


1 'Igtrbduction

The neutral scalar fields are the fundamental - components’ of ‘the recent
models of weak interactions. The scalar objects which play the role of
Higgs-bosons are needed for the observed masses of gauge vector bosons
to appear. Another obvious candidate for a (pseudo)-scalar coupling be-
tween the quark bound systems and leptons would be a Higgé:liké pﬁrticlé
X-boson obfk the exotic partner of a'." graviton. Recently, several theoretical
issues involved have been connected with X-boson interaction effects inside
a quark bound. system. In the Standard Model (SM) the X-boson cou-
pling with a quark ¢; and an antiquark g; is characterized by the following
Lagrangian density . . .. . - . . . ‘ B
:, o C Lx = —gxXab,. S .
where X der_ioktes'ithe X:boson field with -mass myx.;-the coupling constant
gx is defined in a standard way, gx =-21/4G},~/.2rhb. Here G is the Fermi
coupling constant, the quark- mass i is equal to.the constituent:quark
mass 772, in the case of equal masses, otherwise 7n is replaced by the:re-
duced mass and b is at present an unknown parameter.: We suppose more
complete searches, both for long range and short distances, the Yukawa-
type interactions mediated by the exchange of the hypothetical light scalar
X:boson. According to SM, where the coupling of the X-boson to quarks
is proportional to the quark mass, both for heavy and heavy-light quark
bound system (HLQBS), the Yukawa--type coupling constant is large and
the -X-boson exchange contribution to'the short-distance ‘effect- can no be
neglected. as’ compared with the QCD: contribution due to the ‘one-gluon
exchange [ 1], w0 7 o0 e e T e D
‘Since the dominant interaction inside the HIL.QBS is short range (Re ~
0.1+0.2 fm) on the QCD A -scale (A = 200+100 MeV , respectively and R,
is the QCD characteristic scale on which the nonperturbative fluctuations
dominate), it is an ideal probe for new interaction-effects arising from the
exchange of the low-mass X-boson. It seems, this effect will ‘diminish the
masses of HLQBS and’ increase the magnitude of the ground state vertex
function of HLQBS. ‘The‘éontrib‘utiorﬂibf X-boson exchange to the short-
distance part of the potential Vx , arising frém'the'Yuka;wa coupling ¢g§ =
\/-Z_Gp(ﬂﬁ?,)2 of the X-boson to a quark, is given by ( in the R3 -space )"
o Vx(r) ~ r%exp (—k,mx‘T)gff‘/(‘iyﬁ);? B R (1)
where « is the c-number, the parameter 8 is rather arbitrary, depending on
the ratio of the vacuum expectation values of X (Higgs) doublets and on .
the mixing of two neutral X (Higgs) bosons. The interaction (1 ) is‘most
important for HLQBS and small mx:, e =0 S sy
L mgr<0@,
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and taking into account the short range R. ~ 0. 1 = 0 2 fm we can obta.xn '

the following mass interval for the hypothetical X-bosons

mx~(17_2) GeV;

at decreasing A from 0.2 GeV to 0.1 GeV, respectively. The scalar bosons

considered here are neutral CP-even objects, whose interactions with the
fermions (a.nd bound states) are known and whose masses are the free model
pa.rameters ‘ ‘

" The finite temperature phase transitjons in the model-like gauge-nggs

‘systems or pure scalar system theories (one of them is considered below)

play an important role in scenatios. of the early universe. The latter, as
is assumed, was in a hot symmetric state at a high enough temperature.
Due to a universe expansion and its cooling the so-called critical tempera-
ture passed through the electroweak phase transition breaking the symme-
try. spontaneously. ‘The considered here model is expected to describe the
main features of symmetry restoration correctly. We have presented our
analysis in the context of generahzed functions, whlch are the well defined

.distributions on:.

