

For neutral mesons one obtains 

!#•(*) = 9MJdy1Jdy26^x-y^-±^^f((y1-y2)2) (28) 
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• д Ы Р е х р j ie<2 j dz»A»(z) \ ГмМ^(х)ч(уг). 

For baryons this interaction is introduced in a similar way. 

We shall use the S-matrix defined by 

S = Texp{i J dxLiM(x)} (2U) 

to derive one-loop quark diagrams describing the physical processes. The T-prodiict 

is defined in a standard manner 

< 0|T(,(x)9(y))|0 >= / - i ! L c - M - W _ J _ . (30) 

The hadron-quark coupling constants дм in Eq. (23) and дв in Eq.(25) are 

defined from the compositeness condition (21). 

3 . M O D E L P A R A M E T E R S A N D P I O N D E C A Y C O N S T A N T S 

First we would like to discuss the model parameters. Of course, the form factor 

f(k2) characterizing the composite structure of hadron is an unknown function. 

Detailed analysis of form factors is presented in [17]. Here, we consider one of kinds 

of widely used form factors : 

• monopole f(k2) = дгЬр' 

All Feynman diagrams are calculated in the Euclidean region (A:2 = — fc|.) where the 

form factors decrease rapidly so that no ultraviolet divergences arise. For conve

nience the form factors arc chosen to be dhnensionless. 

The three-dimensional Fourier-transforms of the form factors can be considered 

as nonrelativistic potentials (in Born approximation). Putting k° = 0 one can get 

V(r) = j -(^У^П-Р) = Л3..(гЛ). (31) 

We obtain 
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monopole v(r) = -^ 

Thus there arc two adjustable parameters, Л characterizing the region of quark-

autiquark interaction, and the constituent quark mass ?»,,. We shall define these 

parameters by fitting the experimental pion decay constant f„ ( / " p l = 132 MeV) 

and g^{gV%= 0.276 GeV" 1) . 

We shall imply that all masses and momenta inside the Feynman integrals are 

expressed in the unit Л. Also we shall neglect the pion mass when calculating the 

physical pion decay constants. 

1. P i o n - q u a r k c o u p l i n g c o n s t a n t s . 

As mentioned above the pion-qnark coupling constants are defined from the 

compositeness condition (21) with the pion mass operator given by 

Neglecting the pion mass one has 

»',- f- № к- n- m\ 

— j = T j / r f « w ( - « ) K + u)3. 

(32) 

(33) 

2. P i o n w e a k decay 

The weak decay of the pion is defined by the diagram of Fig.l . After simple 

transformations of the Feynnian integral, we have 

_ З^л; [<П ma) K-(A4-;i/2)-'][mJ-(fc-p/2)*] 

9n f i r, 1 
— m / dmif[-u)——~—-. 

(34) 

Sgn 
Air'' 
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k+ p/2 

f(k2) k -p /2 

F i g . l . T h e diagrams describing the weak pion decay. 

F ig .2 .The diagrams describing the pion two-photon decay. 

Tabic 1 

Form 

Factors 

monopole 

Л (MeV) 
• • — — — 

400 

m, (MeV) 

267 

Л (MeV) 

NJLSI 

132 

EXP [14] 

132 

iMr» (GeV-1) 

NJLSI 

0.251 

EXP [14] 

0.276 
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3. Pion two-photon decay 

The two-photon decay of the pion is defined by the diagram of Fig.2. After 
similar transformations we have 

С (n
2 a2 a2\ - 9" ™q • f — и!?} m\ 

1 
[m2-(fc + ( 9 l - 9 2 ) /2) 2 ] ' 

The two-photon decay coupling constant is obtained from Eq. (36) where both 

photons are on the mass shell: 

00 

'*" = G-«0'°> * ̂ 5 / ^ - « ) ^ . (36) 
0 

The numerical results for the physical observables for the best fit are shown in 
Table 1. Inserting the best values for Л and m, into the gap equation (8), gives 
G = 3.039ir2A2 for the monopole form factor. One can check also that the low-
energy relation f*yr-yy — 1/(2\/2т2) is reproduced with good accuracy (< 7%). 

