


1 Intro ductlon

Polyakov—Klelnert (P -K) I‘lgld strlng model [1 2] has been recently,
: w1de1y considered by researchers working in fields ranging from par- - .
*ticle. physms [3] and cosmology [4, 5] through condensed matter [6] o

' '.'and biophysics [7]. For a recent’ review,’e.g. see [3, 8].

In spite of the above interest. of various:groups of- researchers 1n.‘ .

o -bthe ngld string model very little progress has been achieved to date;

. inour theoretlcal understanding of this model.. Indeed, unlike the
~ Nambu-Goto (N—G) model.[9] which is. thoroughly studied both clas-
- swally and quantum mechamcally, the rigid:string model i is not: well g
* understood even at the classical level. . If .the: tradltlonal methods

‘ _'fdeveloped for N-G model are applied to Tigid. string, then, at" the

: classmal level the ngld stnng equations: of motion are: nonhnear in .

.- any gauge. The above nonlinearity precludes the use of conventional =
“.quantization methods developed for N-G - model.- Accordmgly, for the'v i

- rigid string model there. is no.analog of.the Virasoro® algebra which

" "'allows to determine the critical dimension of thls model.. e

- In view of s1tuat10n just described, most of our knowledge about’
the’ rlgld stnng is based on rather inconclusive: numerical simulation’ .

\results which. employ the discretized lattice- version of P-K string -

[10] ‘These S1mulat10ns typically involve only: study of the Euchdean, ; ‘
_version of the P-K ngld string. In case of Minkowski space- -time this’

model is havmg an additional ghost states [2, 11].:Because of these
- states the rigid stnng ‘model has been severely “criticized Tecently
- [12]. The authors of Ref 12 had come to. the conclusion’ that “either =
: fourth denvatlve klnetlc term most be quantlzed w1th an: 1ndeﬁn1te?' L

" norm .. or w1th energy unbound from below




The rlgld strlno' actlon is glven by [1 2]

A= »,//ds + a/ H2dS S 7(1.1) i

| ,'Where o and 'y are some constants In (1 1), 1ntegratlon takes place = 5
~ over the string world surface S which has’extrinsic mean ‘curvature: S
~ H. For. s1mphc1ty ‘we- confine ourselves to conslderlng the three-
" dimensional space-time ‘and to'the Euclidean version ‘of this model.” . : -

- In order to rid of the boundary’ condltlons ‘we shall treat closed strlng = K
-~ world surfaces whlch are encountered for example in strlng vacuum e

‘ '_—functlonal

The’ equatlons of motlon for actlon (1 1) ertten in terms of the o
,strmg ‘coordinates’ are very comphcated They stand: for a system;‘,‘;,_: e
of nonlinear . partlal differential equatlons of the fourth order ‘[13]- o
Except for one model example [14], nothmg is known- about solutlons_ 3
e of such system of equatlons However varying, the functlonal (1 1) :
 one’can arrive at. quite simple equatlons relatmg ‘basic’ geometncal ‘-1”}‘ o
‘,‘1nvar1ants of - the string ‘world surface; its Gauss curvature K’ and‘:.;;f :Q?"
_ mean. curvature H VVe shall be worl\mg mamly wrth equatlons of - co

such: type

- The main. result of our worl\ can’ be formulated as follows We
are ‘going to demonstrate that the effects of N-G term in the’ total_‘_*‘ =
~action A (the first term'in equatlon (1.1)) could be ‘accounted for ..
by conslderlng the truncated-action which contains: only the second e
termin (1.1) prov1ded that this term is: considered not in flat but 1n_ oy
~ curved space-time. Thus truncated ‘action is known-in the hterature.; SR
- as Willmore functional [15] and; ‘whence; we shall call string model, LRI
" based on’ such truncated action, as Wlllmore string. Reduction of the“,x .
'varlatlonal problem for the rigid strmg action’ A to that for Wlllmore" AR

string is-advantageous for- number of ; reasons

First, because the - actlon (1.1)"is: two’ d1mens1onal extens1on of
the actlon used: for partlcles with curvature—dependent action [16 .
S 17),itis logically natural to search:for. methods which extend: thosef’l" .
“developed for particles to that used for strmgs ‘In-Ref. 18 the non-= = . |
_relat1v1st1c quantum mechanlcs of pomt -like partlcles 1s formulated o

