


F 1eld theoncs with' lnghcr denvmtlves acqulre astable reputatlon of |
' nonphysrcal theorles Nevertheless because of they: belng frequently .
arise in: dlfferent areas of theoret1cal phys1cs the’ 1nterest in’ th1s 1ssue~
is penodlcally revrved 1~ 10] Fid P SRR
SAL pr1nc1pal shortcomlng of hlgher deris
srcal and" quantum is-the’ lack ‘of ! lower—energy boun .'T Here the
energy is’ 1mphed as a conserved Noether quantity’ correspondlng to
the translatlon 1nvar1ance ‘of the theory w1th respect to time or, that’
is' the s me ‘as‘a value ‘of the Hamrltoman constructed accordmg to’ -
Ostrogradsl\y s’ rules on' the solution of’ the eq : of motion [11].
‘#The attractrve propertles of the quantum ﬁeld theorles with hlgher
»denvatlves is also worth mentlomng In partlcular, the convergence’ :
of-‘Fe eynman dlagram g to”
'terms 1n Lagrang1an !

'is' not | [4 12] Just
this property of "theorles i’ qucstlon is’ used to construct the gauge’
invariant- renormahzatlon ‘of ;Yang~Mrlls ﬁelds by add1ng the hlgher.

-denvatlve terms to the stand 'rd Lagrangran [13] i

It should be noted that the’ lacl\ of lower energy bound for a com—j
pletelyfk olated system 1s;adm1ss1ble in pr1nc1ple if the’ energy s, an:
1ntegral of motlon Bu , unfortunately, suchllsolated sy stems'are~
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e

1It is -usually. beheved that the energy bemg mdeﬁmte insign_ entails"the mstabxhty i

of the cla.sswa.l dynamlcs for. theorxes with higher denva.tlves, a.lthough the very special -
counterexample is known’ [14] More exactly, if the energy of a system’ is not definite in
* sign, the problem of stability cannot bé'solved using the La.grange—Dmchlet theorem [15)
and, in genera.l it is not' reduced to searching for the Lyapunov:function as in the case of .
the usual theorxes with La.granglan functlons, conta.mmg, at most the ﬂrst derlvatlve in.
tlme of dynamical ‘variables, -+ - : -
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| not real1zed pract1cally Nonremovable 1nteractlon w1th an external
_environment inevitably results in ‘pumping out an arbitrary amount
of the energy from the system, lowering its energy without limits.

- Obviously, the higher derivatives in time in the Lagrangian lead .
to additional degrees of freedom,’ since. there is one-to—one corre- " -
spondence between the dynamical degrees of freedom and the:initial
data for the relevant Euler~Lagrange equatlons In the followmg, for -

the sake of deﬁmteness ‘we shall disCuss the field. theor1es ‘with: La— S

granglan functlons dependmg, at most, on. the second der1vat1ves in’

time: Here there arises the: “very. typical p1cture for. hlgher der1vat1ve

theor1es bes1des the bas1c mode of osc1llatlons wh1ch ‘takes: place

even in. the absence of the second.. der1vat1ves in Lagranglan there

~ emerges addltlonal as a rule, lngher—frequency mode.. The contri- -

bution. to, the energy - of the second mode has’the opposrte sign as.

compared w1th _the basic one. Therefore even at the classical level :

it turns out to be .more. proﬁtable energetlcally to excite the osc1l—e

latlons from the Qsecond mode . The.more, osclllatlons of that sort.:r'y B
;larger the1r amplltudes ‘are, the lower the total
energy ofa system turns out to be From this. 1t follows that the ﬁeldff :
theor1es w1th hlgher der1va 'ves}are.ﬁunacceptable phy51ca.lly at least,. -\

are exc1ted and t

in maklng use of the1r standard interpretation.-

- All these arguments are. apphed e‘{actly to the;quantum level as;
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Well Here the osc1llat10ns of both p051t1ve and ‘negative—energy: )

modes are assoc1ated w1th the correspondmg quanta of. exc1tat1ons .
In v1rtue ‘of the 1mp0551bll1ty of removmg the external perturbatlons, ,

