ОБЬЕАИНЕННЫЙ ИНСТИТУТ ЯAEPHЫX ИССЛЕАОВАНИЙ

AYБHA

E2-9264
D.B.Ion

ISOSPIN CONSTRAINTS
FOR REACTIONS WITH ARBITRARY SPINS

1975

E2 - 9264

D.B.Ion

ISOSPIN CONSTRAINTS
 FOR REACTIONS WITH ARBITRARY SPINS

Submitted to Physics Letters

Изоспиновые ограничения для реакций в произвольными спинами

Для реакций с произвольным спином получены как изоспиновые ограничения (равенства и границы), так и теоремы типа Померанчука. Обсужда ются несколько предсказаний для NN -рассеяния и реакций $\boldsymbol{\pi} \mathrm{P} \rightarrow \mathrm{K} \mathbf{\Sigma}^{*}$, $\overline{\mathbf{K}} \mathbf{p} \rightarrow \boldsymbol{\pi} \mathbf{\Sigma}^{*}$.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований Дубна 1975

Ion D.B.

E2 - 9264
Isospin Constraints for Reactions with Arbitrary Spins
Isospin constraints (equalities and bounds), as well as the Pomeranchuk-like theorems, for reactions with arbitrary spins are proved. Several predictions for the NN -scattering and $\pi p \rightarrow K \Sigma^{*}, K p \rightarrow \pi \Sigma^{*}$ are discussed.

Preprint of the Joint Institute for Nuclear Research Dubna 1975

In this paper we derive several stringent isospin constraints on the differential observable of the reactions with arbitrary spins related by isospin invariance via two isospin channels. We then prove: i) the Pomeranchuk-like theorems on differential observables of these types of reactions and ii) the constraints on spin polarization parameters when the usual triangular inequalities on differential cross-sections are exactly saturatedor degenerated.
Therefore, suppose three reactions

$$
a_{\ell}+b_{\ell}, 1_{\ell}+2_{\ell}+\cdots \cdots+n_{\ell}, \quad \ell=1,2,3
$$

are described by \mathbf{N} independentamplitudes $f_{p^{\prime}}^{(k)}(a \cdot 1,2, \ldots, N)$ which are defined so that the differential cross-section is

$$
\begin{equation*}
\sigma_{p}=\sum_{\alpha=1}^{N}\left|f_{f}^{(\alpha)}\right|^{2}, \quad \ell=1,2,3 \tag{1}
\end{equation*}
$$

We shall assume that all the amplitudes $f_{f}{ }^{(\alpha)}$ satisfy the linear relations:

$$
\begin{equation*}
\sum_{\ell=1}^{3} c_{\ell} f_{\ell}^{(\alpha)}=0, \quad(a=1,2, \ldots, N) \tag{2}
\end{equation*}
$$

due to the isospin invariance, where $c p, \rho=1,2,3, \quad$ is a homogeneous fourth degree polynomial of Clebsh-Gordan coefficients. Then, using the sum rule (2) and Schwartz's inequality, we obtaịn the usual triangular inequalities which are equivalent to

$$
\begin{equation*}
0 \leq-\lambda\left[\mathbf{c}_{1}^{2} \sigma_{1}, \mathbf{c}_{2}^{2} \sigma_{2}, \mathbf{c}_{3}{ }^{2} \sigma_{3}\right]--\lambda[\sigma], \tag{3}
\end{equation*}
$$

where λ-function is defined in general by

$$
\begin{equation*}
\lambda\left[x_{1}, x_{2}, x_{3}\right] \equiv x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{3}-2 x_{3} x_{1}, \tag{4}
\end{equation*}
$$