'on the" surface of 3 sphere 53 embedded in R4 Such reformulatlon
. leads to the emergence of spin for m1t1ally splnless partlcle Be-r.’

cause the statistical. -mechanics: of spmlcss particles is the same as
fully flexible polymers the presence of spin for such particles leads’
to the effective rlgldlﬁcatlon of initially flexible polymers [19]): Alter-

natively, such rigidification could be achieved if the above’ partlcle” -
~ moves in the presence of (in general) (non)abelian monopole gauge -

field [20]. In this case the rigidification mechanism lies i in the re-
placement of ord1nary derivatives in " flexible partlcle” Hamiltonian' -

by covarlant ones causing our particle to'move’in the effective gauge"

(gravity). field. The present. work. can be viewed as ektens1on ‘of - thef’;’:3
above ideas to the case of two dimensional objects; e.g:; ‘rigid strlngs

Second, in modern geometry there had been accumulated cons1d—_
erable amount of results related to Willmore’ functionals, e.g. 5
Ref. [21, 22], so that our understandmg of rigid. strings (at least at»’;f
the classrcal level), in view of results of our work, will depend to large
extent on appropriate mterprctatlon and utlllzatlon of the already'_}
accumulated knowledge. o o N

The layout of the paper is as follows In Sectlon 2 we prov1de aux—f’q’_

‘ 1hary facts from class1cal dlffcrentlal gcometry of surfaces in order -

: curvature K w1th mean curvature H in flat embeddmg space ~time:
o In Sectlon 3 we extend the above results to.the case when thelem-

beddmg space is the space of constant curvature. In the context:of -
quantum ﬁeld theorles the problem of embedding of the correspond-

" ing field- theoretic model mto -space of constant negatlve curvature -

was recently considered in [23] In connection with improved infrared

.regularlzatlon of QCD. In our case we study ‘the embedding with :
- different purpose. By doing so we are hoping to. apply some. results.
‘. about the Nambu-Goto strmg dyummcs in the de Sitter universe to -

the rigid string model in the Minkowski space-time.. Flnally, in Sec-
tion 4 (Conclusmn) we provide a brlef _summary and discussion of

" possrble future appllcatlons of the obtamed rcsults ln Appcndlx a_j
. more simple one—d1mens1onal version of our problcm is cons1dered



. Instead 'of’surfaces,in action (1.1) we arefdealing- here With~curyeSQ S

2 Normal varlatlons of the surfacesﬂ

For the completeness we glve here the basxc equatlons from thef’ij o
classrcal deferentlal geometry of the surfaces that w1ll be requ1red 1nf" S

- the following [24]. -

“Let z*(ul, u?), ;1 =-1, 2 3 be a parametrlc representatxon of
«the surface M in the three d1mens1onal Euchdean space E‘3 and n",.' e
/is a unit normal to the surface. -Intrinsic differential geometry of .
_the surface is defined . by the mduced metr1c or the ﬁrst quadratlc e

deferentlal form of the surface

gz,z(u u2) i ?”ﬁ‘”fl,'ifﬁx':.;__ aiﬂ(gw—"—), 2, J (2 1);‘_ e
The central p01nt of the surface theory is the derlvatron equathS of;:. e
~.Gauss \ ation
A & | : ,v;r_ I‘” x + bun
-and'Weingé‘ftén;/; ; 8 - E
, S n,,,;_»—» b,g g;k s (2 3):‘%2\,

