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1 Introduction 

It is well-known that on supermanifolds M the Poisson brackets of two types can be 
defined - even and odd ones, in correspondence with their Grassmannian grading 

1
• That 

is defined by the expression 

{ } 
8rf AB( .a,g 

J,g,. = azA!1,. z)azB' (1.1) 

which satisfies the conditions 

p( {!, g} ") = p(f) + p(g) + 1 (grading condition), 
{!,g}" = -(-l)(P(f)+")(p(g)+"l{g,f}" ("antisymmctricity") , (1.2) 

( -l)(p(f)+")(p(h)+"l{f, {g, hhh + cycl.perm.(f,g,h) = 0 (Jacobi id.), (1.3) 

where zA are the local coordinates on M, -/{;r and -b denote correspondingly the right 
and the left derivatives, K- = 0, 1 denote correspondingly the even and the odd Poisson 

brackets. 
Obviously, the even Poisson brackets can be nondegenerate only if dimM = (2N.M), 

and the odd one if dimM = (N.N). 
\Vith nondegenerate Poisson bracket one can associate the symplectic structure 

!1" = dzA!1(")ABdz8 , (1.4) 

where !1(")AB!1~0 = 6~. 
Locally nondegenerate even and odd Poisson brackets can be reduced correspondingly 

to the forms 2
•
3

: 

and 

N M 

{ }
can """' (a f og a f og ) """' orf a,g 

J, g O = {;;: 0Xi 0Xi+N - 0Xi+N 0Xi + ~ tOI 00
01 

00
01

1 
tOI = ±l, 

N (ar! a,9 arJ a,g) 
u,g}r" = L: ax• ao, + ao, axi · 

i=l 

(1.5) 

(1.6) 

The even Poisson brackets are the straightforward generalization of the ordinary Poisson 
brackets on the manifolds. They are widely used in physics for the description of the 
Hamiltonian systems. After quantization such systems described the theories containing 
both fermionic (real and ghosts) and bosonic degrees of freedom. 

The odd Poisson brackets were introduced in field theory by Batalin and Yilkovisky 
4 

(they called them antibrackets, and following thats , we will use the same name) for the 
formulation of the covariant (Lagrangian) quantization formalism for the field theories 
with arbitrary constraints (BY-formalism). BY-formalism and its generalizations 

5 
are 

most general methods of the quantization of the gauge theories. Recently interest has been 
aroused in its investigation. It was stimulated by the papers 6

, which started developing 
the background-independent string field theory on the basis of BY-formalism. 

I
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However, the anti brackets can be also used in the direct way- for the forirrulathm- of 
the Hamiltonian mechanics with antibrackets ( anti-Hamiltonian mechanics) : 

. .:. ,.. 

dzA 
dt = {zA, Qh, p(Q) = 1. (1.7)_ 

Leites 2 was the first to point out the possibility of the formulation of such Hamiltonian 
mechanics. 

However, there were a number of obstacles in the quantization of the anti- Hamiltonian 
mechanics and in the physical interpretation of its grassmannian degrees of freedom: the 
violated spin-statistics coupling, the necessity of introduction of the odd Planck constant 
etc. 

Possibilities to get over such difficulties were pointed out by D. V. Volkov ct a!. 7
•8 • 

Particularly, in 8 it was shown that one-dimensiorial Witten's supersymmetric ~echanics 
can be described using antibrackets, and the role of Hamiltonian in this case plays one of 
its supercharges. · 

Later the Hamiltonian systems, provided with both even and odd Pois'sow brackets 
were studied in more detail in 9

• 

Nevertheless, the absence of the physical exampies, where introduction of the structure 
of anti-Hamiltonian mechanics was necessary, or _at least successful, gave them the status 
of non-interests systems. 

Recently in 10•11 a new method of the exact ev<J.luation of the Hamiltonian path 
integrals was developed. lt is based on the generalization of the Duistcrmaat- Heckman 
localization formula12 . Using this generalization, one can localize the path integral to . 
the finite-dimensional ihtegral over classical phase space. This forms the basis for the 
conceptually new approach to the invariant description of supersymmetric theories. 

In13 it was shown that it is convenient to use for the description of this method 
the odd symplectic structure,- constmcted on the supermanifold associated with the tan­
gent bundle of symplectic manifold, anti the corresponding Hamiltonian_ dynamics (anti­
Hamiltonian dynamics). 

Parallelly, this gives the supersymmetrization method for a wide class of the Hamil­
tonian systems (namely, for the Hamiltonian systems which d9finc Killing vectors of th e 
some Riemannian metrics on the phase space}, for which there exists a way to go round 
the noted difficulties COill}CCted with the quantization. . 

In the prese~t pape~ "'we shail study such Hamiltonian systems and their supersym­
mctrization method mo;·c c_losely. 