- as it has been noted prev1ously, an unllmlted number of the nega-

' t1ve energy quanta \Vlll be created As a result in, the ﬁeld theorlesr S E

quantum electrodynamlcs arlses but for all frequenc1es of the second i
mode now: ThlS problem was successfully overcome in electrodynam-i_ e

ics, but 1t st1ll remams unsolved in the hlgher der1vat1ve theories.,

Some time: ago,. 1t ‘was popular to -use here the formallsm of 1n—li
deﬁmte ‘metric in“the’ FOCl\ ‘space of: the states:This mietric can be
1ntr0du(,ed by mutual 1nterchange of the creatlon and. annlhllatlon

operators of quanta of the second mode As a result the quantum '
states w1th e\c1tatlons from tlle second mode acquire a negative norm
but the energy calculated as an e\pectatlon value of the Ostrograd—
sky Hannltoman over these states turns out to.be a. pos1t1ve definite
quantlty [1 2]. Thereby, the problem of the negative energy is re—f _
duced to searchlng for the, phys1cal mterpretatmn of theor1es with
1mp11c1t-v1olated un1tar1ty So far:there is 1o acceptable solutlon of
the problem along this way. [9] Therefore in the following we shall‘ :
only deal - with the dlfﬁculty of the energy. be1ng 1ndeﬁn1te 1n-51gn in
the theorres w1th hlgher der1vat1ves e e (el o S i
. As far as we know, the attempts to attach the physwal meamng to
the hlgher denvatlves theories are based on the conjecture forb1dd1ng ’
the excitations w1th negative energy.. This constraint; ;should appear
as, the boundary cond1t10n following. from. the cosmology [7] or as a
by-product of the nonperturbatlve quantum solutions, [5], or. it has
been introduced from the outset.in- formulatmg these models. [10]
We would lll\e to: suggest another solution of the problem ‘N amely,,
we Wlll show that the energy in the theory W1th hlgher der1vat1ves can
be redeﬁned using a: mechamcal analogy Here we have Ain: m1nd ‘the
spec1al class of hlgher delnatlve theorleSxarlsmg when the eﬂ'ectlve
Lagranglans are. constructed n, extended ‘object: models (strlngs 1n N
partlcular) Even: at ;the. classmal level an extended obJect requlres .
the:field descr1pt10n We, shall suppose. that. the or1g1nal field: theory.
does not contain the. higher. derivative; terms:in the Lagrangian so i
that its ‘energy is bounded. from ‘below. The: neglect of .the. detalls
of internal structure ‘of the extended ob_]ect along one: or several its
mternal dlmensmns results -as-a rule, in higher derivative termsi in.
the eﬂ'ectlve Lagra.nglan Now the energy of the effectlve theory turns
out- to be- unbounded from below : il : i
-As’ a. spec1ﬁc model we! shall treat a relat1v1st1c r1g1d strlng w1th
the action functlonal dependlng on- the second: derlvatlves of: str1ng
coordlnates [16 17] . Here 'the r1g1d1ty term takes effectlvely into"

B account the th1ckness of the strmg It may be 1magmed clearly, - that

thJS system srmulates, for example the gluon tube of ﬁmte radrus -



o :[29] To advance in their study, we cmploy the followmg parametriza-

tion including the timc-like gauge on the strmg W orld surface
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. where x(u) are (D — 2) transverse string coordinates. Although the'

parametrization (2.3) holds true only for the limited string motions

(so- ~called harmonic apprO\lmatlon [30]) it w1ll be suﬁicrent for our

aims.
" Inserting the ansatz (2. 3) into (2: 1) and e\pandlng the 1ntegrand
of: (2 1) up to second order terms in powers “of x(u) we obtaln [30]