Next, let us define σ_{β} and $\vec{\xi}_{\beta} \equiv\left(A_{\beta}, P_{\beta}, R_{\beta}\right)$ by the relations

$$
\begin{align*}
& \sigma_{\beta \ell}=\left|\mathbf{f}_{\ell}^{\left(\alpha_{p}\right)}\right|^{2}+\left|\mathbf{f}_{\ell}^{\left(a_{\mathbf{r}}\right)}\right|^{2} \tag{5a}\\
& \mathbf{A}_{\beta \ell} \sigma_{\beta \ell}=2 \operatorname{Re}\left[\mathbf{f}_{\ell}^{\left(a_{p}\right)} \mathbf{f}_{\ell}^{\left(\alpha_{\mathbf{r}}\right)}\right] \tag{5a}\\
& \mathbf{P}_{\beta \ell} \sigma_{\beta \ell}=-2 \operatorname{Im}\left[\mathbf{f}_{\ell}^{*\left(\alpha_{p}\right)} \mathbf{f}_{\ell}^{\left(\alpha_{\mathbf{r}}\right)}\right] \tag{5c}\\
& \mathbf{R}_{\beta \ell} \sigma_{\beta \ell}=\left\lfloor\left|\mathbf{f}_{\ell}^{\left(\alpha_{\mathbf{p}}\right)}\right|^{2}-\left|\mathbf{f}_{\ell}^{\left(\alpha_{\mathbf{r}}\right)}\right|_{\mathbf{2}}\right.
\end{align*}
$$

with

$$
\begin{equation*}
\vec{\xi}_{\beta \ell}^{2}=\mathbf{A}_{\beta l}^{2}+\mathbf{P}_{\beta l}^{2}+\mathbf{R}_{\beta l}^{2}=1 \tag{5e}
\end{equation*}
$$

for any $\beta \equiv\left(a_{\mathrm{p}}, a_{\mathrm{r}}\right), a_{\mathrm{p}}<, a_{\mathrm{r}}, \alpha_{\mathrm{p}} \neq a_{\mathrm{r}},=1,2,3, \ldots, \mathrm{~N}$
Next, let $H_{i j}$ and ${\underset{\beta}{\mathrm{A}}}_{\mathrm{ij}}$ be defined by

$$
\begin{equation*}
\mathrm{H}_{\mathrm{ij}}=\sum_{\text {all } \beta} \mathrm{H}_{\beta_{\mathrm{ij}}} \geq 0, \quad \mathbf{H}_{\beta \mathrm{ij}}=\frac{1}{2}\left[1-\vec{\xi}_{\beta_{\mathrm{i}}} \cdot \vec{\xi}_{\beta_{\mathrm{j}}}\right] \sigma_{\beta \mathrm{i}} \sigma_{\beta_{\mathrm{i}}} \tag{6}
\end{equation*}
$$

Then, the sum rules (2) alone imply that the equalities

$$
\begin{equation*}
\mathrm{H} \equiv \mathrm{c}_{1}^{2} \mathrm{c}_{2}^{2} \mathrm{H}_{12}=\mathrm{c}_{2}^{2} \mathrm{c}_{3}^{2} \mathrm{H}_{23}=\mathrm{c}_{3}^{2} \mathrm{c}_{1}^{2} \mathrm{H}_{31} \geq 0 \tag{7}
\end{equation*}
$$

and the bounds

$$
\begin{equation*}
4 \mathrm{H} \leq-\lambda[\sigma] \leq 4 \min \left\{\mathrm{c}_{\mathrm{i}}^{2} \mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{i}} \sigma_{\mathrm{j}}\right\} \tag{8}
\end{equation*}
$$

are valid for any values of kinematical variables/2/from the physical domain.

