
E2-93-187 

R.P.Malik* 

LAGRANGIAN FORMULATION 

OF SOME q-DEFORMED SYSTEMS 

Submitted to "Physics Letters B" 

•E-mail:malik@theor.jinrc.dubna.su 



~ '; 

The concept of deformation has· played a notable part in the deyelopme~t of modern 
theoretical physics. The most familiar and 'cardinal examples of such ciass of deformed 
physical theories are presum~d to be quantum. mechanics and special theory ofrelativity 
with deformation parameters as Phinck's constant ( n) and speed <;>flight (c), respectively 
[1,2]. A key feature of thorough -understanding of these theories is the emergence of 
fundamental constants of nature, namely; h. and c . .It is ' conjectured that the deformation 
of groups-, based ~n the qua.SFtriangular- Hop£ ~lgebras [3,4], together with the ideas 
of noncommutative geometry might provide a " fund~rriental length:" in the context , 
of space-time quantizatjon [5] '\Vhi~h ~ould 9ave close kinship with the dimensionless 
deformation parameter ( q ) of the deformeil groups [6]. Some attempts have recently 
been made to associate "q" with relativistic quantities (7) 'and length ofcompactifica.tion 
[8) in the context of some concrete physical examples. In addition, these deformed ( so
called quanh~m ) groups have also been treat~d as gauge gr~ups for the d~vefopment of 
the q-deformed gauge theories (9]. c - ' ., - • ' -

It is interesting endeavour to apply ideas' of quantum groups in a cogent way to some 
known physical systems (7-10). The purpo~e of the present paper is to develop the La
grangian formulation for some known physicalsystems by exploiting the basic ingredients 
of the quantum group G L9 (2) and corresponding differential calc~lus [ll) discussed on the 

. quantum phase space [12]. ·we obtain q-deformed Legendre transformations and relevant 
Euler-Lagrange equations of motion for free non-relativistic particle, harmonic oscilla
tor and relativistic particle on a quantum line\which are consistent with the q-deformed 

.. ' . ~ ,. ' 

Hamilton's equations of motion. One of the salient features of our approach is tJtat the 
equations of motion for a given q-deformed physical system remain the same as that. of 
its undeformed (classical) counterpart but the momentum, velocityandforce etc.depend 
on the deformation panimeter q. It is fascinating to find that, mass a~d metric in the 

·,case of the q-deformed relativisticparticle; turn out to be no~-commutative objects on 
the quantum world-line embedded in a D-dimensional undeformed fiat Minkowski space. 

We start off with the free mo'tion of a non-relativistic particle on _a quantum-line [12) 
characterized by coordinate generator x(t) and ·momentum generator p(t) that satisfy . 
following relationship 'on this line 1 . . 

x(t) p(l).= q ]J(t)x(t), (1) 

where the q-trajectoi:y of· the particle; 'moving on a q-deformed cotangent manifold, is 
parameterized by a. rea!' co~muting variable t. ll is straightforward to check 'that above 

- relation is form-invariant under following GL9 (2) transformations . 

(; } ~ ( ~ ~ ) _(; ) ' ' 
,· (2) 

if we assume the comm~tativity of the phase variabl~s with the elements a,b,c and d of ' 
the 2 X 2 GL9(2) matrix obeying following braiding relations in rows and col:mns: -

. . •. 

ab = qba; cd = qdc; ac = qca; . be = cb, ·, 

-"71:-:N:-o-te-.th_a_t_t::-he--:d-efi-n--:i-ti-on_o_f_tl_le-,-qu-a-nlum-line pr~enl in re£.(12) would be obtained from (1) by re-
placement:. q-+ q-1, . 
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bd = qdb; ad - da = (q -q-1
) be. (3) 

. To develop the Lagrangian formulation for a given 'classical system, it is essential to discuss 
its dynami~ in the tange~t ( velocity ~hase ) space. The second ord!?r Lagrangian ( L. ) 
describing the free motion ( mx == 0 ) in this ~p~ce is. as follows . ' . 

q m :i:2, 
L. = 1 + q2 -

'(4) 

where, in addition to x(t) and p(t), t-independent mass parameter m, is also a hermitian 
element of an algebra with involution (i.e. lql = 1 ) and :i: = ~· 

The most basic geometrical object in classical mechanics is the non-degenerate and 
closed two-form symplectic structure, defined on a symplectic ( cotangent ) inanifold. 
The covariant and the contravariant q-symplectic metdces that reduce to thelrclassiCal 
canonical counterparts in the limit q-+ 1, are [ se~, e.g. ref. 2]: 

. ('· 0 -q-1/2 ) 
{}AB(q)= q1i2, 0 and · {}AB(q) = (· . 0, . q-_1/2 ·). 