4. The 7"TV° —> 7 form factor 

The form factor for the 7*7г° —» f transition was measured for space-like mo
mentum transfer Q2 > 0 of the virtual photon [13] by making use of the two-photon 
process 77 —> 7T°, where the two photons are radiated virtually by colliding e+e~ 
beams. 

In the extended NJL model this form factor is expressed as 

F,„(Q2) = e2G^(ml,-Q2,0) ~ e 2 ~ 2 ~ ~ ^ b n ( Q 2 1 Л 2 ) (37) 

with the structure function Я»7 given in the Appendix. 
Our results for monopole form factor are shown in Fig.3. The experimental data 

are described by the monopole fit with 

W) = , Г%7л» Л" = 0-77CeV. (38) 
1 + Q2/hl 
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The F7„(Q2) Fo rm Fac to r (Monopole) 

10 

> 
" " 1 

or 

CD 0 . 1 

a 

0.01 
0.0 5.0 10.0 

- Q2 (GeV2) 
F i g . 3 . 1 he form factor of the ~t'ir° —> 7 transition for spacelike photons 0 < Q2 < 

5GeV2. The dashed line is the result of the monopole fit with Л = 770 MeV. The 

solid lines are our predictions for monopolc form factors. The experimental data are 

from [13]. 

Table 2 

Vertex 

Function 

monopole 

r„y (fm) 

N.JI. ! 

(J 655 

F.XP [14] 

0.C5 ± 0.03 

12 

Our 
Expt 

Л=0.4 GeV 

mq=0.267 GeV 



1 he radius for 7*7г° —> -у transition is defined by 

. / ^ , ( 0 ) 
< rL >= -6 fin(0) (39) 

'•"">-/*-4^F ™--i%h 1»'? [j / ( - " ) 
uu-K + ")5 (40) 

The numerical results for the radius ;•„-, are given in Table 2. Excellent agreement 

with the available experimental data is reached. 

5. T h e p ion e l e c t r o m a g n e t i c form fac tor 

The pion charge form factor is defined by the diagrams of Fig.4. These diagrams 

are not gauge invariant separately. The sum of the diagrams can be written as 

A»(P,p') - [ i W ) - i W ) j + 

A- + 

ч- 4 ^S(k + P')[Y-L~f-)S{k + v)1
bS(k) 

+-, 

•k\j • t r 

- t r k*(**!)^(*-i)]-
where we use the following notation 

The Ward-Takahashi identity directly follows from Eq.(42) 

(41) 

</„A"(p,;/) = I U ^ ) - I U / / a ) - (42) 
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р — ' 

f (tk+qt/2^) 

к • р'/2 

к ,р ' ,Г & 

•-Р -

к-р'/г к-р/2 f'((k*qt/2l4 
Fig.4.The diagrams describing the pion charge form factor. 

Taking q = 0, one obtains on the one hand 

where £*(p2) = (3ff?/4ir2)n»(p2), and, on the other hand, 

(43) 

Л"(р,Р) = 2р"К(0), (44) 

where F„(0) is the pion charge form factor at the origin. It follows from the compar
ison of Eq.(44) and Eq. (45) on the pion mass shell that the compositeness condition 
E'(mJ) = 1 is equivalent to the normalization of the pion form factor at the origin 
F„(0) = 1. 

Note that the implementation of gauge invariance in the context of the minimal 
substitution [4] leads to 

/ 
МГ{(к + д1/2)2 + ЧЧ{1-1)/4) = 

№ + g/2)') - f{k*) 
kq + <?2/4 
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in Eq.(42) while the gauge invariant vertex (28) leads to 

i 

/ dtf'((k + qt/2f). 

For practical purposes this difference is not important in our case. 

The numerical computation of the pion charge form factor is performed in the 

Breit frame 

4 = (0,9l, P=(E,q/2) l/ = il!,-q/2) E=y/^T?. 

The analytical expressions for the form factor are given in the Appendix. 