W = /dt/da % - a?x? — ea2 (a 2X - X )2] (2;4).;:

K"where a = wcfl,e = a(r /l
‘means dlfferentlatlou with respect tot = T ‘and the prlme w1th re-

' spect to o. Varlatlon of the wctxou 2 4) glvcs the followmg equatlons

of motlon ; -

ar@oxw o ey

' and the boundary conditions
| G+eo)x =0 (20

Dx—-() '0’_071'

s the strrng length The dotw

: Owrng to equatlons (2 5) and (2 6) bcmg hnear thelr general solutlon ::

¢ can be represented as the sum

x(t a‘ = (t o) + xz(t 0’)

(2 7y

Here xl(u) are transwerse (legrees of freedom of the open Nambu{ :

‘Elxl(u) = 0

e,

B . X = 0, 0= O .

The coordlnates x2(u) obey the followmg equatlons NN SR

@m0, o (2.9)

* X9 =0, 0 7T

As usual .the general solution’ of the boundary problems (2.8) and
(2.9).is given by the: e\pansmns in correspondlng ergenfunctlonsv [30]

Pt

. () B
Xr(t ‘7) =Q+ ool + 1 7rp0c ¢0 -g)—— cosno e "“""“, (210)
o | ,;{?"t
X a) e (T ‘sinnoe

wrth two series of thc elgenfrcquenaes

Thus the transverse coordlnates of the relat1v1st1c strmg w1th
rigidity x(u) are described in'the harmonic approximation by the pair
of 1ndependent wvariables:(x;,x,).-This duphcatron' of the number of
dynamical:degrees 'of ifreedomis*general for- higher: derivative:théo:
ries. It is also reflected exp11c1tly in, the‘canonrcal formalismiworked:
outfor hlgher derlvatlvc theories:by. Ostrogradsky more:than a cen-
ture ago [11]." In, our case accordlng to the. Ostrogradsky method the



independent generalized coordinates are q;° = x and q; = x and
their conjugate momenta are defined by the expressions.. ...

L 9 [OL pol N
= — = 1 0) x,
Pr=7%%~ 3t(3x) E

vWi‘Eth'*the use of (2'7) (2.8) 'and~(2.9) from (2. 13) we ﬁnd p1 =
(pol/m) X1, P2 = (pol/w) x2 As a rcsult the canomcal Ostrograd—
’ sky Hamlltonlan : S o g
J 1
H = /2)(; dc (plx + pzx -£) - (2.14)

in terms of the variables x; and xj tal(es the form

TH = %% 'dq [(xl +a x,l2) - (Xg "'alez2 - —E—-x% = 2X2X2>] .

Y

. o : (2.15)
~‘Hence it follows that already atthe:classical level the excitations

of the degrees of freedom X3 rnay give a negatlve contnbutlon to.
the total energy of the strmg Indced 1nsert1ng the general solutlonf

: (2 10) mto (2. 15) we obtam

(ﬁ ﬁn + ﬁnﬁ )

=15 . T
: I . | (2 16)
’ Where Mr = pol is the total INass. of the strlng ot oady mod

Thus in"the rigid string modecl we arrive at, the problem general for;,'
all thher derivativeitheories of, the lack;of lower ‘energy bound: [10,:
~14].:In:the: quantum; thcory of:this system the; followmg annlhllatlon

and creatlon opcrators al; and b ;aref dcﬁned

“—

o "ﬁ“f"‘;(2) e
—11‘—'/3+ ﬂb:,- #

- (2)
’ 111_ nb
Wlth standard commutahon rolatlons e
[ai, a*’] [, 6] = 960m, -
,J = 1 _,..~. D—2

Therefore talung account of the zero point osc1llat10ns of the strlng‘;
wo obtain the e\pressmn of thc energy 1ndeﬁn1te in sxgn