. . -q1/2, 0 • (5) 

The first-order Lagrangian ( L1 ) describing the free motion (p. = 0) can' be obtained by 
exploiting the.covariant metric nAB(q) in the following Legend~~ transformations . 

A'- · . ·B ' 1/2 · · Lf = z 'nAB(q)z - H = q ,p X- H, (6) 

where zX = (x,p); His the Hamiltonian function defined on the cotangent manifold and 
the general expression [see, e.g. re£.8] fiAfi(z) = J: nA8 (az)ada reduces in our case to 
nAB(q) = !nAB(q). Th~ definition_ of the canol_lical momentum (p) crucially depends on 
the choice ofthe symplectic metric and (non)commutativity ofvelocity (:i:) and momentum 
(p) in the L~gendre tran:sfor~ations (6). For the fi~st" and second~order Lagrangians, the 

consistent expreSsion fo~ this q~antity is as follows 
. . . . . ; 

-3/2(8_ Lu.•>) = q1/2 m :i:,- . 
P = q . .ax . , . (7) 

where on-shell noncommuatative rel<!-tions :i: m'= q m :i: and :i: p =. q p :i:,emerging from 
the GLq(2) invariant quantum-line (1), have been used in the derivation of (7). Further
more: con~ist~nt with the~e non-commutative relations, following rule of the diffe~entiation 
has been invoked (11] I 

8(y• x•) r ·•-1 r (1 -- q2•) ·' 
8:i: = y X q (1 - q2) ', 

(8) 

where y = m,p and r,s E Z are real numbers h)-It not fractions, The Hamiltonian 
function H, describing the motion i~ the cotangent space, can be obtained by the Legendre 
transformation ( H = q112 p :i: - L. ) and equation (7). This is expressed in terms of the 
n~ncommutative mass paramet~r (m) and moiiientum (p) as [12]: · · ' ... 

q' 2 • 

H -1 = -1 2.pm P· +q . ' 

Obtn:.r.-:-::t;~n HHC'i'Etyr l 
'J.~'!It:il-.1:1~ !li.~ :l~~O&lUffil ~ 

~ fMSil~tOTEKA ~ - ~-' 

(9) 



The contravariant symplectic metric of (5) is used in the computation of the the q
deformed Poisson-brackets present in the Hamilton's equations ~f motion. For instance, 
x = {x,H}q = f!.ABfJAxaBH = q-112 m-1 p~nd p .~ {p,H}9

1= 0 result indue to the 
GL

9
(2) invariant differential calculus defined on the' phase space. All the' on-shell, asso

ciative and non-commutative relations, resulting from the defining quantum-line equation 

(I}, are listed below: 

x p = q p x; p(t) m = q m p(t), 

X m' = q mx;' X m = q m,x; X X= X x. (10) 

In the computation of the Hamilton's equations·( x and p), the Hamiltonian is firstly 
recast in the monomial form m•p• ( r, s E Z are real numbers but not fractions ) and 

then, following differentiation rule is used: ~· 

a(m•p•) = m• p•-1 q• (1- q
2
'). (il) 

(1 - q2) ' 

One of the key features of our discussion is that the q-dependence appears only in the 
expressions for velocity and momentum b~t the equations of motion iem~in the same as 
that in the undeformed case. In addition to the description of quantization on a.quantum
line, it has been demonst!ated in re£.[12) that the solutions of equations of motion respect 

GL
9
{2) invariance at arbitrary timet. 

The Hamilton's equations of motion can be derived by requiring the invariance of the 
action ( S = J L,dt ) in the framework of the principle of the least action, as illustrated 

below ' ' . ' ' ' . ,' 8/1 aH ' 
OS= 0 = J (q11.2 Op X+ q

1
/
2 pOX-, OX ax - Op ap )dt, , (I2) 

where Hamiltonian is assumed to possess rio explicit time dependence . Now taking all 
the variations to the left side by exploiting followin!r'on-shell q~commutation relations 

resulting from (I) 
o:i: P = q P o:i:; x op =:: q op x; · ' (13) 

and dropping off the total derivative term by choosing appropriate boundary. conditions 
on the transformation parameters, we obtain following equations of motion 