F„(Q ) F o r m Fac to r ( m o n o p o l e ) 

1.0 

CM 

or 

Full 
Д 
In t 
Expt 

Л=0.4 Gev 

m , = 0 .267 GeV 

0.0 

(15) 

0 .0 2 .0 4 .0 6 .0 8 .0 10 .0 

Fig.s ~^ Q2 (GeV2) 
Fig.5.The pion charge form factor J\(Q2) for spacelike photons 0 < Q2 < lOGeV2. 
Separate contributions from the triangle and bubble diagrams are shown as dashed 
and dotted lines, respectively. The solid line is the total result. The experimental 
data are from [14]. 
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Our results for inonopole form factors are shown in Fig.5 to G. The contributions 

to the pion charge radius coming from the triangle (Д) and bubble (o) diagrams are 

written down 

whe 

< r 2 > * = - 6 1 4>i(0) 
Л2 Фо(0) 

< ri >°= -G 
1 Ф2(0) 

Л2 Фо(0) 
(46) 

oo 
f J Г Ж " " ) Г 1 1 3 , 3 , , 

,m\ + uf l96" ' 32 

CO 

Ф2 = / duu{ 1 p(~u) 2 
ТеЩТй? г и< [m< ~u 48 (m2 + u ) 3 u

2} 

Ф ° = / duUl 2. W 7 m ' + о ' 
J (m2 + u)3 4 ' 2 
о 

F„(Q ) Form Factor (monopole) 
1.0 - Л=0.4 Gev 

> 
О 

<У 

a? 

fcu 

mq=0.267 GeV 

_ Full 
... Д 
. Int 
. Expt 

o.o м 
0.0 5.0 10.0 

-- Q (GoV) 
Fig.6.The pion charge form factor multiplied by Q2 for spacelike photons 0 < Q2 < 

lOCJfV. The notation is the same as in Fig.5. 
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The numerical results for the radius are given in Table. •'!. One can see that our 

results are in good agreement with the available experimental data till 1 GeV2. 

Tabic 3 

Form 

Factor 

monopule 

NJLSI 

< г 2 > л (fm2) 

0.515 

< r'i >° (I'm2) 

-O.Ul'2 

total (fill2) 

0.533 

EXP [14] 

(fm2) 

0.430 

6. S U M M A R Y 

We have formulated the Nambu-Jona-Lasinio model with separable interaction 

using the bagrangian with the compositencss condition and non-minimal inclusion 

of the electromagnetic interaction. This allows to calculate any low-energy physical 

processes on one-loop level maintaining the relativistic and electromagnetic gauge 

invananeo in each step of calculation. On one hand the form factors in the hadron-

quark vertices take into account the composite structure of hadrous thereby being 

related to a quark-antiquark potential, on the other hand, they make the Fcynman 

iill egrals convergent. 

We have calculated the pion weak decay constant, the two-photon decay width, 

as well as the form factor of the 7*тг° —> -(-transition, and the pion charge form 

factor. The two adjustable parameters, the range parameter Л appearing in the 

separable interaction and the constituent quark mass in4, have been fixed by fitting 

the experimental data for the pion decay constants. 
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APPENDIX 

(1) Explicit expression for the form factor of the ">"тги —> -у transition: 

tf„,(Q2) = fduu^~± [da J rril + u J 
о о 

m| + u - 2 ^ ) + 2Qh„\a 

+ 
yj{rn\ + u - ^ ) 2 + 2Qhn\a + т\ + ч+^ 

i + u - 2 ^ ) +2Q sa(m5 + 2 « ( l - a ) ) 

' + u~g¥) + 2QVm» + 2и{1 - a)) + mj + u + 2 ^ 

(2) Expression for the pion charge form factor. The contributions coming from the 

triangle (A) and bubble (o) diagrams are denoted by 

7&тъ - *•«?') , r ° , r ^ _ W ) ?Ж) = Ф,(0) ' /W) = Ф|(0) 

ф.(£2) = 
0 0 -1 

/ ( - fe») / ( - fc»-g-bg > /y) 

,* + it» + i * * » ^ + £]s + *!ai(i _ ^ 

[wj + i t ' - l b y v ^ l ' + ^ t l - * 8 ) 

(47) 

18 



ОС 1 

«MQ'2) = -У/О* I dkk* I d.r. , r V l -r2 I dim i dl 

Oh2 

.J[-kl)n-kl--!j--kxyty/Q*) 

mi + к2 

(mj + к2 + ^.гу^01У+ ^ ( I - .r2) 

(„!2 + t2_iA,,;/v^y + ^ ( 1 _.,,2) 
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