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1 Introduction 

The neutral scalar fields are the fundamental components of the recent 
models of weak interactions. The scalar objects which play the role of 
Higgs-bosons are needed for the observed masses of gauge vector bosons 
to appear>_Another obvious candidate for a (pseudo)-scalar coupling be­
tween the qua~k bo~nd systems and leptons would be a Higgs~like particle 
X-boson or the exotic partner of a g~aviton. Recently, several theoretical 
issues involved have been cor{nected with ·x-boson interaction effects in~ide 
a quark bound syste'm. In the Standard Model (SM) the X-l:>Oson cou­
pling with a quark q1 and an antiquarkq2 is cllaracterized by the follo~ving 
Lagrangian density 

Lx = -gxXq1q2, 

where X denotes the X-boson field with mass mx , the coupling constant 
gx is defined in a standard way, gx = 2114 G}/.2mb. Here GF is the Fermi 
coupling constant, the quark mass m is equal to the constituent. quark 
mass mq in the case of equal masses, otherwise·rn is replaced by the re­
duced mass and b is at present an unknown parameter. We suppose .more 
complete searches, both for long range and short distances, the Yukawa­
type interaCtions mediated by the exchange of the hypothetical light scalar 
Xcboson. According fo SM, ·where the coupling of the X-boson to quarks 
is proportional to the quark mass, both for heavy and heavy-light quark 
bound system (HLQBS), the Yukawa- type coupling cons~ant is large and 
the .X-boson exchange contribution to the short-distance ·effect can no be 
neglected· as compared with the QCD contribution due to the .one~gluon 
exchangd 1 ]. . . 

' I 

Since the dominant interaction inside the HLQBS is short range ( Rc ~ 
0.1+0.2 'Jm) on theQCD A -scale (A= 200+100 MeV, respectively and Rc 
is the QCD characteristic scale on which the nonperturbative fluctuations 
dominate), it is an ideal probe for new interaction effects arising from the 
exchange of the low-mass X~boson; It seems, this effect will diminish the 
masses of HLQBS arid increase the' magnitude of the ground state vertex 
function of HLQBS. The contribution of X-boson exchange to the short­
distance part of the pote~tial Vx , ari~ing from the Yukawa coupling g} = 
:..tiGF(f3m )2 of the X-boson to a' quark, is give~ by ( in the R

3 
-space ) 

Vx(r)""raexp(-mxr)g~/(411'), (1) 
. . 

where a is the c-nurnber, the parameter f3 is rather arbitrary, depending on 
the ratio of the vacuum expectation values of X (Higgs) doublets and on 
the mixing of two ~eutral X (Higgs) bosons. The interaction ( 1 ) is most 

important for HLQBS and small mx ·, i.e. 

·~x(Rc} <:: 0(1) 1 



and taking into account the short range Rc"' 0.1 + 0.2 Jm, we can obtain 
the following mass interval for the hypothetical X-bosons 

mx "'{1 + 2) GeV 

at decreasing A from 0.2 GeV to 0.1 GeV, respectively. The scalar bosons 
considered here are neutral CP-even objects, whose interactions with the 
fermions (and bound states) are known and whose masses are the free model 
parameters. 

The finite temperature phase transi_!jons in the model-like gauge-Higgs 
systems or pure scalar system theories (one of them is considered below) 
play an important role in scenarios. of the early universe. The latter, as 
is assumed, was in a hot symmetric state at a high enough temperature. 
Due to a universe expansion and its cooling the so-called critical tempera­
ture passed through· the electroweak phase transition breaking the symme­
try spontaneously. The considered here model .is expected to describe the 
main features of symmetry restoration correctly. We have. presented. our 
analysis in the context of generalized functions, which are .the well defined 
distributions on: 

- the space of complex Schwartz test functions on Rn , S{Rn ); 
-the space So{Rn) of the generalised functions F(z), where S0(Rn)= 

{ F(z) E S(Rn) and.F{O) = 0.}; 
-the space of the moderate growth of distributions onRn, S'(Rn). The 

article is organized as follows. Sec.2 reviews the basic Lagrange formal-
. ism for the system of two scalar neutral fields in the context of standard 
quantum field theory. Following the paper (2) we represent the interaction 
Lagrangian in terms of th~ partial normal-ordered scalar field operators. 
We mean that this scheme is valid only for the .quadratic field factors in 
terms of the normal-ordered operators .. For simplicity; we have presented 
our analysis based on au -like model. We computethe derivative relation 
of the mass with respect to the nonzero temperature in the scalar theory 
in Sec.3. Finally, in Sec.4 , we present our conclusions. 