- the space of complex Schwartz test functlons on R S(R" ), o} ;

-the space So(R™) of the generalised functions F (z) where SO(R")—,
{ F(2) € S(R™) and F(0) = 0.}; “

.-the space of the moderate growth of dlStI‘lbuthIlS on R" S (R") “The
article is organized as follows. Sec.2 reviews the basic Lagra.nge formal-

-ism for the system of two scalar neutral fields in the context of standard

quantum field theory. Following the paper [2] we represent the interaction
Lagrangian in terms of the partial normal-ordered scalar field operators.
We mean that, this scheme is valid only for the.quadratic, field factors in

-terms of the normal-ordered operators.- For simplicity, we have presented

our analysis based on.a o -like model. ‘We compute the derivative relation
of the mass with respect to the nonzero temperature in the scalar theory

~in Sec.3. Finally, in Sec.4 , we present our conclusions.

2 :“‘,'Ii‘he Basic Fo,rkmalism'

. The main feature of the subject presented here is that the quatization is

performed according to the canonical formalism. As was noted in [3], the
role of the scalar field of dipole-type in four dimensions is held in-two

i d1mens1ons by the s1mple pole field. " The reason for considering such a
" problem in quantum field theory is'that the analogy of behaviour between
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two and four dimensions has to be found at the:level of Green functions.
Liet us consider the O(IN) symmetric theory of ascalar field X = {x1,--.,Xn}

- with mass my interacting With a massless fermion (quark) field Q by the

X(z) = SE (), () =

constant g.-The sxmple o -like model. Lagrangla.n dens1ty looks hke

"L=1L, +LA+LQ, PR (2)
where - e o o
Ly=ILy(z) = %aux(Z)a“x(Z)+%m3x2(Z)‘.—t\/Xmax3(’z);“ ’
A o i ' '
—In X (2) 5 o : :(3)
“La ;.-LA'(};) = ‘,,x(z)a“A(z)+ A2 fﬁ‘(4)’
LQELQ(Z) = (z)[za gax(Z)]Q(Z) ; '

Az(z) and z are the 2h dimensional
coordinates. The last' two terms in ( 3 ) define the potential of self interac-
tion of the field x(z) by the unknown: coupling constant: A.-In the scheme:
bescribed by the Lagrangian density ( 3:) my and: \X‘are!given as. input:
parameters through a renormalization procedure to be shown below. The
scalar neutral dlpole-type field x(z) = X *(2) obeys the equation

|3"‘><(z)“0 o (5)
: 92 o ar 82 T
(D—62+ +a -——6—5,~‘m+1— )

and ca.nonlcal commutator relatlon onRP at D=4 [ 4 ]

| xG@), x(z) =2 /‘4496] (p)expl=ip(z=2')] = f e

=2 '—e(z")e(zz) g

x"‘v

7 where 6 ! (p) is the well deﬁned genera.hzed function § '(p) = e(p°)6 '(pz) from

S'(Ry), 6(p) = 0 at p < 0. ~,

Note that eq. ( 5 ) obeys locahty and Pomca.re covariance. Smce the
dimension of the y -field is equal to unity.(in the mass unlts) it could be
represented as a free subcanonical massless scalar field to be compared with
the canonical standard free scalar field with the mass dimension. Forma.lly,
the field x(z) can be obtained from the quantization procedure of the system
of two scalar neutral fields: x(z) -field and an additional one- A(z) thh
the Lagra.nglan density ( 4 ) The Euler—Lagra.nge (EL) equatlons

OTG) = AR, (6)
BAG =0
allow us to obtain eq." ( 5.). The fundamental solutlon of eq( 5 ) is the

A generahzed function A"(z), obeymg the equa.tlon e

I:""1A°(Z) = 5(2) )
3



" which is invariant under the linea.r transformation and saving the quiadratic

form —z% = zZ — 2z} — -+ — z%. The solutions of the classical EL egs. ( 6 ),

(7 ) and o
[i0 — gOx()]Q(2) = 0
have the followmg form

Q=) = exp [—1gx(2)]Qo(2) (8)

where x(z) obeys egs. ( 5 ),( 6 ) and Qo is the solution of the free Dirac
eq. In quantum case the solution ( 8 ) becomes .