» Here I‘” are the Chrlstoffel symbols for the metrlc g,J [24] gy is an L
- inverse matrlx to gij, - bij are the coefﬁcrents of the second quadratlc T
form of the surface that determines its external curvature (b,, = J,) S
Equatlons (2.2)- and *(2:3) . describe ‘the ' motion- of “the basis =
f{these:‘f:

Azh 2y, n"} along the surface. The compatlblhty cond1tlo S
‘ hnear equatlons are g1ven by the Gauss equatlon i

| RIJH = bzkbl - btlbjk ,' B :’ ;

and b}’ the Codazz1 equatlons e

‘b,,,c b,k,_»O z],k—l 2

[24]

/,

(2 2);’.{1

e )

| The semrcolon means the’ covarlant dlfferentlatlon thh respect to the ‘
- metric tensor g,, in (2 1) and R,JH 1s the Rxemann‘ urva.ture tensor P

When the equatrons (2 4) and (2. 5) are satlsﬁed by grven tensors ,
gij and b;; then the derivation equations (2.2) and (2.3) can be in-
tegrated and their corresponrhng solution z#(u!, u?) determmes the
surface up to its motion in E? as a whole.

The important geometncal invariants of the surface are 1ts Gaus-

‘sian curvature - . - , o T e

“I; = —R/2 ' 4-.gilgijijk1 ‘ : (26) :

and ltS mean curvature

1 R {' ) 1 R ) o
H== =b;;g” ij b' R T 2.7
’ 9 i9 2 1 o ( ) _
For physical apphcatrons dealmg with closed surfaces it is sufﬁ-
cient to consider riormal variations of the’ surface that are deﬁned as.

follows. For a given surface M with a position vector :c"(u u2) we

form the surface M parallel to M puttmg ‘
= # +tfn" —€<t<€, - (28)

here f (u u2) is a sufﬁmently smooth functlon given on M. We'_
denote by 6 the operator afot |t==0 “Thus 5:1:" = fn" For 51mphc1ty,
we shall omit the barat the argument of §. .
From the definition (2.8) we obtain ‘
| bzl = f,,-n" + fn4, | | | (2.9)
6:1:"1 = fin* + [’y fmh + ol (2.10)

The variation of the metric tensor (2. 1) is given by

8g;j = ézhix + :c"6:c" : f(n ' + n" ") - (211)

- By makmg use of the Wemgarten derlvatlon equa.tlon (2 3) the last

equatlon can be rewritten as

a5 = 2t  enw)



: By‘ val'yjng‘ the »deﬁnition .

| e gijgt = &F - -

© wehave B ,

e  bg5g™ + gybg™ = 0.
- Whence, C SR .

i 89" = ~g"g*sg; = 21", (.13)

Denotmg, as usual by g a determmant of the metric tensor, g = «

det(g,J), we can write

(k 5\/5_ (_ax—f:\/‘a> 6;1,{:. ="/q9 a:f‘m = ‘—2\/—Hf (2.14)
From (22) 1t follows that o o

;z

“Hence

, 6ybij — 5h#’ # ‘_*_ ’n”(»S:L‘” : .

B =Tk 5"#“7/1 + b,Jén"‘ n" + n"&m :’ i (2 16);; 1
. B » | |
2 31 varymg the equahtles followmg ftom the deﬁmtlon of the normals’ "
- nfn, = 1, n"m = 0 S (2.17) ~
we get . I S o
o Coemtnt =0, 0 (2.18)
onfah = —n"émf}’: =fieo o (2219)
k'In addltlon one can wnte |
n"nf:-j = —n" n" = - b,L bﬂg ‘ . (2 20) .

: Flnally the vanatlon of the second quadratlc form is given hy

6bz] - fz] fb,L b]1g v l ; (221)

Now we can calculate the var1at10n of H 2

sH? H(S(b,JgJ)—Hg'J&b,J+Hb,J6g"—
R '—H(Af+fb’b") (222)

. where A is the Laplace Beltrami operator given on the surface M.

