


The concept of deformatlon ha.s played a notable part in the development of modern ,

" theoretical physics. The most familiar and cardmal examples of such class of deformed

" physical theories are presumed to be quantum mechanics and special theory of relativity.

_with deformation parameters as Planck’s constant ( fi) and speed of light (c ), respectrvely o
[1,2]. A key feature of thorough - understanding of these theories is the emergence. of o
fundamental constants of nature, namely, k and c. Itiss conjectured that the deformation

- of groups, based on the quasi ‘triangular Hopf algebras 3,4], together wrth the ideas

_of noncommutative geometry mxght provide a " fundamental length” 'm the context

- of space-time quantizatjon [5] which would have close kmshrp with' the drmensronless

deformation parameter (q)of the deformed groups [6]. Some attempts have recently .

- been made to associate "q" with relativistic quantltles (7} and length of compactlﬁcatron

(8] in the context of some concrete physical examples In addltron, these deformed ( so- 7
called quantum ) groups have also’ bcen treated as gauge groups for the development of .

" the g-deformed gauge theories (9]

oo Itis interesting endeavour to apply 1deas of quantum groups in'a cogent way to some.
known’ physical systems [7-10]. The purpose of the present paper is to develop the La- L
‘grangian formulation for some known physical systems by explo:tmg the basic ingredients -

‘of the quantum group G, (2) and correspondmg differential calculus [11] discussed on the

-quantum phase space [12] “We obtain q- -deformed Legendre transformations and relevant -~
Euler-Lagrange equations’ ol' motjon for free non- -relativistic particle, harmonic oscilla= -~
tor and relatrvrstlc partrcle on'a quantum llne\whrch are cons1stent with the q-deformed = -

: Harmlton s equations of motion, ' 'One of the salient features of our approach is that the :

equations of motion for a given q- del'ormed physrcal system remain the same as that of

its undeformed. (cla.sslcal) counterpart but the momentum, velocrty and force etc. depend

on the deformation parameter g -Itis fa.scmatmg to find that, mass and metric in thev
‘case of the q-deformed relativistic particle,” turn out to be non- -commutative objects on’

the quantum world-line embedded in a D- dimensional undeformed flat Minkowski space.

We start off with the l'ree motlon of a non-relativistic partlcle ona quantum -line [12]
characterized by coordinate generator a:(t) and momentum generator p(t) that satxsfy L

following relatronshxp on this lme

where the q—trajectory of the partxcle, movmg on a g- deformed cotangent mamfold is
‘ parameterized by a real commuting variable t.” It is stranghtl'orward to check that aboye
relation is form-lnvarlant under l'ollowmg GL (2) transl'ormatlons

if we assume the commutativity of the phasevariables with the elements a,b,c and d of

the 2 % 2 GL (2) matrix obeymg followmg braldrng relatlons in rows and columns

‘ab = gqba; cd—-qdc, ac—'qca, bc—cb

!Note that the definition of the quantumohne present in rel‘[l?] would be obtamcd l'rom (I) by re- '

placement q— q"l

.‘(\

(t)p(t)—qp(z)z(z), Sl (i)',"
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L bd = qdb; d— da= (g "‘)bc e

,To develop the Lagrangran formulatlon for a grven classxcal system 1t is essentlal to discuss -

its dynamrcs in the tangent ( velocrty phase ) space The second order Lagranglan (L )

) descnbmg the free motlon ( mi =0 ) in thls space is as follows

where, in addition to z(t) and p(t), t- mdependent ma.ss parameter m, is also a hermitian
element of an algebra with involution ( i.e. |g| =1 and & = g, ‘
. The most basic geometrlcal object-in classical mechanics i is the non-degenerate and

closed two-form symplectrc structure, defined on a symplectrc ( cotangent ) ‘manifold.

The covariant and the contravariant g-symplectic metrrces that reduce to their classical
Canonical counterparts in the limit ¢ — 1 are | see, e. g ref. 2 B

0, —g YL\ 0T
QAB(‘I) ( 1/2g,q0 ) ‘and QAB(q) ( 1/2 qOV ) )

. The first- order Lagrangran ( L s ) descrlbmg the free motion (| p 0) can be obtamed by

explortmg the covariant metric Q4p (¢)in the followmg Legendre transformatlons

©

where 24 (:z:,p), His the- Hamiltonian functron deﬁned on the cotangent mamfold and

L! =24 QAB(q) P - H = q p & ,‘H, sl

: 'Athe general expression | see, e.g." ‘ref.8) AB(z) fo Q4n (az)ada reduces in our case to
QAB(q) = -QAB(q) The deﬁmtron of the canonical momentum (p) crucially depends on
-+-the choxce of the symplectlc metric and (non)commutatrvrty of velocrty (£) and momentum
(p)in the Legendre transformatrons (6) Foy the ﬁrst- ‘and second-order Lagranglans, the

consrstent expressron for thrs quantlty is as follows N

e

“where on-shell noncommuatatrve relatrons tm=qmt and T p =qp ::,emerging from-
. the GL ¢(2) invariant quantum-lme (1), have been used in the derivation of (7). Further-
" more, ' consistent with thege non- -commutative relatrons, followmg rule of the differentiation

- has been mvoked [1 1]

!