Q(2) = exp[—zgx(Z)] Qo(Z),

where the scalar ﬁeld x(z) is rea.hzed in the pseudol’ulbert space:H a.nd'
Qo(z) is the free Dirac field, acting in'the Fock spa.ce F. Here we cons1der

" the loca.l normal ordered functlon

: {ezp[—ig E n.x(zx)]}

as the generalized functlon of the modera.te growth, where n; are arbitrary

integer numbers. ‘To understand : exp (...) rit should be very instructive
x(2) 7 ’
X(z) = [{a(p) expl=ip (= —ir/2)] + a*(p)exp lip (= + ir/2)]}up , (9)

a(p) and a*(p) are the covariant operators of creation and a.nmhxla.tlon,
respectively, obeying the commutation relatlons .

. la(p), a(9)] = [a*(p),a’(9)] = 0
la(p), a”(9)] = (27r)“5(p - q)(27r)9(p )5(P -m )

for the scalar field with a mass m, ris a vector from an open upper hght':
cone in Minkowski space V* = {z €R: 2% >| 2 |=(¥7, ()%} . The -

definition of the local normal ordered exponentla.l function of the regularized

field x(")(z) is as follows [4 ]

exp [+igx(z)]
{0 | exp[*igx()(2)] | 0) -

The fermion (quark) field Q(=) obeys the rehorma.lized quantum field eq.

(0 — g NBX(NQA) =0,

}= exp [izgx(')(Z)] =

4

to consider the regula.nzed ﬁeld x(')(z) as a smooth operator functlon of

- x(2)-

which is an analog of the cla.551ca.l equatlon Here N denotes norma.l order- ‘
ing defined as a'limit of -

Ni8.x(2)1Q(2) = 8ulx(2) +igw(z ~ Z')]Q(Z ) asz' =z,

where the two-point Vnghtma.n function w(z - y) is introduced in R* as

w(z) = (OIX(Z)X(O)IO) el #222+t®(2°)]

(4 )?

formed i in the time- ordered w (z) functlon R
°(z z')=(0] TX(Z)X(Z )t 0) @(z —20')10(2 2 )+9(z° '—Zo)w(z ~z),

which obeys the eq

o) = ) v =12,

in 2v -dimension. Under the dilatation transforma.txon z — az the Wight-

man functlon w(z) acquires the additional term; i.e.

w(z) — w(a.z) = w(z) nak‘,iq >0 Co

1
2(27r)2
It could be interpreted as a spontaneous symmetry breaking. Therefore,
this is an important pomt for the spec1a.1 role of the scalar d1pole type field

Now we 1ntroduce the loca.l gauge tra.nsforma.tlons of the x-field as.
x(Z) X&)+ Cr(Z)

where ofz)isa smooth rea.l solutlon of the eq Da(z) = 0 a.nd a( ) belongs
to the space S(R?) of complex Schwartz test functlons on R3 at a.ny fixed -
2% such a tra.nsforma.tlon forms the Abeha.n Ao group ‘of symmetry, a E Ao

The loca.l gauge transformatlon of Q(z) ﬁeld looks hke o

Q) = exp [—tga(Z)IQ(Z) -

but Qo(z) and A(z) = Dx(z) are hved as the Ao f-mvarlant functlons If

we consider the o -dependent function (at a € A ), which is 'a generator

of :the local gauge transformatlon a.nd ais an arbltra.ry solutlon of the
D’Alambert-like eq. : s ‘