From the Gauss equation (2.4) it follows that

R —"'b;;b’-‘ _'_"b'fb = b’b" - 4H2 S | (2.2‘355

Thus the vanatlon S§H? acqulres the ﬁnal form :

5H2 == H[A f + f(R + 4H2)] (554_)

Now we can derlve the: Euler—Lagrange equatlon following from
the vamshmg of the normal variation of the l‘lgld strmg actlon (1 1)

SA = 5//(7 + afﬂ)ds =0, dS = fdu du’. j e
By malung use of egs. (2. 14) and (2 24) we obtam o

64 = //dS {[ 27H + 0(2H3 + HR)]f + ozHAf} = 0.
: v ’ (2 25)"_
‘On the closed surfaces the Laplace-] Bcltrarm operator Ais self'deomt '

operator [25]
| / aseaf = [asing,.

" ‘:’ therefore the variation 64 in (2.25) ‘can be rewritten as follows

6A /dS[ 27H + o(AH + 2H? + HR)]f _,0

Due to the arbltrarmess of the functlon f (u u2) we. arrne at the .
cquatlon of motlon ‘ :

—oyH + oz( A+ zH" + RH) = 0 ;(2.\2;_6)



We gave here. qulte detalled derlvatlon of eq (2 26) that is ra.theri s

,,,,,

well known in htera.ture [15, 26] in the’ case of.a Euchdean ambient
. space E°. We shall use. the. methods _]ust descrlbed in the next- - -

f ~section for- derlvmg the equatlon on the geometrlcal mva.rlants H

: and R when the string world surfa.ce is placed in- a space—tlme of a.

: constant curva.ture S3

3 Wlllmore surfaces in. a space of a
constant curvature

Here we show tha.t the equatlon of motlon (2 26) can be derlved by
' cons1der1ng the Wlllmore surfaces in a space of a constant curvature

. S3 The Wlllmore surfa.ces are cxtremals of the Wlllmore functlonal

W //dSI—ﬂ

By malung use of the Welerstraﬁ coordmates z, a=1,.

as a hypersurfa.ce in the four dlmensmnal Euchdean space EY

sl 4..—
E 2%2% =

a=1

l ‘(3;2)

Let z"‘(u u2),
the surface M embedded into .§* in"term of the Weierstraf} coordi-.
~nates obeying (3:2). The natural unit normal to this surface in B
s ~°’(u u2) and let n® be the second. unit normal to this surface.

e

i ‘”‘(3,1)‘;

4[24,
, ,27] the three-d1mens1onal sphere S3 with radius a can be represented JENE

a =1, 2 3 4 is a parametrlc representatlon of .

i:n z ="O.',"’l‘k:;(3.3) L

The 1mportant advantage of the Welerstraﬁ coordma.tes 1n the S i
"problem under consideration is the following. The' basm equatlons .
for the surface embedded into. S'3 .are_very s1mple they are almost

2

' the same as’ 1n the Euchdean a.mblent spa.ce For the metrlc tensor_
onMwehavenow, SRS E IO S .

g 4

: a=1" - a=1 g ) '

- The denva.tlon equatlons (2.2) a.nd (2 3) become [24] k
,iJ = Fk FAr & + sz 77- a; ,' e (3 5)
o Tl’,- ,_~ —szg ZL- | (3 6)
The Gauss equatlon (2 4) now reads S
R:Jkl = bzk bit — by ka i o (gzk 911 —ga ng) (37)

: The Codazm equa.tlons (2.5) l\eep thelr form. = - -
The normal va.rla.tlon m terms of the Welerstra.ﬁ coordlnates 1s’
' deﬁned as follows v : .