A ) e (=) q’-') |
T iR yz FI 1= z) ,(8)

where y = m,p and'r,s € Z are real numbers but not! fractrons The Hamiltonian
function H, descnbmg the motion in the cotangent space, can be obtained by the Legendre
transformatlon (H= q1/ 2pi— L, ) and equation (M. This is expressed in terms of the
noncommutatwe mass parameter (m) and momentum (p) [12]
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The contravariant symplectlc metric of (5) is ‘used in the computatlon of the the g-

deformed Pmsson-brackets present in the Hamllton s equa.tlons of motion. ‘For instance,

i = {z,H}y = = OABO,z0gH = ¢V m~ 'p and p = {p,H}, = 0 result in due to the - v

GL,(2)i nvana.nt differential calculus defined on the’ pha.se space. All the’ on~shell asso-

ciative and non-commutative relatlons, resultmg from the defining quantum-line equatlon ,

1), are listed below

ip = gqp#; p(t)m=qmp(t),

EFm' ="¢gmi; zm="qmz; Trz=xI. L (10)

In the computation of theHa.miIton s e(‘juations'( & and p), the Hamiltonian is firstly

recast in the monomial form m™p* ( 1,5 € Z are real numbers but not fra.ctlons ) a.nd .

then, followmg dlﬂ'erentla.tlon rule is used

o(m’p) _ LSl=g) S
T =™ L s )

One of the key features of our discussion is that the g-dependence appears only in thel

expressions for velocity and momentum but the equations of motion remain the same as
that in the undeformed case. In addltlon to the descnptxon of quantization on a.quantum—
line, it has. been demonstrated in ref. [12] that the solutlons of equa.tlons of motxon respect
GL, (2) invariance at a.rbltra.ry time ¢. ‘ : St

The Hamilton’s equations of motion can be derived by requiring the invariance of the

action (S = fL,dt }in the framewolI\ of the puncxple of the lea.st action, as 1llustra.ted

below . O9H "
58 = 0—/(‘“6px+ g p5x—5x—'“—51’ )‘“ L (12)

where Ha.mlltoma.n is assumed to possess no explicit’ tlme dependence Now ta.kmg all

the va.rla.tlons to the left 51de by explmtmg followmg on- shell q-commuta.tlon rela.tlons‘

resultmg from (1) , : LR

Sip=qpbi; i5zi=q'6p5¢,"* AR - (13)

" and dropping off the total derivative term by choosing appropriate boundary. condltlons

- on the transformation pa.ra.meters, we obtain following equa.tlons of motion

 which ‘are in tota.l a.greement thh the chmce of the contra.va.na.nt symplectlc metnc (5)
and the q-deformed Poisson-brackets.

= (14)

H

To derive the deformed Euler—Lagrange equations of motion, it is mstructlve to cons:der

the q-deformed harmonic oscillator on the quantum-line (1). The Hamiltonian, first- and -

second-order Lagrangians for this system are

2 -2 2

oo o q W

H: T+gq 21’ P + 1+¢ 1
. 2 -2 2
ort - L Y RN q°. .. RS q " we zm z
Lys = ¢pz - —_1+q1pm P Ir g )
. T2 2 ' ,

L = L ENIEPL S By z, (15)

' wlfere frequencyfw isa eornrnuting n'umber Al the q- commutatlon rela.tlons (10) are
‘ vahd in this ‘case as well, because, the Hamilton’s equations of motion # = {J: Hee), =

'1/2 m™! pand p = {p, H***}; = — w? ¢'/> m z do not spoil these rela.tlons Moreover,
the extra q-commuta.tlon relations z p=qpz and pp = pp are a.utoma.tlcally satisfied
due to (10): The expressmn for the canonical momentum (p) is same as (7) and, c0n51stent
w1th the Hamllton s equa.tlons, the Euler-Lagrange equa.tlon of motlon (:1: —-',—w a:) is:

aLex 2 3L A
q '3/2 ( . )) - 1/2 ( ), )) (16)
The Hamiltonian (H,), describing the motion of a classma.l T deformed partlcle movmg
under the 1nﬁuence ofa potentlal V(z) is as follows
— - : - q_247 . \ N . V " : . '4.‘ k ) . '\'
Hy = —== - o
The first- and second-order Lagrangians can be derived in analogous manner as in \(’15)" All
the non-commutative relations listed above and the Duler—Lagrange equation of motion,
Temain the same 1f the potential V(J:) obcys