2 The Basic Formalism 

The main feature of the subject presented here is that the quatization is 
performed according to the canonical formalism. As was noted in [3), the 
role of the scalar field of dipole-type. in four dimensions is held in two 
dimension~ by the simple pole field. The reason for considering such a 
problem in quantum field theory is that the analogy of behaviour. between 
two and four dimensions has to be. found: at the level of Green functions. 

Let us consider the 0( N) symmetric theory of a scalar field X 7 {Xt, ... , XN} 

.with mass mo interacting with a massless fermion (quark) field Q by the 

.~~ 

I 

I 

I 

constant g. The simple u -like model.Lagrangian 'density looks like: 

where 

Lx = Lx(z) 

LA =·LA{i-) 

Lq =: LQ(z) 

L = Lx +LA -i- Lq , 

1 1 . . 
28~'x(z)8~'x(z) + 2m~x

2(z)-:- v'Im0x3(z)-

,\ 4( ) 
- 4Nx. z ; 
. ·, 1 
8~'x(z)8~'A(z) + 2A2 

'CJ(z) [iB- gBx(z)]Q(z) 

(2) 

(3) 

'(4) 

x2(z) = 2:;:,1 xt(z) , A2
(;) = Ef=1 A](z) and z are the 2h dimensional 

coordinates .. The last two terms in ( 3 ) define.the potential of self interac­
tion of the field x(z) by the unknown coupling constant·,\. In the scheme; 
bescribed by the Lagrangian density { 3 ) m 0 and ,\ are:given as input 
parameters through a renormalization procedure to be shown below. The 
scalar neutral dipole-type field x(z) = x*(z) obeys the equation 

ohx(z) = 0 , 

82 . . 8.2: 82 
( D =: -· + · · · +- .,.- -.- m + 1 =D) 8z2 8z2 8z2 ' · 

. : •. : • 1.> m. . 0 :, . 

and canonical commutator relation on R 1! at D = 4 [ 4 )' 

[x(z), x(z')J.=211" jd4p8'(p)exp[-:ip(z~()]= 
1 

= 871"3 c: (zo.)e(-<:2) , ·' 

(5) 

where li'(p) is the well defined generalized function li'(p) = c:(p0 )li'(p2 ) from'. 
S'(R4 ), li'(p) = 0 at p <0. < 

Note that eq. ( 5 ) obeys locality and Poincare covariance. Since the 
dimension of the X -field is equal to unity (in the mass units) it could be 
represented as a free subcano'uical massless scalar field 'to b~ compared with 
the canonical standard free scalar field with the mass dimension: Fornially,. 
the field x( z) can be obtained from the quantizationproced ure of the system 
of two scalar neutral fields: x(z) -field ·and an additional one~ A(z)with 
the Lagrangian density ( 4 ). The 'Euler-Lagrange (EL) equations 

oh:1x(z) = A(z) , (6) 

· DA(z) :::; 0 (7) 

allow us to obtain eq. ( 5 .). The fundamental.solution of eq:( 5 ) is the' 
generalized function .6,C(z), Obeying the equation . 

oh-1.6.c(z) = /i(z)' 

3 



'· 
which is invariant under the linear transformation and saving the quadratic 
form -z2 = z~- z?- · · ·- z~. The solutions of the classicalEL. eqs. ( 6 ), 
(7) and · · 

[ia- 9ax(z)]Q(z) = o 
have the following form 

Q(z) = exp [-igx(z)]Qo(z) , (8) 

where x(z) obeys eqs. ( 5 ),( 6 ) and Q0 is the solution of the free Dirac 
eq. In quantum case the solution ( 8 ) b~comes. 