Zen= g +tfn —E<t< E;,"f'&" R T
528 = femt 4 fus, . )
'62 f,_,n +f,n +f_,n +fn s

| By maklng use of (3 2) and (3 3) one can ea.sﬂy convmced that such ‘
‘a variation does not take out from S8, o

For variation of the metric terisor (3.4) we ha.ve obv1ously the same:'
equatlons (2 12) - (2.14). From-(3. 5) it follows that the. coefﬁc1ents

~of the second fundamental form b,J are defined by

4 . Lol >

, bij = Z n?'zc:J 7 (3.9)
‘Therefore DA o N P

5bu = et + n® 825 = i

Sy "'(I"“z + kb;'jlﬁ ng a) + n 5 S (3.10)



For s1mphc1ty we omlt here and in the following the s1gn of summa- -

: tion w1th respect to repeated indices. .
“From (3.2), (3.3) and (3.8) it follows that

Bn®n* =0, n%n® =0, 5n°z",,# ,—jz"&z" = —f,
- 6n%28 —_—_,‘—nﬂfsz'&:.—f,,-,t G
= fi + fn i = fii — falm.

Now equatlon (3 10) becomes ,

b = fi5 — Thif +g”f S (12)

W1th allowance of (3 6) we obtaln

8bi; = fij + g”f fbkblzkz = .

= fij + f (g" ‘ bkb,k)" 6B

: B‘yv'rnaki'ng _use of the Gauss equatlon (3 7) we deduce now 1nstead»
of’(2.‘23‘)v , .2 ST |

L R=0bb—aH - 5. . .(_3.14)
‘<Whe'n‘ce o _ - 4 R
e .5H2=H[Af_+f (R+4H2+;)]._ (3.15');”

Takmg 1nto account that - ; o 7
6dS = —2Hfd.5' r ,"""(3716)7"

"we can write

. - . 53 Gt
Therefore the equation of motion for the Willmore string in S is

10 .

~ where Kis a constant sectional curvatite of the amblent spa

SW = //dS[AH+2H3+H(R+ )]f | (3.1V7V)I\

‘should ‘be combined with"the. Gauss equatlon

3 '~4H+2H3.+H(R+5§)=O' o (3.18)/

Thus it has the same form'as (2,26)Aif wé"put*?? e T

R, 2 2 .

| T i _E (319)
ThlS result is'in a complete agreement w1th an analogous relat1on
in the one-dimensional version of. the problem under ‘consideration
(see eq. (A. 5) in Appendn{ and take into‘account that the sectlonal

curvature G'in the case of the sphere (3.2) is equal to 1/a?).
“We would like to note here the followlng ‘In spite of the Wlllmore
surfaces in spaces with curvature have been ‘considered in a number

-~ of mathematical papers [28 — 30] nevertheless a simple derrvatlon‘
. of eq.”(3.18) in a correct form are given here actually for the first

time. Indeed,; if we try to apply the ﬁnal ‘equation (3. 13) from Ref.

[28] for embedding two-dimensional VVlllmore surface into the S3 we
obtaln instead of the second term4 / a*in bracl\ets in (3. 18) the wrong
expression'3/a®. In paper [29] a more general functional as compared |
w1th (3 1) has been cons1dered For closed surfaces 1t reads I

ing-into account that the subtractlon from W1 of the functlonal ‘

iffs (321{

results in the add1tlonal terrn in the Euler-Lagrange equatlon +2 Ir H

‘one obtalns from eq.'(14) of | paper [29] our result (3 18) In the same

time, the:final" equatlons (5 43) and (5. 46) in paper [30] cannot be’
compared: dlrectly ‘with our eq:” (3: 18). “In’ order to do th1s they?\

“The result obtamed here. (eq. (3. 18)) canbe g generah?ed dlrectly 1n ‘

- the followmg two ways. At first, if we consider the'’ Wlllmore surfaces ;

not m the 53 but ‘in the three dnnenslonal mamfold of a constant )

e



- eq. (3 18) becomes

i e ,, . 4 - ) - 'V
AH + 2H3 + H (R‘— F) =0." (322)
Instead of (3 19) we have in th1s case

%*fz L - ;‘(‘3.23)

: Secondly, we can- generalize our result to the d-dnnensxonal hyper- '

"surfaces in the S d+1 determmed by a functlonal
d, m > 0.