P2 SN  D-2
= —+ah Y W, (ata, + Z2) -
B 27\1+‘””l ‘<a""+ 2 )
SRRETON (2) DN T T
R bib, + ——2).
ey ( ¥ 2) e,

;71‘11

:nm=12

As is well known (1,2 9], the negative energy ’<—'ah(w)n> ‘creation”

L ) G e e (D) S
operators b can be regarded;as positive energy: | +ahw, | anni-
hllatlon ones.: Thereby, in the Fock space of the states the posxtlve'f
norm negatlve energy excitations are transformed into negative norm

.posmve energy. oncs.: So, the violation of unitarity: in the quantum\i:

theory. is really reflection:of the essentially’ classical ‘problem. of - the -

- lack of lower energy; bound (sce (2.16) and papers [9, 31, 32]). Ina:

recent papers (sce [10] for review) it was: proposed to apply the per-*
turbative constraints to freeze out thc excitations of those degrees of
freedorn which give rise to the ncbatne contribution mto the energy.
In the persent paper using the, mcchamcal analogy we would like fo
show that there e\lqt anotllcl solutlon of the problem m questlon.‘”

,;Flexural v1brat10ns of the :
Tlmoshenko beam : e

To eluc1datc thc analog,y bctwcen the rlgld strmg and the me-‘;
chanical :vibrating systems we: consider in’ this section the ﬁexura.léf



V1brat10ns of the so-called Timoshenko beam

- In pr1nc1ple the ﬁe\ural \1])1at10ns of tlirce d1mens1onal extended
objects such as rods or beans are described by the general equations
of the three dimensional theory of clasticity [35]. However, in virtue
of their complication this description is not suitable for practical use.
Therefore, one has to employ here soine approximations.

If a rod or a beam is consldered as an. xnfinxtely thin one (that,
is, if we fully neglect its transvel se_‘sues) ‘then we obtain the str1ng

descrlbed by the equat1on for the lateral deﬂect1on J(x t):
Ty' — pjj = 0. S G B

Here T is the string tension and 1t is the linear dens1ty of the string
matter. As it was to be expected, none of the characteristics of the
transverse string sizes enter into (3.1). By taking into account the
- beam thlcl\ness effectlvely, cquation (3.1) is modxfied as. [24]

B Ty + Fpj =0, (3 2)Q

: where E is. the. X oung’s modulus, I is the momentum of inertia: of ‘a
~ crass sectlon around the; p1111c1pal axis normal to the.plane of motion;:
Fis the cross section area and p is.the mass density.: In applxcat1ons§'
~ the case of the absence of longitudinal strength (T''=: 0) is frequently"
considered. If: it is really the case, then equat1on (3 2)is transformed’,

1nto the Bernoulll—Euler equat1on

EIy”" sz'] =0. .

The eff" t of trasverse s1zes of the beam leads to appearance mf_.
“equations (3 2) and (3 3 , of the lnbher derivatives as compared with
the string case (3.1). The corresponding Lagrange densities contain -
the (y")? term, but the problemn witli the positive ‘definiteness of the-
energy does not arise there. Only the theorics with: higher ‘deriva- -

tives in time suffer from the above problem ‘The model of flexural
vibrations of beams proposed at the begining of our century:by Tim-

oshenko’ [24;: 34] ‘helongs to such thcories.  Besides:of:bending: of:

e

10:

(3,3)

,equalto zero , L

‘ where A = n7r/l the functlons qns(t

the beam under the flexural v1brat10ns the Tlmoshenko model takes
mto account the shear. deformatlons of its elements - Two degrees
of freedom are assoc1ated with each cross sectxon of the beam the
deflection due to bending and that. due to. shear Th1s duphcatlon of
the number of degrees of frecdom in the T 1moshenko model leads to-
the equatlon of the fourth order in time .