• -1/2 {)II d .. . .. l/2 8H . (14) x = q - an p = - q -,. ' op ' ax ' ' ' 
which ·a~e in total agreement with the choice of the cont~avarian~symplecticit~tric (5) 
and the q-deformed Poisson-brackets. · . '· · ; · ·:' ·· 

To derive the deformed Euler-Lagrange equations of motion, it is instructive to"consider 
the q-deformed harmonic oscillator on the quantum-line (I). The Hamiltonian, first- and 

second-order Lagrangians for this system are 
q2 . q-2 w2 

Jl••c = --pm-1 p + -·-- xm x 
I+ q2 1 + q2 ' 

2 
L•'" = qt/2 p :i: __ · _q_. P m-1 P 

J . 1 + q2 

q-2 w2 

1 + q2 

LOIC 

• 
q . ·2 q-2 w2 

--mx - --- xm x, 
1 + q2 1 + q2 

4 

xm x, 

(15) 

'·., 

,.:t 

'' 

where frequency w is a commuting number. All the q·commutation relations (10) are 
valid in thiscase as well, because, the Ham'ilton's equations ofmotion x = {x, 11°'"}9 = 
q-~12 m-1 p and p = {p,J1••<} 9 = - w2 q112 m x do not spoil these relations. Moreover, 
the extra q-commutation relations X p = q p X and p p = p p are automatically satisfied 
due to. (IO): The exp~ession for. the canonical momentum (p) is same as (7) and; consistent 
with the Hamilton's equations, the Euler-Lagrange equation of motion (x = -:-w2 x) is: ' ' ' . . . 

-3/2 !!._ (aL(j~.l ). ·= t/2. (aL(j~.l) 
q' dt ax q ax . {I6) 

The Hamiltonian (Hv), describing the motion of a classical q- deformed particle moving 
under the in~uence of a potential V(x) is as follows: 

2· 

llv = -
1 

q 
2 

p m-1 p + V(x). 
+q (17) 

The first~ and 
1
second-order Lagrangians can be derived in analogous manner as in {15). All 

the non-commutative relations listed above and the Euler-Lagrange equation of motion, 
'remain the same if the potential V(x) obeys: 

av . av 
X ax = q Dx .x. (IS) 

This requirement implies that the force on the system is a non-commutative object; Equa~ 
tion (IS) is satisfied by the harmonic oscillator potential due to (IO). The GL9{2) invari
ant evolution equations, quantization and oscillator realisations have been discussed in 
ref.(I2]. 

With the above background, we shall .dwell a bit more on the free motion of a q
deformed ~elativistic particle on a q~autum '~orJd.Jine parameterized by a commuting 
ev~lution parameter r. A quantum world-lin;, traced out by the free motion of a q
relativistic particle in aD-dimensional flat l\1inkowski space, must be a Lorentz scalar. It 
can be readily seen that the following Lorentz invariant scalar product 

x,.(r) p''(r) = q p,.(r) x"(r), (19) 

defined in' terms of the D-dimensional coordinate generator Xp and momentum generator 
p,.,reinains iri.varia~t under following transformations 

' . 
x,. -> a :i:,. + b p,., 

p,, ->. c;;;,.+dp,., (20) 

if we assume the commutativity of the phase variables with the clements a,b,c,and d 
of a 2 X 2GL9{2) matrix obeying the' braiding relations (3). In the definition of the 
q-world-line (I9), the repeated, indices are summed over (I' = 0, 1, 2 .......... D- 1) and 
GL9(2) symmetry transformations (20) arc implied for each component-pairs of the phase 
variables: (x.,p.), (x1,pt), ......... (xv-t. PD-:d· It will be noticed that another combination · 
of the phase variables,namely; x,. Pv = q p,; Xv is also component-wise GL9 (2) invariant 
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and Lorentz invariant. However, this relation is not a Lorentz scalar and, therefore, is not 
suitable for the definition of a quantum world-line. Moreover, the classical ii~it q-+ l of 
the latter relation does n~t yi~ld the undeformed relations bet wee~ phase variables cifthe 
undeformed Minkowski space. 