Mo = [ @ {a(z)aoA(z) A(z)aoa( )1,

1 -zg=const - .
then there exists the following relation i

x(2) = exp [iA(@)]x(z) exp [=iA(a)] = x(2) + a(2) -
‘ 5



In the case of a fast decreasmg a(z) functlon at the space infinity the
generators of local gauge transformations obey the followmg relatlons using
the Poisson brackets (PB):

{Me(2)],Q(=")} = iga(2)Q(=") ,

{Ma(2)],Q(2")} = —iga(2)Q(z") ,
Pla(@], A} =0
To understand the role of an addltIOIlg.l scalar field A(z), obeying eq. (7),
it is very instructive to remind some relatlons with this field. We restrict

here only by: .
- the equal time PB

{AG2), Q(Z Voer = {A(2), Q" )} oo = -0,

MDA o =0,
{aoA(z) Q(z’)}zo_zo' = -1g6(3)(2 - ')Q(z')

and
- the PB at any time =~

{A(z) Q(z )} = —ngo(z . )Q(z ) ,
{A(Z) Q(z )} = 19170(2 -z )Q(Z) o

where

Do(z — 2 ) = 2mi / d,,pa(p )6(p )exp [-—zp(z -z )]

To present the nearely rea.l physmal p1cture, we suppose that the field A(2)
is a real physical one, but nonobservable The observable field would be
the conserved current iu(z) = -8 A(z) In the case of a massless scalar
field at the same time with solutlon (.9), which can be considered as the
Fock notion of a massless scalar field, there is a class of the solutions x(2),
- parametrizing- by a real number c.. To:treat the case of the spontaneous
symmetry breaklng we introduce the new scalar d1pole-type field x'(z)

a result of the shift of the Fock solutlon by a constant e

X@=x@+e Q0
with the nontr1v1a.l nghtman functlons atc#£0.
Wz = #) = 0 | X (W) | 0) = w(e — ) + &

and
: 01x()10)=c.
; .

“NM';\V,,:‘A i} "“1_'7-.—.454‘ RS

At the same time A'(2) = A(z) with the tnv1a.l Wightman function -
(O1AG).- AGw) [0Y=0, N2L

The gauge tra.nsforma.tlon ( 10 ) leads to the fact that the conserved gauge :
invariant current f“(z) :

6#(2) = a,,x,(z) ,
Bth(z) = 0

should be represented as arrea.l‘observed field. Using the :gauge tran'sfor—
mation ( 10 ) we divide the total Lagrangian density (‘2:)as. =~

©LO6AQ59) — In(x,A 10) + Lind(, Q50)

where

1 Ao 1, 1,
Lo(x, A, ;¢) = —ayxa“x+6yx3“/\——(cx) +5A o, (1)
Line(x, Q ,c) = 4N(x ) - \/_moxx —-—(cx)x + v

+= (m0 2\/—moc-— —c2)x - 2\/_mo(cx)x +
"""+(m0 — 2\/—m0c — ——c )(cx) \/_moc X — ——(c2)2
‘ —\/—moc + -m C2+Q(Za ng)Q B i (12)

where g is’an- arbltrary massive para.meter Let ‘us mtroduce the’ partla.l

- normal ordering procedure [2 ] for the quadratrc ﬁeld term x2(z) by means

of , :
2(z) = x(z)2 +NA(z z’) , asz = 2 (13)
where : ‘

Az, z')—N_lw(z—-z) ;,_,; e (14)

Since the Lh.s. of (13 ) is of O(N), the magnltude of A(z,7') is of 0(1) ,
* Substituting ( 13 ) into ( 12 ) with ta.ken account of ( 14 ) the Lagrangla.n

den51ty L;.: becomes: ;'

Line(x:, @3 ¢) = — 3¢ X% 2 = (ﬁfﬁé 4}‘ ic')x ixt i
+= 5;1 ’ ; —\/_moNA(z 'z )x + [(mo - 3\/_c)mo - /\(— + A)](cx) +