The paper is organized in 'the following way: 
In Section 2 we shall construct the odd symplectic structure and the conespondipg 

antibrackets on the supermanlfold; associated with 'the tangent bundle of the initial sym­
plectic manifold. Then we shall define the natural map of the mechanics on the initial 
manifold in the supersymmet;.ic anti-Hamiltonian mechanics, and interpret this super­
symmetry in terms of the basic manifold. 

In Section 3 we shaH show that if the initial mechanics defines tlw J(illing veclor of 
some Riemannian mclrics on the phase space, then the corresponcliug supersymmct.ri~ 
a.nti-Ha.milt.onian mechanics can be reformulated wit·h the. even Poisson brackets. 
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2 Anti-Hamiltonian Systems and Supersymmetry 

Let M be the manifold with the symplectic structure 

and 

1 - -
w = -w· ·dx' 1\ dx1 

2 IJ l 

Of ii~ 
{f(x),g(x)} = Oxiw Oxi 

is the corrcspoading nondegcnera.te Poisson bracket on it. 

(2.1) 

(2.2) 

The Hamiltonian II(x) defines ou it the Hamiltonian tnechanics with the equations of 
mol ion: 

dxi . , 
dt = {x',ll(x)} = ~i. (2.3) 

It is known that any supermanifo]J can be associated with some vector bundle 1 . On 
the ~upermilnifold which is associated with the cotangent bundle of any manifold, one 
';111 nmst.rurt the odd S.)'lllplcctic st ructure 2 

( corresponding Poisson brackets known 
in mathematics as Schowten brackets). Indeed, let M be the supcrmanifold, associated 
with M. Then on every map on A1 one can choose the local coordinates (xi, 0;) (p(O;) = 
p(:r; ) + 1 = 1 ), which arc transformed frori1 map to map in accordance with 

x1 -+ Xi= Xi(x), 
· N {)xi 

- "' 0 · 0; -+ 0; = L {)fii )' 
i=l 

(2.4) 

i.e. 0; corresponds to a~·. 
Then, obviously, using these coordinates, one can globally define on M the anti brack­

ets { l.6). Let us map the funclions on !I! onto the odd ones on M: 

f(x) -> c:?J(::) = {f(.r ),F(.r,O)}J, (2.5) 

where 
I .. 

P(::) = 2o;w'1 Oi (2.6) 

corresponds to the Poissou bracket (:1.2) on M . 
It is easy to sec that 

{f(x),g(x)} = {f(x),Q_9(x,0)} 1 for any f(x),g(x) . (2.i) 

Then, the map (2.5) puts the Hamiltonian mechanics (ll,w, ·M) into the anti-Hamiltonian 
mecha.uics (Q,!1~,M), where 

Q = Qu = {ll,F},. (2.8) 

This mechanics is supcrsymmctric. ludeed , it is easy to see that the functions JJ, F, Q 
for·m the siniplcst supcralgebra: 

q = {II,,,.},, 

{c;?,Cj}, = O. 

{II , //} 1 = 0, {F. F} 1 = 0, 

{II ,en, = {~-'.en = u. 

:! 

(:!.9) 



or, equivalently, 

{ H ± F, H ± F}t = ±2Q, (2.1 0) 

{Il + F, Jl- F}t = {Il ± F, Q}I = {Q;Q}t = 0. 

The last equation in {2.9) corresponds to the Jacobi identity for {2.2). 
For the interpretation of this superalgebra note that in (2.5) Q 1 is transformed as df. 

Correspondingly, 
0; = {xi, F}t = wiiO; (2.11) 

can be interpreted as the basic 1-forms dxi. 
Then, one can pass from the description in terms of the coordinates (xi, 0;) to that in 

terms of the coordinates (xi, Oi). 
Obviously, any function f(xi,Oi) can be interpreted in terms of differential forms on 

M. 
In terms of (xi,Oi) antibrackets {1.6) on M take the form: 

. . . . . . . . fJwii k 

{x',x'}t = 0, {x',01 }t = w'1
, {O',O'}t = fJxk 0 (2.12) 

where wii is the matrix of the even Poisson bracket {2.2) on M. 
The corresponding odd symplectic structure in coordinates zA ( x;, 0;) takes the 

form 
1 . . 1 k . . 

!11 = -w· ·dx' 1\ d01 + -w· · kO dx' 1\ dx1 (2 13) 2 IJ 2 IJ, • 

The equations of motion of the anti-Hamiltonian mechanics (Q,Ol!M) arc: 

dx; . . dO; · ae · 
dt = { x'' Q h = f) dt = { o·' Q h = fJxi 0'. 