Q(z) =: exi> [-igx(z)]: Qo(z) , 

where the scalar field x( z) is realized in the pseudohilbert space H and 
Q0 (z) is the free Dirac field, acting in the Fock space F. Here we consider 
the local normal ordered function . . 

N 

: { exp(-ig L: n;x(z;)]} : 
i=l 

as the generalized function of the moderate growth, where n; are arbitrary 
integer numbers. Tounderstand : exp ( . . ) : it should be very instructive 
to consider the regularized field x<rl(.z) as a smooth operator function of 

x(z) 

x<rl(z) = j {a(p) exp [-ip(z- i~/2)] + a*(p)exp (ip(z + ir/2)]}dnp, (9) 

a(p) and a*(p) are the co'variant operators of creation and annihilation, 
respectively, obeying the commutation rela:tions 

[a(p),a(q)] = [a*(p),a*(q)] = 0, 

[a(p); a*(q)] = (27r)46(p- q)(27r)<?(p0 )6(p2
- m 2

) 

for the.scalar field with a mass m, r is a vector from an open upper light: 
cone in Minkowski space v+.= {z ER: z~ >I z,l=d:LT::1 (zi)2 ]1/2

}. The 
definition of the local normal ordered exponentialfunction of the regularized 
field x<r>(z) is as follows [ 4] . 

. · . (r) • ·- exp [±igx(r)(z )] 
· exp [±zgx (z)] .- (0 I exp[±igx(r)(z)]l 0} . 

The fermion (quark) field Q(z) obeys the renorm:alized quantum field eq. 

{ia- g-y~'N[8Jlx(z)]}Q(z) = o, 

4 

1: 

which is an analog of the classical equation. Here N denotes nor~al order-
ing defined as a limit of ' 

N[o~'x(z)]Q(z) = 8Jl[x(z) + igw(z- z')]Q(z') as z' ..:......z, 

where the two-point Wightman function w(x---;- y) is introduced in R 4 as 

1 . 
w(z) = (0 I x(z)x(O) I 0} =- (47r)2ln[-J.t2z2 + t0(z0

)] , 

form'ed in the time-orde;ed wc(z)-function 

wc(z-z') = (0 I Tx(z)x(z') I 0} = 0(z0 -z0 ')w(z-z')+0(z0 '-z0 )w(z'-z), 

which obeys the eq. 

D"wc(z)= 62.,.(z) ,v = 1,2, .... 

in 2v -dimension. Under the dilatation transformation z -+ az the Wight­
man function w( z) acquires the additional term, i.e. 

i 
w(z)-+ w_(az) = w(z)-

2
(
2
7r)2lna, a> 0. 

It could be interpreted as a spontaneous symmetry breaking. Therefore, 
this is an important point for .the special role of the scalar dipole-type field 
x(z). · 

Now we introduce the local gauge transformations of the x-field as 
' , 

x(z) = x'(z) +a(z), 

where a(z) is a smooth real solution ofthe eq. Da(z) = 0, and a(z) belongs 
to the space S(R3 ) of complex Schwartz test functions on R3 at any fixed 
z0

; such a tiansfor~~tion forins th~ Abelian Ao groupofsyrrimetry, a E .A~:-
The local gauge transformation of Q( z) -field looks like · · 

Q(z) = exp [-iga(z)]Q(z) , :. 

but Q 0 (z) a:nd A(~)~ Dx(z)arelived as theA0 -invariant functions.• If 
we consider the a -depe~dentft.i~~fion (at a E" A0 ); whi~h is a generator. 
of ;the local gauge transformation and a is an arbitrary solution of the 
D'Alambert-like eq. · . 

>.(a)= j d 3z[a(z)~oA(z) .:._:A(z)Boa(z))., 
, za=const. ,. 1 f ~ 

then there exists the following relation 

x(z)-+ exp [i>.(a)]x(z)exp[-i>.(a)] = x(z) + a(z) . 

.5 
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In the case of a fast decrea.sing o:(z) -function at the space infinity the 
generators of local gauge transformations obey the following relations using 
the Poisson brackets (PB): 

{A[o(z)],Q(z')} = iga(z)Q(z'), 

{-\[a(z)],Q(z')} = -iga(z)Q(z'), 

{A[a(z)],A(z)} = 0. 