EIy”" +- Fp j = pl (1 + Z%) i+ pIi ¥ =0. (3.4)
Here G.is;the shear modulus and k is the shear. coefficient. (the phe-
nomenologlcal parameter depending on. the: geometry of the beam;
cross section). : ' .
Equatlon (3.4) 4 should be supplemented with the boundary con—'
d1t1ons at the ends z; = 0,29 = [ of the beam. In the following
for the sal\e of s1mp11c1ty we shall con51der the‘ h1nged hlnged beam,

W60) = y"(’t 0 =0, y(’t ) = g (D)= 0.

The general solut1on of equatlon (3. 4) and the boundary conditions
(3 5) has the form L R s M

(o0}

J(t x) = Z s1n/\,,a, l(]n1(t) + qnz(t)]

) =" A';,;COs(w,,;'t‘ +i€ns);ys =
1,2 are the normal coorchnates correspond1ng to two series of the‘f
e1genfrequenc1es s = AVE/ PWinsy §1= "1, 2;-respectively.: The
dxmensmnless frequenc1es wms are deﬁned by the formula Ll

Toob s 2
Wino ‘ 2 P BRSNS AR “;AA?IT

2
- 4{

(3 7)

3Apart this, the inertia of g)ratxon ol' the beam cross sectlons is taken into account in
the Timoshenko model (the Rayleigh -correction [35]) ‘However, th1s fact itself does not ’
lead to appearance of hxgher denvatn es in time in the theory. '

11,



where £ = kG’ / Ei is the dlmensmnless parameter T 1s the radlus of
gyration of the ‘beam* cross sectlon around pr1nc1pa1 axis® normal to
the plane of motlon r2=T/F." R S G
When the shear modulus G’ ‘tends formally to the” 1nﬁn1ty, the
. Timoshenko equation’ (3.4) is reduced to the Bernoulh—Euler one
- with the Raylelgh correction - : ’ S EREEE

EI:I]"" + pr - pI’l " = 0. T (38)

In this case the frequenc1es of the ﬁrst serles (3 7) in the Tlmoshenko
theory tend to finite values 7 - : e S ST

2 » /.\?;"’2;:~ IR
w*nl = T N9

‘ 14 A2n2

o and those of the second mode of osc1llatlon go to 1nﬁn1ty

" The Tlmoshenlxo equation (3.4) and the ‘corresponding boundary

conditions (3.5) can be derived by the varylng the followmg La-

' gra.ngla.n density:[36] " S PR

- ﬁl‘v"‘hff (= ay = asi® + asiiy ) | (3 10)

Herea, i = 1,23 arc the 9‘99ﬁicécjnts of equation (,.3,‘-4)" -

L _BL T EpI
. le _ pF, J 2‘F I\/G

, Further usmg (2 13) onc can dcﬁnc thc canomcal varlables

(Il = Ja (]2 = ?I.;

“ 9L 8 <ac> | dg e
m= s 2 S+ agi - Ly,

vy -2

£ e
= = —agjj +;__y((,

SRR

: "(f3é..9>

14 =), ag=-L— _  (311)

and construct the Ostrogradsky canonical Hamiltonian =" = =

Y DT EN SN ANy 4 i 2 . S - S
PR S 5 I W7o R /3 72 R
dz |2 —t +la; =.—= —= L=
/ [qu s q» + (01 ;4a3> q° + a:,m‘h]
0 o

1 '
:2/da:(y +7a;l/'/—a;JJ —a3J +a1J"2)
0

ThlS Ham11toman is (OllSOI\(‘(l i txrne and 1t generates the' tlme;
translations ¢ — ¢ 4+ At. The value of H on the general solution

l\'Jlr—l e

(3.6) is the cnergy of the Tunoshcul\o bearn calculated accordlng to

Ostrogradsky

[ee}

Bo = Lan3" (s — why) (hiitly —whiAb)urs 0 L (3.14).