//H”‘dS H—dg b,,,r =12,

In thls case equatlon (3 18) becomcs L

| P
AH”“l + d"’( :m ) H"‘“ H’"’ kR + ) ='0. (3.25)

When the Willmore d—dlmensmnal surface 1s embedded into: the

sphere S dintl with n > 1 then one arrives ‘at the n_equations relat-
k ing 1nternal and external characterlstlcs of thls surface ina complete{

analogy thh ‘one-dimensional case (see Appendlx)

4 Conclusmn

Recently the str1ng model based only on. the second term in
eq. (1.1) has been considered in paper [31]. It was called as a spon-.
: ta.neous string alludmg to the fact that in this case the Nambu-Goto -
term with nonzero string tension can be generated spontaneously due -
_to. the. .quantum fluctuations. We have proposed here other classwa.l

_scenario for this- sxtuatxon . y bt

Asa specxal ‘solution to eq. (3. 18) we can, consxder the m1mmal:«

surfaces in §3 with H = 0. There ate some new results about

e

12

negative curvature (the pseudosphcrc with imaginary radius ia) then

“(3.24) |

e

o these solutlons obtalned under con51derat10n of the usual Na.mbu- "
Goto string in the space—tune of a constant- curvature [21,-22, 27 :
o 32] In partlcular, authors of Ref.”[32] arrive-at the conclusxon that

- the dynam1cs of the Nambu-Goto string in- the de Srtter space—tlme .
should ‘be unstable ‘ This instability turns out to be a direct conse-
‘quence of the unboundness of the Harmltoman of the Sinh-Gordon °
- equation that describes minimal surfaces in the three-d1mens1onal de
- Sitter universe [27]. The relationship between the rigid string in flat
. space-tlme ‘and the Willmore string:in Ss% enables us to argue that |
" the 'same instability: should take place in the r1g1d strmg model i in
© . flat space-tlme In. mathematlcs another relatlon between mlmmal
* surfaces in 5% and the Willmore' surfaces in'R3 is known [15, 21]

Applymg a stereographxc projection to mmlmal surfaces in S% one

obtains Willmore surfaces'in R3. Whence we can conclude that the

Wlllmore string in R3 is unstable also.” R = ‘ :
- And the final note concerns a modrﬁed versmn of the Wlllmore "

functlona.l in S®. From the phy51cal pomt of view it is desirable-to
‘preserve the conformal i invariance of this functlona.l in the case of
~ambient space with a monzero curvature too To thls end one has to'
use a modlﬁed form of it glven in (3 20) R :

T J:’.“;r -

App endlx

We con51der here more 51mple version of our problem ie. ‘one’
= dlmensmnal versmn of it. Let.us mtroduce two funct1onals deﬁned;
~on the curves :t:"(s) ’ ‘

. :;g.(A’.-i) :

(A 2)‘

_where kisa curva.ture of the curve., Fll‘St functlonal we shall conS1der.f
:fm the Euchdea.n space ET a.nd the second one in the n-d1mens1ona.l

, 1‘“3’7 : f



: mamfold of constant sectional curvature G. When i’ 2 it has

been shown in the book [33] that the Euler-Lagrange equations are ‘
identical for these two problems. This result can be generahzed easily

to arbitrary n. By making use the results of papers [34] we can write
the correspondlng equatlons of motlons In: the ﬁrst case we’ have

: ; ,J o e
“kri= const S (A3)
k - 0 4 7é 1 2 S T

Here subscrlbe s means dlfferentlatlon w1th respect to the curve

length, 7 is the tors1on of the curve and . k;, 1 =3, 4,. Hd—1
“are the hlgher curvatures of the curve. - For the functlonal Fg the
: Euler-Lagrange equatlons read G st sand

21!@,.s + k3 2LT + 2LG = 0
. k27' = comnst; - - -
k=0, 279 L2
Thus we get 1dentlcal systerns 1f we put

P Te
Sy a’ -

’ ~""~('A'§5)
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