To understand the role of an additional scalar field A(z), obeying eq. ( 7 ), 
it is very instructive to remind som~elations with this field. We restrict 
here only by: 

- the equal-time PB 

and 

{A(z),Q(z')}zo=zo' = {A(z),Q(z')}zo=2 o' = 0, 

{~(z),A(z')}zo=zo' =.0, 

{ 8oA(z), Q(z')}zo=zo' = -igc5(3l(z--z')Q(z') 

-the PB at any time 

where 

{A(z), Q(z')} = -igD0(z- z')Q(z') , 

{A(z), Q(z')} = igDo(z- z')Q(z') , 

Do(z- z') = 27ri j dnpt:(p~)c5(p2)e~p [-ip(z- z')] . 

To present the nearely real physical picture,. we suppose that the field A( z) 
is a real physical one, but nonobservable. The observable field would be 
the co~s~rved current j"(z) = -8"A(z). In th~ c~seof.a massless scalar 
field at the same· time with solution ( 9 ), which can be 'considered as the 
Fock notion of a massless scalar field, there is a clas·~ of the solutions x(z), 
parametrizing by a real number c. To treat the case of the spontaneous 
symmetry breaking we introduce the new scalar dipole-type field x'(z) as 
a result of the shift of the Fock solution by a constant c: 

x'(z) = x(z) + c (10) 

with the nontrivial Wightman functions at c /:- 0 

w'(z- z') = (0 I x'(z)x'(z') I 0) = w(z- z') + c2 

and 
{Oix'(z)IO)=c. 

6 
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At the same time A'(z) = A(z) with the trivial Wightman function 

{0 I A(zt) ... A(zN) I 0)'= 0, N ~ 1. 

The gauge transformation ( 10 ) leads to the fact that the conserved gauge 
invariant current ~"(z) . . 

e'(z) = 8"x'(z) , 
a"~"(z) = 0 

should be represented as a realobserved field. Using the gauge transfor­
mation ( 10 ) we divide the total Lagrangian density ( 2 ) as 

L(x,A;Q ;c)-+ Lo(x,A ;c)+Lint(x,Q;c), 

where 

Lo(x,A, ; c) 
1 -\ . 1 1 
28"x8"x+8"x8"A- N(cx)2 + 2A2 + 2 J.t

2x2
, (11) 

Lint(X, Q ; c) -\ ( 2)2 " 2 -' ( ) 2 --X -v-\moxx --ex X+ 
4N. · ·.· N 
1 2 2 " · -' 2> 2 " ·c · · +2(m0 - J.t - 2v -\moe- Nc X - 2v -\mo cx)x + 

2 " X 2)·(· ) . " 2 -' ( 2)2 +( m0 - 2y -\m0c - N c ex - v -\moe X - 4N c -

-v'>.m.0c3 + ~m~c2 
\ Q(i8--: gBx)':J , . (12) 

. . . . ' . 
where jJ. is an arbitrary massive parameter .. ·L~t us introduce the partial 
normal ordering procedure [ 2lfor the quadratic field term x2(z)by means 
~ . 

x 2(z) =: x(z)2
: +N~(z,z') , asz-+z', (13) 

where 
~(z, z') = N-1w(z- z') . (14) 

Since the l.h.s. of ( 13) is ofO(N), the magnitude of ~(z,z') is of 0(1). 
Substituting ( 13 ) into ( 12 ) with taken account of ( 14·) the Lagrangian 
density Lint becomes: 

L;nt(X, Q; c)=- 4~(: x2 
:)

2
- (VIrna+. ~c)x : x2 

: + 
i . . . . 2 . . . 

+iJ.£2 : x2 
: -v'>.moN ~(z, z')x + [(mo :- 3v'>.c)mo ,.-, -\( ~ +~)](ex)+ 

+~(m~- J.t2 - 6v'>.m0c- ~c2)N fl.- ( 4~~2 ~; v'>.m0c/~rn~)~2 +' 
+Q(ia - gax)Q , 

7 



where 

8p.
2 

= mo(mo- 6v'A"c)- p.2
- >. (~ + ~) ·. 