The other undeform~d relations between,phase variables with,dilfe~ent Greek indices 
are xl' x, = x, xl' and P~< p,;, -~ p, Pw Consistent with the definition of the quantum 
world-line {19}, the. coordinate and momenta with different indices are assumed to satisfy: 
Xp p, = q p, Xw All the relations quoted in this paragraph are associative and Lorentz 
invariant but not GL9 (2} invariant. It can be seen that the requirement of the GLq{2) 
invariance of xl' x, = x, Xp and P~< p, = p,,.p~< entails a GL9(2) invariant relation 
pi' x,- p, xl' = q (x, pi'- x,.p,). However, the latter relation is not consistent with, the 
defining quantum world-line relation (19) because it becomes zero for p. = v. Thus, the 
Lorentz invariance and GLq(2) invariance can,not be respected together in the general case 
of the q-commutation relations. 

The Hamiltonian, describing the free motion of tht:q·relativistic particle, is as follows 

1i = 
1 

: q2 (p, e p" ·_ m .e m), (21) 

where e is the einbein .(metric) and all the variables, except mass parameter m, arc 
fu~dion ofT. The Hamilton's equations of motion, derived from the generalized form of 
the Poisson-bracket and the symplectic metric (5), are as follows 

xl'. = { x,., 1i}q = ql/2 e P~<• 

P~< == {p,, 7i} 9 :::: o: ,{22} 

where xl' = ~- The defining qua'ntum worid--linc equation (19), together wi'th (22) and 
associativity requirements; lead~ tci th~' validity of following on-shell non-commutati~~ 
relations: . . 

x~< pi' = q p, ±"; x,. p" = qp, x"; em· = qm e; x,. m = q m x~<, 

epl' = qppe; xl'm=qmx,; e:i:, .. =,q:i:,.e; pl'm=mp,.. (23} 

It can be seen that these relations are consistent with xl'x, = x,xl';p,.p, = p,p,.;xl'p, = 
qp,xl' if we assume e Xp =. q XI' e and use on-shell conditicms (22). The. fir~t- and 
second-order Lagrangians can be derived from the Hamiltonian (21), as list-ed below: 

L = q1f2 P ±" - _q_ 
F ,. 1 + q2 

(p,. e p" - m e m), 
. - q2 

-1 • 2 q · Ls- -
1 

-
2 

e (x,.) + --2 m em.·,·, 
+q. . l+q 

(24} 

Analogous to equation {7} and consistent with (22),. the· expression for the canonical 
momenta ( p,. } is: 

_ -3/2 (8L(F,S)) = -1/2 -1 · (25) 
p,. - q ax" - q e x,.. 

6 

1 
1 

li 

The q-differentiation (11) of the second-order Lagrangian Ls with respect to the multiplier 
field "e" yields . · . · · · 

. . . . '4 . . .. 

_q_ [m2 .:.:. q-le-1 :i: ··e.:1 x~] ·=a·· (26} 
1 + q2 " . . , 

~ ( ••• !.. l ' • . . • • 

which leads to the mass-shell condition for the q-dcformed free particle as follow~?: 

. p,. p" ::.. ~2 = 0. (27} 

This equation is one of the Casimir invariants of the Poincare group corresponding-to un-
. defo~med Minkowski space. The eigen' value of this operator and Pauli-Lubans1d vect'or 

would d~ignate the eigen states, that would be needed for the representa:tion theo~y of the 
Poincare group. This constraint ~ondition is a:1so in neat conformity witli'the recent dis
cussion (13] of Klei~-Gord~n equatio~ and Dirac-equatio~ derived from the q-defonnaticin 
of the Dirac~/ matrices. Furthermore, equation (26} yields following relationship amongst 
einbein, velocity and mass parameter: . ' 

e-2 = m2 (±,. x")-1. (28) 

The computati~~ of e and e-:-1 from (28) is a bit tricky because of the non-commutativity' 
of velocity and mas;;• A ~ice and simple way to compute these is firstly start' with: 

e-:1 = J(q} m (±2)-112, (29} 

and require .validity of (28}. Using q-commutation relations. (23}, the second order La
grangian Ls can be recast in various forms where' e-l and e. would occupy different 
positions: in.its first and second terms .. Requirement, of the equality of the resulti~g 
Lagrangians leads to the determination of J(q) .to be qll2

, if substitution (29) is made2
• 

Ultimately, following q-deformed Lagrangian with>quare root is obtained from the second
order Lagrangian Ls: 

. Lo = i/1?. m (:i:,. x")112
• {30) 