Thus, the flexural vibrations witli the arnplitudes Ang "g:'ive'the neg-
ative contribution to E¢ [36] because for all n’s we have from (3.7)

Formula (3. 14) is complctcl\ cqm\ alcnt to that (2 16) for the energy)
of the relatn istic string witlr rigidity i in the harmomc approxlmatlon _
In sp1te of the prmc1p.11 (hﬁucncc of these obJects they suffer from
the same lack of the lower energy bound. However, in the case of the
ﬂexural v1brat10ns of bcams thcrc (‘\IStS the well definite notlon of ;
the- mechanlcal energy which i 1s always a pos1t1ve quantlty, ‘of course

_The mechanical encrgy of a rod or a beam is a sum of tlic lxlnetlc"f
and potential ones of their- clcmcnts -Let, yl(t z).be a lateral de-

ﬂectlon of the beam due to bcn(lmb only and ys(t, ) be that due .

:to shear. In the. Timoshenko model the kinetic. energy: contains the

contnbutlon from thc tmnsvcrsc motmu of beam elements 3

godd Hiagngl=Dorpd g = i I THES TR ’“53;-":%:5*’:{

. I
/)FI/
(l.LJ
A R
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~ and that from the gyration of the beam,cross,'sectiqn; s e

. v e . 0 "

Here y(t :1:) = yl(t :L) + yalt, ;L) is the total lateral deﬂectlon of the
beam. :

Accordmg to the Hool\e law onc  gan easﬂy ﬁnd the potentlal cnergy
- of the flexural vibrations of the bean. This energy con51sts of the

ela.stlc energy of the bendmg) dcfournnons B LAk
S ST e e
B =€I/dm/'2 (317
0
and that of the shear deformations -
: I , _ -
SV = %ﬁ dryfo o (318)
co By . T

Joining together formulac (3.15)-(3.18) we obtain the action func-
tional of the Tirn(?shenkq model o _‘ N

and yz(t m) T FEET T T
R R 'Y"tg'.—":’;_ Yoy it ,?EE— o TR, t,; R CU RS Ra 3 20 b
S S T R ,(' E ';,'\E‘\yl':f y? r?EA‘?j:?;m', perees &{‘7 ( )“
DN S I Poae 13‘". (: I kG soaniiEd ". 3 .;‘ . i SN 4;
T e R
and the boundary coudltlone 'wluch take for the hlnged—hmged beam

the forrn S e Ve

Sty e

§(0) = 9(t1) = 0, ¢"(1,0) = 4" (61) = 0,

14.

i 0) (1) = 0.

- IR B ) P e 3 : R

Combmlng equat10ns (3. 2()) nnd (3. 21) one may obtam ’the Tlmo—

shenko equation (3.4) for the total lateral deflection y = y; + Yo

_ The sum of (3.15)~(3.18) is the total mechanlcal energy of ﬂexurali

vrbra.trons of the T1moshenko béam -
!

E = ”F dz (y%+‘r2z/3?)+E /d P2+ kFG/d (’ ‘)
N 0\1 : . ) . et

i)

Here ¢(t :1:) £ yl(t z). In the case of the hmged—hmged bee,m we
ha.ve the general solutlon (3. 6) for J(t :L) and the'analogous expan—"
51on for ¢(t :c) o

¢(t ;1;) = ZCO‘S,\”J [AI (]nl(t) + Ll Qn2(t) |

where L,,s/l are the nmphtude ratlos in: the expa.nsmns (3 6) and

B “kns '—'* Tl7l’ (1 3—:€~1 zns) a( S—:lli 2,/ °L

Substltutmg (3 6) and (3. 24) into (3.23) we obtam the expressmn for‘
the mechamcal energy in terms of the arnphtudes A,,s, s =15 2

By = ii [( ]” ) 42 + (1+ 2’” )w2 Az']'
M - 4 L l nl4ini 2 n2‘ n2

As it was to be e\pected the cnergy (3 26) is p051t1ve deﬁnlte in sign
because of the positive definiteness of the original functional (3 23).:

~'So, in the Tlmoshenl\o model there exists the mechanical energy
positive definite in sign (formulae (3.23), (3.26)) and the Ostrograd-
sky energy unbounded from below (formulae: (3:13), (3.14))::Both’
these quantltles are 1ntegrals of motion and they are mutually related-

I a 2‘00 (wg ——w2 '
EM_E0+4(T3) r;——Q—Xg—‘—)[,ﬂA ,ﬂA ] (327)‘



However, the mechanical energy (3.23) in contrast to the Ostrograd-
sky energy (3 14) has qultc a clear phys1cal meanmg

‘v*,

” Mechanlcal energy of the rlgld
strlng -
The descnptlon of ‘the r1g1d stnng dynamlcs (eqs (2 5), (2 7)

(2.8) and (2.9)) is in many respects analogous to that of the flexural
vibrations of the Timoshenko beam (egs. (3.4), (3.20), (3.21) and

(3. 22)) ‘Indeed, Both the objects can be described either by one'
~ equation ‘of the fourth order (equations (2.5) and (3.4), respectlvely)'
or by two equations of the second order (equations (2.8), (2.9) and

1(3.20), (3.21) for the ”partial” deflections). ”The material” of the
gluon' tube in comparison with that of a beam has very distinct
- mechanical properties, of course. Therefore, in these models there

is no complete identity between: the corresponding equations.  But
it is important that starting from cgs. (2.8) and (2.9) in the frigid

‘ stnng model one ‘may identify according to the usual rules the energy
correspondmg to.the mechanical one in the Timoshenko model.

- For :equations (2 8) and. (2 9) we. have: the standard Lagranglan’

' densrtles S e LT OR oL B P R A O TTI

The tota.l energy is deﬁned by the formula

/da xl + xl /da %2 + x2 + x2) (42)

Substltutlng the general solutlon (2 10) into (4 2) one: ﬁnds

'~EM=P—2;ﬂZ(aa+a )+ﬂ2(ﬂﬂ +ﬁﬁ)
Lo 2M T et "n S
. . R (4.3)
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As 1t was to bc C\pC( t( d, tho m( Chanlcal energy (4 3) in the r1g1d
str1ng model is, thc quahtx 1)()\1“\0 dcfinltc in sign. Obv1uosly, th1s '
property of the "c1 1g\ also Tolds 1t thc quantum le\el Tahmg ac—
count of zero- pomt osc1llatlons oue may w r1te the mechanlcal energy
of the rigid string as follows e o

E}\[ - 2*\[ + (lh Z.d,,l (a an + __2_)+

n=1

: s " ngg 2 R R g R
ah VTS b+b — ) (44
Ly EE +‘7, ; S ( " + -2 > ( )
In ‘this case all string states in the Fock space are positive in norm,
hence the above mentioned problem W1th violation of unltarlty does
not arise here. ' :

5‘,‘ " Cbncliisiorl'— |

Thus in thc framcu 011\ of the. rigid stung model e have shown
that one can construct, for this ochct a positive definite "mechani-
cal” energy 1nstcad of thc Ostrogx adsl\y cncrgy unbounded from be-
extended obJects at thc (Ll%\l( al lo\ cl.. An ;appealing future ofrour
approach is the absence of any constraints on the physmal degrees of
freedom introduced "by hand’/in"soie other: papers on this subject.
This enables one to construct a (oulplcte quantum theory instead of .
the truncatcd one: Further at’ thc quantum level the problems w1th :
negatlve norm states and the. lo‘ of unltarlty ‘do not arise. )

~On" theé othér hand; tlie cucrgv ‘constricted’ accordmg to Ostro—

‘ gradsl\y generates thic time tmnslatlons ‘but the mechanical oné does

not. Therefore, a solc dlfhculty whicl can occur here:is to prove;the :
relativistic invariance of such thcoucs by 1nal\1ng use of the IlOthIle
of the mechanical cnergy. . S : :
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