\/_moc+—mo)c +AV.'
e +Q(28 ,—‘garx)Q, ,

,0

+ (m0 K —6\/_moc——c2)NA (



where L LR R '
5u2=mo(mo—6\/Xc) T (N +A)
In fact our estimations are somewhat formal since A(z, 2’ ) include both the
divergence in the short-distance limit and the infrared divergence when the
scalar field is the massless one. The physical masses should be extracted di-

rectly from the unperturbative Lagrangian density Lo(x, A;c) (11 ), which
is Tewritten in a more convenient form

1 ' 1
Lo(x: Ase) = 50,x0"x + x9N+ A+

1, ( :aam,) .b 1 A o Callp
l a 6a - ¢ 2 a b.
+2I1 X b o X +2 ﬂ 3N X o’ — X

It is clear that the field ¥ acquires the masses:

m?2 = ;2

My = o—p, N

n? = 2 2
m2 = —pu’+Fyc.

. Since the theory must be 1ndependent of the additional mass squared 12,
we can fix it so that 6u? =0 e,

mo=3\/Xc{1+ 1+——( RACH +NA)} , (15)

The A(z)-factorin (15 )isa well— deﬁned dlstrlbutlon of a moderate growth
in the space S’(RP) of Schwartz functions on RZ, [ 5] For the scalar fields

with an arbitrary D the A(z)-factor can be obta.lned from the fundamental

solutlon A°(z) of eq.( 6 ) and looks as [ 6 ]

r(3-h+1)
4A-INT(h — 1)x8

Aw=ew
For even D and h > 2 7 +1 the A(z) functlon becomes

(—z +1.sz°~) SERNEY
4-1INT(h — 2)I(R —1)

( A(z)-( 1)— ln(b—"Mzz.2+isz°)v (17)

where M is an arbitrary parameter with dimension one in mass units,which

is introduced as an lnfrared regulanzatlon parameter. The distributions
(=22 ¢ w)""'”‘ = (=2% ='i0)~7*h are’solutions of eq.( 5 ), if ‘D is-even
and A > D/2. To calculate the physical X-boson masses, let us restrict
ourselves within' & ‘system without massless particles, i.e.u? # 0'and ¢ = 0,
4 otherwxse A(z) brings us an infrared dlvergence Taking into account again

8

5(—2° +iez )__'H' ! h<1+— (16)’

2

that §u? = 0 and due to a reallty of the phys1cal X boson mass the latter
is given by m% = p? yie - . .

m} =m(2,—/\A(z)‘ S T (18) :
as a function of the bare parameters mZ and A. Thls time Ais a functlon
of u? also. The mass relation (18 ) indicates the change of a magnltude
of X-boson mass squared up to physical one, m%. The level of this effect
depends both on .signs.and magnitudes of A and-A(z)-factor.: The nor-- (
malization point myx .= mg can be obtained both from the long-distance
case at h — 1 < D/2 and for short rang, if h =1 > D/2 (see for-
mulae ( 16 ) and ( 17 ), respectively). Thus, for the x(z)-fields, obeying
the eq. OP/2x(z) = A(z), the theory leads to decreasing the real X-boson

mass in the case of four- dlmenswnal space and a posmve value of /\ at long
distances: ‘

. S A
m% = mg’ T 0(—; +ie2%)? In [| ‘-M 2z2 | +z7r@(zzM 2)]

Ta.klng the limit N > oo we ﬁnd that mx/m0 ~ 1— /\/N tends to 1.