The action A·;, q112mfr"'> dr (:i:2 )112 = q112 in f1
2 ds corresponding to (30) arid, propor

tional to the path length 
1

dS = ( dxl'di;P )1f 2, is invariant Unde~ Undeformed reparan{etriza
tion transformations T ~ f(r} where!(;) is monot~nically varying fmiction of~-- The 
definition of the canonical ~omentum (25) is correh ln the case' of above Lagrangian too. 
This can b_e seen (with (~2 )112 m ;,', q ni (:i:2

)
112 

) as follm~s: 

a(:i:)2 a(x2)1/2 8[ql/2m(x" i")1/2] · . · · - -3/2 I' - • ( • 2)-1/2 
PI':- q . ax" a:i:2 ' a(x2)1/2 '7 x,. X . ·• m. (~1) 

It should be emphasized here that, while computing q-derivative of the q-variables with 
fra~tional power, following ruie has to be invoked ' 

. !__(>•) = (1'.:._ q2r) X(r/•l-1, 
ax (1 - q2•) • . 

{32} 
' . ,.. . . ~ 

2We have also used z~(:i:2)1f2 = (:i:2)112i:,. which resuits in from(29), e:i:,. 7'. ~ :i:,.e and :i:,.m ,= q m z,.. 
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where r is not divisible by s (r, s E Z). F;trthermore, the mass-shell condition (27) is 
satisfied for both the left. chain rule as well as the right chain rule of differentiation, 
implemented in the computation of (31 ). 

The equation of motion pi'= 0, resulting from (31), leads to the following expression 

- ("2) · (" -v) 0 XI' X -XI'_ XvX = , (33) 

which corresponds to the equation of motion in the undeformed case. It is difficult to 
extract oU:t the evolution equation at arbitrary r from (33). The viable alternative is to 
parameterize the. evolution equation in terms 52J the path length "s"(14J. In the;: pu~view 
of this change of parameterization, the canonical momentu~ p" = m ~ =: m x"(:i:2

)-
112

, 

leads to the equation of motion ( m ~ ;;, ~). The evolutio~- equatio~s 

x"(s) = x"(o) + m-1 p"(o) s, 

p"(s) = p"(o), (34) 

respect the "G£9 (2)-invariance" (i.e. x"(s) p''(s) = q p,.(s) x"(s)) at arbitrary path
lengths because (s p"(o) = q p,.(o) s) and (s m = q m s)3 • It is worth pointing out that, 
in contrast to the commu~ativity of r, the path lengths is a non- commutative paramet~r 
which turns out to be handy only in the description of the ~volution equations. 

It is important to pin-point here that, unlike the non-relativistic cases where p m = 
q m p,one obtains p" m = m p" in the case of q-deformed relativistic free particle. The 
correctness of these relations can be checked by using on-shell q-commutation ·relations 
(10),(23) and substitutions: p ='= q112 m :i:;p" = q-112e-1xw In.fact, the space part of 
p"m = q-112(e-1 x" m) reduces to (m x m) in tl;e (on~dimensional) non-rel~tivistic limit 
which corresponds to x,. --t x, (:i:2)-112 --> 1 and e-1 = q112 m (x2)-112 --> q112 m. Now; 
due to (10), it is clear that (m x m = q m m :i:) yields the non-relativistic relation p m = 
q m p. This conclusion can also be drawn from the relativistic relation p;. e-:-1 = q e-1 p" · 
because in the non-relativistic lim.it: p,. --> p and e-1 = q112 m (x2)-112 --> q112 m. The 
commutativity of mass parameter m and momenta p,. in the case. of the q-relativistic 
particle is primarily due to the existence of mass-shell condition (27). 

All th~ three Lagrangians ~£(~4) and (30) p.re equivalent and are endow~d with gauge 
and reparametrization symmetries. ,To illustrate thi~,. we shall concentrate on the first 
order Lagrangian LF. It is obvious that the q- can~nical mom'e~tum (II.) with respect to 

. the multiplier field e( r) is zero. Thus, n. :::::: 0 is the .primary constraint. Th~ secondary 
constraint II~1 ) can be obtained by requiring the consistency of the primary constraint 
under time evolution, generated by the Hamiltonian 7-£: This' is given by 

1/2 4 ' 
II(ll ={II' 7-£} = _2___2_ (p2 -·m2 ):::::: 0 

e •• 9 1 + q2 ' (35) 

which amounts to the validity of the mass-shell condition. Both these constraints are first 
class in the language of Dirac. and there arc no tertiary constraints. The gauge symmetry 