In fact our estimations are somewhat formal since ~(z, z') include both the 
divergence in the short-distance limit and the infrared divergence when the 
scalar field is the massless one. The physical masses should be extracted di­
rectly from the unperturbative Lagrangian density Lo(X, A; c) ( 11 ), which 
is rewritten in a more convenient form 

Lo(x,A;c) = ~a"xo"x-ia"xo"A+ ~A2+ 

1 2 a (c .. CI'aCI'b) . b 1 ( 2 ). 2) a Cl'aCI'b b +-p. X uab--·- X+- J.! --c X --x · 
2 a 2 2 3N · a 2 

It is clear that the field X acquires the masses: 

2 . 2 ml = -J.t, 
.. 2 l 2 
m~ = -J.t + 3Nc . 

Since the theory must be independent of the additional mass squared J.L2, 
we can fix it so that Dj.t2 = 0, i.e. 

mo = 3v'A"c { 1 + 1 + ~(;c)2(c2 .+ N~)} . (15) 

The ~(z)-factor in (15) is a well- defined distribution of a moderate growth 
in the space S'(RD) of Schwartz functions on R~ [ 5] For the scalar fields 
with an arbitrary D the~(z)-factor can be obtained from the fundamental 
solution ~c(z) of eq.( 6 ) and looks as [ 6] · · 

D .. 

~(z) = ( -1)h rh-- h + 
1

) D ( -z2 + icz0 )-~+h-l , h < 1 + D . (16) 
· 4h-tNr(h- 1)1r• 2 · 

For even D and h?. J?- + 1 the ~(z)-function becomes 
. ,,, \ 

~(z) = ( -1)~ ( -z2 + icz0)-'~+h~i· 
. 4h tNr(h-~)r(h-1)ln(-M2z2+iczo) ,,, (17) 

when!· M is an arbitrary parameter with dimension one in mass units,which 
is intro.~uceg ~s ,~n infrare.~ re§ularization P_ara~eter. The ~istri~utions 
(-z2+ w)-,+h == (-z2 - w)-,+h are solutiOns of eq.( 5 ), tf D ts even 
andh ?. D/2. To calculate the physical X-boson masses, let us restrict 
ourselves within' a.' system without massless particles, i.e.p.2 =I= 0 and c = 0, 
otherwise ~(z) brings us an.infrared dive~gence. Taking into account again 

8 

that 8p.2 = 0 and du~ toa re~.li,ty of the physical X-boson Illass the latter 
is given by m~ = j.t2 , i.e. 

mi = m~- >.~(z) .(18) 

as a function ofthe bare parameters m~ and >.. This time ~ is a function 
of J.L 2 also. The mass relation ( 18 ) indicates the change of a magnitude 
of X-boson mass squared up to physical one, m~. The level of this effect, 
depends both on.signs and magnitudes of>. and ~(z)-factor. The nor- r 

malization point mx = m 0 can be obtained both from the long-distance 
case at h - 1 < D/2 and for short rang, if h '- 1 > D/2 (see for; 
mulae ( 16 ) and ( 17 ), respectively). Thus, for the x(z)-fields, obeying 
the eq. oDI2x(z) =A(z), the theory leads to decreasing the real X-boson 
mass in the case of four-dimensional space and a positive value of>. at long 
distances: . . . · . . 

mi =m~- 1:Nl~(-z2 +icz0)8 1n[I-M 2z2 l+i7r8(z2M 2)]. 
Taking the limit N--> oo we find that m~/m~ "' 1- >.jN tends to 1. 

. Therefore, the O(N) invariant scalar theory is trivial in the large N limit. 

3 The Nonzero Temperature · 

In this section we extend our scheme to include the te~perature effect in 
the scalar field· mass squared. Generally, the scheme is the following: let 
us fix the bare parameters through the physical quantities as functions of 
the temperature T. As forth~ physicai mass mx ( 18) wesuppose again 
that c = 0. This time since the parameter J.L~ in Dj.t2 depends on T, the·~· 
~factor is the function of p.2 and T als~. Then J.L 2(T) is determined by. 

m~- J.t2 (T) .:._ >.~(p.2,T)~ 0. (19) 

To consider the behaviour of mx(T) at T =/= 0, let us remind both the 
facts that. the. temperature-dependent contribution to the free energy of 
the ultr~relativistic' scalar particles with' mass m ·at the· temperature· T 
is proportional to (m2 /24)T2[1 + O(m/T)] [ 7 J and .th~ expression for 
ml{x) = (3>.fN)x2

- m~ in the model with the Lagrangian density under 
the gauge transformation ( 10 ). Therefore, we rewrite the Lagrangian 
density (3 ) in the following form (T ~ m 0 ): . 