.Therefore, the O(N ) invariant scalar theory is trivial in the large N limit. "

3 The Nonzero Tejrnpératuref”

In this section we extend our scheme to include the temoerature effect in
the scalar field mass squa.red Generally, the scheme is the following: let
us fix the bare parameters through the phys1cal quantities as:functions of -
the temperature T'. As for the phys1cal mass my (-18) we suppose again
that ¢ = 0.- This time since the parameter p? in §u? depends on T, the A~/
“factor is the functlon of y? and T also “Then p?(T") is determined by

m—mm moﬁwoffé“ um

To con51der the. behav1our of m x(T) at T #0, let us’ remmd both’the
facts that the: temperature—dependent contribution to the frée energy of -
the ultrarclativistic scalar particles with® mass m-at the temperature T
is proportional to’ (m2/24)T2[1 + O(m/T)] ['7°] and .the expression for
m%(x) = (8A\/N)x* = m3 in the model with the Lagranglan density under -
the gauge transformation ( 10 ). Therefore, we rewrlte the Lagra.ngla.n :
dens1ty (-3 ) in the followmg form T> mg) P : >

(Z) '— uxa“x /\T(T —T2)x —\/_mox = Nx +-

where Ar=A/(4N), T.= 2mm/N//\ 1s ‘the’ crltlcal tempera.ture and dots

denoté the omitted terms, which have no dependence on’ x(z). Finally, from B

9



(19) the express1on for the temperature-dependent X boson mass looks

like

Differentiating eq. ( 20 ) with respect to T, we can obtain

dm%(T) A (=1)P/2-1(— 22 +zo) Dj24h-1 -1
= ’dT - = 2Ar T + /\BT 1+ /\4h lex(T)I‘(h — Q)I‘(h - 1)

Therefore, near T = 0, the sign of de(T)/dT depends on’ that of: the'
magnitude of m%, A and relation of h —1 > D/2. Due to decreasing m%(T)
with increasing 7' up to m2(To) = 0 "the symmetry should be restored at
T0<Tc, where (at D =4 ) = : R

,TOEZ'\,N[—/\———FA(#'I)]:{ 2[n;\§Aip:,AT()#2)]+} -

if h —1 = D/2. Since at the critical temperature m%(7.) = —AA, the
magnitude of m%(7T.) depends both on signs of A and A(p?,T). Supposmg

that he scalar self-coupling A ~ 0.1:0ne can obtain T. ~ 300 GeV (see:
T, = 350 GeV:[ 8 ]} at N:="1 and: atithe input of the SM parameter "

mo ~ 44 GeV. But for small A ~ 0.0156 [ 9 ] we find T ~ 680 GeV. For

the positive both A and A-factor, To < T. and the symmetry should be:..

restored before the phase transition. But, if A < 0 at A" >0 or for p051t1ve ‘

/\atA<0 T0>T

~

4 Conclusmns

. We have given the formulatlon of an approach based onthe 1 /N expansion
for studying ‘an-arbitrary order dimension system of two scalar neutral

fields, x(z)-field and an additional one-A(z). The basic idea has been to
relate the existence of a new type interaction mediated by the exchange of

" a hypothetical scalar X-boson and.the decrease of the physical X-boson "

mass my in the case of a special choice of D and k at.a fixed value of the

scalar self-coupling A. It has been mentioned that our scheme is valid if the -
bare mass squared m? of a scalar.dipole-type field is larger than AA(2). We.
restricted our consideration to a subsystem of pure scalar theory, based on .

‘the SM of a Higgs-boson-like system

In the case of h — 1= D/2 m% will decrease w1th mcreasmg /\A(z), xf ,
A > 0 in four-dimension space-time. The physical mass mx turns to the

bare mass m, at ﬁxed A in both the cases, when h —1 < D/2 at long and
short dlstances ifth—1>D/2.

The finite temperature scalar (Higgs)- Yukawa model at a fixed value.
“of the_ scalar self-coupling ) is investigated. vThe derivative relation ,Of the -

10

m%(T) = Ar(T.2 - T?) - AA i : (20) ‘

" physical X-boson mass my with respect to the nonzero temperature T has o
-also been presented. It was shown that the symmetry should be restored at
“the" temperature To =T, (1 - —) The problem of matchmg the reality

which involves the estlmatlons both of m% and dm% /dT clearly shows the' '
need of physical input of the scalar self- coupling /\
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