3 These q-commutation relations are obtained due to (29}, e p11 = q p11 e, (2:2) 112 m = q m (:i:2) 1f2, 
p11 m = m p,. and commutativity of 1-. · · 
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transformations generated by these constarints arc as follows 

ox" = ql/2 ~ p"; op" = o; oe = q2 
{ (36) 

where { is the non-commutative gauge transformation parameter.· (This can be seen by 
the application of the transformations (36) and requiring the validity of (22) on the q
dcformed world-line (19) which yields : { p,. :::::: q p,. e). As per our convention, all the 
symmetry transformations are firstly- taken to the left and then substitutions (36) are 
made. The quasi-invariance of the L~gr<l;ngian is succinctly expressed as follows 

d [~(p2 + q2m2)) 
oLF = dr (1 + q2) ' _ 

(37) 

where ,the chain rule ~ = ~a;; = (1 +q2 )p11p" has been used. Even if we do not 
take the symmetry variations to the left side in all .the terms of LF but exploit the non
commutatitivity of~. then also, we end up with the transformation (37). 
. In addition to the gauge symmetry, the first-order Lagrangian is also endowed with 
following reparartletrization symmetry. transformations 

o, x" ~ f x,.; Or ]Jp = f p,.; d 
Ore= -d (fe), 

T , 
(38) 

emerging due to ,the one-dimensional diffeomorphism T --> T - f(r) with commuting 
infinitesimal. transformation parameter f. ( This is because ~f the fact that o,x~ p"'. = 
q p" o,x" with x" p" = q p,. x"' leads to p,.£ = £ p,.). In fact, the first order Lagrangian 
undergoes following change under (38): ' 

. d ' 
o,LF = dr ( € LF). (39) 

;In the usual undeformed (q = 1) case of the free relativistic particle, the gauge(36) and the 
reparametrization(38) symmetries are equivalent ~n-shell ,\.ith the identification e = €e 

[15]. However, in the deformed case these are not equivalent because the transformations 
of the einbein field, in spite ~f the above identification, are not equal unless q = ±1. 
This discrepancy might manifest itself at very high energy and might turn out. to have 
some significant implications in the study of non-commutative geometry and space-time 
structure at this energy scale. . 

The q-deformed free relativistic particle presents a prototype example of q-deformed 
Abelian gauge theories. In addition to the explicit derivation of the Noether's theorem, 
it would be worthwhile to develop a q-deformcd DRST formalism to quantize this system 
on a quantum world-line. It seems, there would not be any principal difficulties in the 
extension of our results for the discussion of q-deforme.d spinning relativistic particle where. 
the ideas ofthe quantum groupGL9 (ll1) would play. a prominent role. Furthe~more, it 
would be interesting to generalize the secon'd order Lagrangian Ls to q-deformed string 

. aCtion and discuss various subtleties involved in it. We hope to come to these problems 
in future. 

Fruitful and stimulating convet·sations with _A.isaev, R.Mir-Kasimov and S.Shabanov 

are gratefully acknowledged. 
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.MaJIHK P .IT. • 

JlarpaH:lKeBa lPoPMYJIHpoBKa HeKOTOpbiX 

Q-Aeli>opMHpoBaHHI:JIX CHCTeM 

B paMKax JiarpaH:lKeBa li>oPMaJIH3Ma paCCM<Y 

poBaHHI:Jie Q>H3H'lleCKHe CHCTeMN. lloJiy'leHO q-)l 

BaHHe Jle:lKaHApa AJI.SI CBOOoA<IOro ABH:lKeHliSI HC 

KBaHTOBOH JIHHHH. Jl.aHHOe npeo6pa30BaHHe HClll 

paH:lKHaHa Q-Aeli>opMHpoBaHHOro OCU,HJIJISITOpa J! 

BHCTCKOH cBOOoAHOH 'laCTHU,bl; CorJiacoBaHHI:JIM 1 

- • ABH:lKeHH.SI3HJiepa.- JlarpaH:lKa u cooTBeTCTBYJ 

IToKa3aHo, 'ITO JiarpaH:lKHaH q-Ae!l>opMHpoBaHJ 

OOJiaAaeT q-AeQ>opMH~BaHHOH KaJIH6poB01JHOH 

3aU,HOHHOH HHBapHaHTHOcTbl01 KOTOpble 9KBHB~ 

Pa6oTa BblllOJIHeHa B Jia6opaTopHH TeopeTl 
-----~~,-----~·~.....,.........-~:-~-~-----··- ... 
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