’,’75;*‘15;?-, B T ¢ e
This requirement implies‘thzyxt the force on the system is a non-commutative objecti Equa:
tion (18) is satisfied by the harmonic oscillator potential due to (10).. The GL,(2) invari-
ant evolutlon equations, quantlzatlon and osc1|lator reahsatlons have been discussed in

ref.[12].

Wxth the above ba.ckground we slmll dwell a b1t more on the free motion. of a q-
deformed rela.tlvxstlc pa.rtlcle on a quautum woxld line parameterlzed by‘a commutmg‘ :

) evolutlon pa.ra.meter 7. A quantum world- hne, traced out by the free motion of aq-

relativistic particle in a D-dimensional [lat Minkowski space, must be a Lorentz scalar. It
can be rea.dlly seen that the followmg Lorentz. mvanant sca.lar product

D) P = A S, 19)

deﬁned in'terms of the D- dxmensxonal coordinate generator T, and momentum generator
p,,,rema.ms 1nva.na.nt under followmg transforma.tlons -

o axu+bpu,i

" Pa e cx,.+dp,,, e S (20)

“if we assume the commutativity-of the phase vanables with the clements a,b,c,and d
‘of a2 x 2GLy(2) matrix obeying the braiding relations (3). In the deﬁnltlon of the
' q-world-line (19), the repeated:indices are summed over (¢ = 0,1,2.......... — 1) and

GL,(2) symmetry transformations (20) are implied for each component pairs of the phase

vvanables (20, Do), (z1,71), .f; ...... (zp- 1,pD 1) 1t will be noticed that another combination

of the phase variables,namely; z, p, = ¢ p,’'z, is also component-wise GL,(2) invariant ;

5



and Lorentz invariant. However, this relation is not a Lorentz scala.r and, therefore, is not

suitable for the deﬁmtlon of a quantum world-line. Moreover the classical limit q— 1of
the latter relation does not yleld the undeformed rela.tlons between pha.se varlables of the
undeformed Minkowski space,

The other undeformed relatlons between phase varrables w1th dlfferent Greek mdrces
are z, Ty = z, z, and p, p, — Py Du- Consrstent wrth the definition of the quantum
world-line (19), the coordinate and momenta with different indices are assumed to satrsfy
Z, P = ¢ Pv Ty All the relatrons quoted in this- paragraph are associative and Lorentz
invariant but not GL,(2) invariant. It can be seen that the requirement of the GL,(2)
invariance of z, z, = z, z, and p, p, = p.,,.p,, entails a GL,(2) invariant relation
Pu T — Dv Ty = q (T, P — 7,p.): However, the latter relation is not consistent with the
defining quantum world-line relation (19) because it becomes zero for p = v. Thus, ‘the
Lorentz invariance and GL ¢(2) invariance cannot be respected together in the general case
of the g-commutation relations.

. The Hamiltonian, describing the free‘motiorl of the‘g-rela.tivistic particle, is as follows

H= -1--+—q2 (p,fep"‘—j'n‘em), ST (21)

where e is the einbein [metric) and all’ the \!arrables, except mass parameter m, are
function of 7. The Hamilton’s equations of motion, derived from the generahzed form of
the Porsson-bracket and the symp]ectxc metrlc (8), are as follows

:!:,,‘—'— {IIHH}(I— q ep,‘, TR P
Pu = {PmH}q"O DN Co ,,v(22)

where z, = 2. The deﬁnmg qua.ntum wor]d lme equa.tlon '(19), together wrth (22) and

assocra.tlvrty requrrements, leads to the valldlty of followmg on-shell non- commutatrve
relatrorxs ’ - v
cz,pt = qpgEh : Z, 0= qp, T em"=qm € :z':,,m:q’mi'“’,’

€Pu = QPu® TyM=gm, ey =g Py =mpu (23)

It can be seen that these re]atrons are consistent wrth z,,z,, = Z,Z4; PuPyv = PuPui TuPe =
gpyz, if we assume e z, = ¢ z, e and use on -shell conditions (22). The- first- ‘and
second-order Lagrangians can be derived from the Hamiltonian (21), as listed below:

RN Lp = ¢'/? p“ - tl_—-—z-k(p“ep“:—mem),

'1( “)2 1+ —— mem. i . (24)