.·. 1 . ..·· . . 2 . 2 2 " '3 >. - 4 ". 

· Lx(z) = 2a"x8"x- >.T(T - Tc )x - v >.mox _--' 4Nx + ·; · · 
'- J ~. 

where AT = >.f( 4N), Tc = 2m0 \{i:iji. is. th~ criti~al temperature and dots 
denote the omitted terms, which have no dependeitce mi-x( i ). Finally, from 

9 :' 



( 19 ) the expression for the temperature-dependent X -boson mass looks 
like · 

mi-(T) = AT(Tc 2 - T 2
)- ,\~: (20) 

Differentiating eq. ( 20 ) with respect to T, we can obtain 

-- = - 2,\TT + A- 1 + ,\~__!_-~~__:_-{,---dmi(T),..., ( · a~) [ (-1)D/2-1(-z2 + io)-Df2+h-l ]-1 

aT . 4h-1Nmi(T)f(h- ~)f(h -1) 

Therefore, near T = 0, the sign of dmi(T)jdT depends on that of:the 
magnitude of in;_, ,\ and relation of h -.1 ;::: D /2. Due to decreasing mi(T) 
with increasing T up to m 2(T0 ) = 0,1he symmetry should be restored at 
T0 < Tc, where (at D = 4 ) 

[ 
2 ] { ,\~(p.2 T) · ·} 

To ~ 2, IN rr;,x + ~(p.2) 1 - 2 [mi- + ,\~(p.2)] + ... 

if h -1 = D /2. Since at the critical temperature mi{Tc) = -,\~, the 
magnitude of mi(Tc) depends both on signs of,\ and ~(p.2 , T). Supposing 
that he scalar self-coupling ,\ ,..., 0.1 one can obtain Tc ,..., 300 GeV (see 
Tc :=:;j 350 Ge V [ 8 ]) at N = 1 and at the input of the. SM parameter 
mo ,..., 44 Ge V. But for small ,\ ,..., 0.0156 [ 9 ] we find Tc "' 680 Ge V. For 
the positive both ,\ and ~-factor, To < Tc and the symmetry should be 
restored before the phase t;aU:sition. But, if ,\ < 0 at. S :>· 0 or for positive­
A at ~ < 0, To > Tc. 

4 ·Conclusions 

We have given the formulation of an approach based on the 1/N expansion 
for studying an arbitrary order dimension system ~f two scalar neutral 
fields, x(z)-field and an additional one-A(z). The basic idea ha.S been to 
reh1t~ the existence of a new type interaction mediated by the exchange of 
a hypothetical scalar _X-boson and the decrease of the physical X~boson 
mass mx in the case of a special choice of D and h at a fixed value of the 
scalar. self-coupling A. It has been mentioned that our scheme is valid if.the 
bare mass squared m5 of a scalar dipole-type field is larger than -\.6.( z ). We 
restricted our consideration to a subsystem of pure scalar theory, based on , 
the SM of a Higgs-boson-like system. 

In the case of h -1 = D/2 mi- will decrease with increasing ,\~(z), if 
A > 0 in four-dimension space-time. The physical mass mx turns to the 
bare mass m 0 at fixed ,\ in both the cases, when h - 1 < D /2 at long and 
short distances, if h - 1 > D /2. . 

The finite temperature. scalar (Higgs)-Yukawa model at a fixed value 
of the scalar self-coupling.,\ is investigated. The derivative relation of the 

10 

physical X-b~son mass mx with respect to the nonzero temperature T has 
also been presented. It was shown that the symmetry· should be restored at 

. the temperature T0 ~ Tc ( 1 - 2.\:~). The problem of matching the reality 

which involves the estimations both ofmi- and dmi-fdT clearly shows the 
need of physical input of the scalar self-coupling ,\ . 
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