The following correspondence is obvious 

. [) . 
{H, }t = f [)Oi -+ 'H- operator of inner product on f; 

{ F, }t = 0; [)[) . -+ d- operator of exterior differentiation; 
x• 

{ Q } ti D ti 0k a .c L' d . . 1 ti 
' I = '> -[) · + '> k [)O ' -+ H- te envattve a ong '> • x• , 1 

Then, using the Jacobi identity (1.3), we show 

{H, F}t = Q-+ d~u + ~ud = .Cu- homotopy formula 

(2.14) 

(2.15) 

(2.16) 

As we see, the supercharge H + F which defines the supersymmetry transformation , 
corresponds to the operator of the equivariant differentiation du = d + ~11· 

Therefore the presented anti-Hamiltonian mechanics is the natural canditate for the 
description of equivariant localiza.tion13

• 

However, and we noted that in the Introduction, there are many obstacles in the 
quantization and interpretation of the anti-Hamiltonian mechanics. In the next Section 
we shall show that some additional assumption about the anti-Hamiltonian mechanics 
(2 .14) allows one to reformulate it with even Poisson brackets and go round these obstacles. 
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3 Reformulation with Even Poisson Brackets 

In the previous Section we saw, that defining the map (2.5), we go from the arbitrary 
Hamiltonian mechanics (2.3) to the supersymmetric one (2.14). 

In this Section we shall consider the special case of the mechanics (2.3), when it defines 
the Killing vector for some Riemannian mertic on the phase space. 

In this ca.se the corresponding supersymmetrization (2.14) can be reformulated in 
terms of the even symplectic structure on the phase superspace. 

Let us assume that the manifold M is provided with both the symplectic structure Wa 

and the Riemannian one 9ii· 
Let the local 1-form Aa = A(a);dx; define on M this symplectic structure: 

dAa =wa. 

Then consider on ,M the following local1-form: 

Aa = A(a);dx; + O;g;;DOi, (3.1) 

where DO;= dO;+ fi10kdx1 and n, -the Cristoffel symbols for metrics 9ii on M. 
The exterior differential of this 1-form (globally) define on M the even symplectic 

structures: 

1 k I . . . . 
fl., = dAa = 2(w(aJii + R;;ktO 0 )dx' 1\ dx1 + g;;DO' 1\ DO', (3.2) 

where R;;kl- the curvature tensor on M. 
The Poisson brackets, which correspond to this structure, are : 

{f(z),g(z)}a = 'V'd(z)(w(a)ii + R;;ktOkOitt'V';g(z) + 8rf(z) 9;;0tg(z) 
· ao· ao' · (3.3) 

'k ci where g' 9ki = u;, 
a k ; a, 

'V; = ox; - f;;O ()Ok. 

Now let us assume that the Riemannian metric g;; on M Lie-derived with e (2.3): 

.c"g = o # e~9ki + 9ike~ + g;;,kek = o. (3.4) 

Then the odd function 
{J = e;g;;o' (3.5) 

on M is the motion integral of the anti-Hamiltonian mechanics: 

.Cyg = 0-+ {Q,Qh = 0. (3.6) 

The functions F and H commute with Q in the following way: 

{F,Q}t = -F2, {H,Qh = H2, (3.7) 

5 



where 
8(9ik~~{) 8(g;k~~{) 

W(l)ij = 8xi - 8xi 
1 . . 

F2 = 20'w(2)i;0', (3.8) nl = {i9ije, 

Let us assume that det W(2)ii :/:- 0. 
Then, the mechanics (H2 , W(l)i;dxi A dxi, 111) and (II,w, M) define the bi-IIamiltonian 

structure on M (it was first pointed out first in12
): 

ti ;; 8// ii 8H2 
'> = w 8xi = w(2l 8xi · (3.9) 

It is easy to see that (1ia = Ha+F2 ,D.a,M) and (Q,D.11 M) define the same Hamiltonian 
dynamics (2.14) on M. 

There 0' = 0, 2 and na is defined by the (3.2), Wo = w, Ho = II . 
In other words, we provide the supersymmetric anti-Hamiltonian mechanics (2.14) 

with the even Hamiltonian structm-e in the case, that the initial mechanics (II, w, M) 
define the Killing vector for the some Riemannian metric on theM. 

Using the description with it we can go round the obstacles connected witl1 the diffi­
culties in the quantization and interpretation of anti-Hamiltonian systems. 

However, on the level of classical description the use of anti brackets makes it more 
simple and transparent. 

It is obvious that this dynamics has at least two supercharges. 
We have got the simple supersymmetrization method for the Hamiltonian systems, 

which is defined on the symplectic manifolds, provided with the Riemannian structures, 
Lie-derived with it. 

This class includes the integrable systems on the orbits of the coadjoint representation 
of semisimple Lie groups and therefore, really all integrable systems of classical mechanics. 

Example (1D supersymmetric Witten mechanics) of dynamics with even and odd 
Hamiltonian structures was considered at first in8 (see also9

). 
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