Le =
; s.‘: 1,+s s

Analogous to equation (7) and consrstent with: (22), the expressron for the canomcal
momenta ( Pa ) ist ‘ , L
; -:s/'z(aL(F.S)) = q—r/z

e - )

' Pu = q

i, i

The q-dlfferentra.tron [11] of the second- order Lagr angnan Ls wrth respect to the multrpher ‘

ﬁeld yrelds o :
¢

14¢

whlch leads to the ma.ss -shell ‘condition for the q- deformed l'ree partlcle as follows

[mz__ le 2, e‘z ] "y ‘f ', (26)

(RS

‘p“pu;m:‘o d S (27)'

Thrs equa.tron is one of the Casxmu' mvarrants of the Pomca.re group correspondmg tou un-

' deformed Mmkowskl space. The eigen . va.lue of this operator and Pa.ull-Lubanskl vector

would desrgna.te the eigen states, that would be needed for the representatlon theory of the
Poincaré group. This constramt condition i is also in neat conformrty with the recent dls-
cussion [13] of Klein-Gordon equation and Dirac-equation derived from the q-deformatron '
of the Dirac-y matrices. Furthermore, equatlon (26) yrelds followmg relatronshlp amongst
einbein, velocxty a.nd mass parametcr :

e etem lz 5")-‘ o N )

The computatron of e and e from (28) is a bit tricky because of the non-commutatrvrty
of velocrty and ma.ss A mce a.nd srmple way ‘to compute these is ﬁrstly start w1th

f(q) m (:1:2)"/2 J‘ o ; . (29)

a.nd require va.hdrty of (28) Usmg q-commuta.tron relatlons (23), the second order La.-
grangian' Ls can be recast in various forms where:e™! and e would occupy drfferent
positions:in .its first ‘and:second. terms.. Requxrement of the -equality ‘of the- resultmg
Lagra.ngrans leads ‘to the determination of f(g) to- be q’/2 if substitution (29) is made?.

Ultimately, following q-deformed La.granglan wrth square root is obtamed from the second-
order La.grangra.n Ls '

Lo = q (I z“)llz : :‘iw : | (30)

The actron A = q d‘r (:z:’)‘/2 = q 2m fr ds correspondmg to (30) and propor-
txonal to the pa.th length ds = (da:,,d:c")l/ %,is invariant under undeformed repa.rametrlza.—
tion tra.nsformatrons T = f (‘r) where f (‘r) is monotomca]ly va.rymg ‘function of T." The
deﬁmtron of the ca.nomca.l momentum (25) is ‘correct in the ca.se of above Lagrangra.n too
Thrs can be seen (wrth (:z:")”2 n q'm (:x:’)‘/2 ) as follows T

= (""')2 6(332)1/2 Bq*m(z, :c“)‘/’l,_
Pu=4q azl-‘ 632 T . 6(12)1/2

=z, (z’) v 'g (31)

It should be emphaslzed here that while computmg q-derlvatlve of the q-va.rrables W1th
fractional power, followmg rule has to be invoked - B

2 ( r/.) 8: Z"l (r/a)-r (32)

- 3We have also used :é;.(i-’)‘/’ =(22)V%, which results in fromn (29),:::,, =q z,eand :c,,m: q m z,,
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where r is not divisible by s (r s G Z) ) llfrr‘thermore;’ the mass shell condition (27) is
satisfied for both the left chain rule as well as the right cham rule of dlﬂ'erentratlon,i

implemented in the computation of (31).

The equation of motlon Pu = 0, resulting from (31) leads to the l'ollowmg expressron )

£, (2%) ~ :c,,(:c.,:c ) =0, R (33)
- which corresponds to the equatlon of motlon in the undel'ormed case. It is drfﬁcult to
extract out the evolution equation at arbrtrary 7 from (33). The viable alternative is to
parameterrze the evolution equation in terms of the path length ’ 7s"{14}. In the purview

of this change of parameterlzatron, the canomcal momentum p, = m d ="m ¢ (:c’) vz,

ds

leads to the equation of motion (m o= 0) The evolutlon equatrons
:c,;(s) = '3;,‘(0) +m™! p,‘(o) S, o
pu(s) = pu(o), S (34)

respect the GL,(2)-invariance” (i.e. z,(s) p"(s) q pu(s) z#(s)) at arbitrary path-
length s because (s p,(0) = g pu(0) s) and (s m=gm s):’ It is worth pointing out that,
in contrast to the commutativity of 7, the path length s is a non- commutative parameter
which turns out to be handy only in the description of the evolution equatrons k
It is important to pin-point here that, unlike the non-relativistic cases where p m =
g m p,one obtains p, m = m p, in the case of q-deformed relativistic free particle. The
correctness of these’ relatrons can be checked by using on-shell q-commutation' relations
(10), (23) and substitutions; p = q‘/2 m I; PPu = q'llze"x“ In:fact, the space part of
pum =g~ /?(e”? &, m) reduces to (m £ m) in the (one-dimensional) non-relativistic limit
which corresponds to z, — #; (#3)""% = 1'and e~! = ¢"/* m (£?)7% — ¢'/2 m. Now;
due to (10), it is clear that'(mn £ m = ¢ m m ) yields the non-relativistic relation p m =

g m p. This conclusion can also be drawn from the relativistic relation p, e™} = g'e™l p,’

because in the non-relativistic limit: p, — p'and e™! = g2 m (&?)~Y2 — ¢¥/2 m. The
commutativity of mass parameter m and momenta p, in the.case of the g-relativistic
partrcle is primarily due to the exnstence of mass-shell conditron (27)

- -All the three Lagranglans of (24) and (30) are equivalent and are endowed wrth gauge
and reparametrization symmetries To 1llustratc thls, we shall concentrate on the first
order Lagrangian Lp. It is obvnous that the g- canomcal momentum (IL.) with respect to
. the multiplier field e(7) is zero. Thus, I, = 0 is the primary constraint. The secondary
.constraint I can be obtained by requiring the consistency: of the pnmary constraint
under time evolution, generated by the Hamiltonian 7. This'is given by -

1 L ; q1/2q4 . N
ml={ﬂaﬂhé4q+42@5—mﬁ50p“»“'“~~fwm

“which amounts to the validity of the mass-shell condition. Both these constraints are first
“class in the language of Dirac and there are no tertiary constraints. The gauge symmetry

3These q-commutation relations are obtained due to (20), e pu=gq Pu e (:r:’)”z m=qm (a")‘/z
Pu m=mp, and commutativity of 7. ’ :

-~

'

transformations generated by tlnese’co’nstarints arc as follows v .
be=g*¢ L" . (w)
where £ is the non-commutatlve gauge tlansformatron parameter (Thrs can be seen by .

the application of the transformations (36) and requiring the validity of (22) on' the g-
deformed world-line (19) which yields : € p; = ¢ p, €): As per our convention, all the

§a* = q"’ & 517

~ symmetry transformatlons are firstly taken to the left and then substitutions (36) are

made The quasr‘mvarrance of the Lagrangran is succmctly expressed as follows o

df l (1+q)

2

- where the chain rule = = Eﬁ—"a;: = (1 + q’)p p“ has been used Even if we e do ot -
‘take the symmetry variations to the left side in all.the terms of Ly 'but exploit the non-.

commutatltlvrty of E, then also, we end up with the transformation (37)

In addition to the gauge symmelry, the first-order Lagranglan is also endowed wrth
followmg reparametnzatron symmetry. transformations ' :
‘ 5, e= -(ce) : (38)

bz = €2y & Pu = cm;

emergmg "due to .the one-dimensional dlll'comorphxsm T T — e(r) w;th commutmg

- infinitesimal transformatron paramcter e Tl’llS is because ol' the fact that 6 ez PP

q pu' ez with 2, pP* = q pa 2" lcads to p.e = ¢ p,‘) In fact, the first order Lagrangran
undergoes followmg change under (38):

5h;%G¢l5id i;f:‘ (mn

"#In the usual undeformed (g = 1) casc of the free relatrvrstic particle, the gauge (36) and the
: 'reparametrlzatlon (38) symmetnes are equn'alent on- shell with the identification §=ee

{15]. However, in the deformed case.these are not equrvalent because the transformatrons
of the einbein ficld, in spite of the above identification, are not equal unless q = Z£I.
This discrepancy might manifest itsclf at very high energy and might turn out to have.
some significant implications in the study of non-comnmutative gcometry and space time :
structure at this energy scale. - : . o L
The q-deformed free relativistic particle pxcscnts a prototype example of q-deformed
Abelian gauge theories. In addition to the explicit derivation of the Noether’s theorem,

~ it would be worthwhile to develop a q-dcl'or med BRST l'ormallsm to quantize this system

on a quantum world-line. It seemns, there would not be any prmcrpal difficulties in the
extension of our results for the discussion of q-deformed spinning relat:vrstlc particle where’
the ideas of the quantum group G L, ¢(1]1) would play a promment role. Furthermore, it -
would be interesting to generalize the second order Lagrangian Ls to q-deformed string

" action and discuss various subtleties involved in it. We liope to come to these problems

in future.
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