The proof of eqs. (7) and (8) can be obtained as follows. Start with the bilinear forms

$$
\begin{equation*}
\mathbf{Z}_{\mathrm{ij}}^{(0)}=\sum_{\alpha=1}^{\mathrm{N}} \mathrm{f}_{\mathrm{i}}^{*}(\alpha) \mathrm{f}_{\mathrm{j}}^{(a)}, \quad \mathrm{i} \neq \mathrm{j}=1,2,3 \tag{9a}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{Y}_{\beta \mathrm{ij}}=\mathbf{f}_{\mathbf{i}}^{\left(\alpha_{\mathbf{p}}\right)}{ }_{\mathbf{f}_{\mathrm{j}}}^{\left(\alpha_{\mathbf{r}}\right)}-\mathbf{f}_{\mathrm{i}}^{\left(\alpha_{\mathbf{r}}\right)_{\mathbf{f}_{\mathrm{j}}}{ }^{\left(a_{\mathbf{p}}\right)}, \beta=\left(\alpha_{\mathbf{p}}, \alpha_{\mathbf{r}}\right), \alpha_{\mathbf{p}}<\alpha_{\mathbf{r}}, ~} \tag{9b}
\end{equation*}
$$

which have the properties

$$
\begin{align*}
& Z_{Q \ell}^{(0)}=\sigma_{\ell}, \quad \ell=1,2,3 \tag{9c}\\
& \left|Z_{i \mathrm{ij}}^{(0)}\right|_{=}^{2}=\sigma_{\mathrm{i}} \sigma_{\mathrm{j}}-\mathrm{H}_{\mathrm{ij}}, \quad \quad \text { (see definition (6)/, } \tag{9~d}\\
& \left|\mathbf{Y}_{\beta \mathrm{ij}}\right|^{2}=\frac{1}{2}\left[1-\vec{\xi}_{\beta \mathrm{i}} \cdot \vec{\xi}_{\beta_{\mathrm{j}}}\right]_{\sigma_{\beta \mathrm{i}}} \sigma_{\beta \mathrm{j}}=\overline{\mathrm{I}} \mathbf{H}_{\beta \mathrm{ij}} \tag{9e}
\end{align*}
$$

We note that eq. (9d) is a direct consequence of the "Lagrange" identity

$$
\begin{equation*}
\left|Z_{\mathrm{ij}}^{(0)}\right|^{2}+\sum_{\mathrm{all} \beta}\left|Y_{\beta \mathrm{ij}}\right|^{2}=\left[\sum_{a=1}^{\mathrm{N}}\left|\mathrm{f}_{\mathrm{i}}^{(a)}\right|^{2}\right]\left[\sum_{a=1}^{\mathrm{N}}\left|\mathrm{f}_{\mathrm{j}}^{(a)}\right|^{2}\right] \tag{9f}
\end{equation*}
$$

and eqs. (1) and (9e).
Then, using the sum rule (2), we get the relations

$$
\begin{equation*}
c_{1} c_{2} Y_{\beta 12}=c_{2} c_{3} Y_{\beta 23}=c_{3} c_{1} Y_{\beta 31}, \tag{10a}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re} Z_{i j}^{(0)}=\left(2 \mathbf{c}_{\mathrm{i}} \mathrm{c}_{\mathrm{j}}\right)^{\cdots 1}\left[\mathrm{c}_{\mathrm{k}}^{2} \sigma_{\mathrm{k}}-\mathrm{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}-\mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{j}}\right] \tag{10b}
\end{equation*}
$$

$$
\begin{equation*}
4 \mathrm{c}_{\mathrm{i}}^{2} \mathrm{c}_{\mathrm{j}}^{2}\left[\operatorname{Re} Z_{\mathrm{ij}}^{(0)}\right]^{2}=4 \mathrm{c}_{\mathrm{i}}^{2} \mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{i}} \sigma_{\mathrm{j}}+\lambda[\sigma] \geqslant 0 \tag{10c}
\end{equation*}
$$

$$
\begin{equation*}
4 \mathrm{c}_{\mathrm{i}}^{2} \mathrm{c}_{\mathrm{j}}^{2}\left[\operatorname{lm} \mathrm{Z}_{\mathrm{i} j}^{(0)}\right]^{2}=-4 \mathrm{H}-\lambda[\sigma] \geq 0 \tag{10d}
\end{equation*}
$$

which imply the constraints (7) and (8), respectively.
Clearly, the lower bound (8) is more stringent than the usual triangular inequalities (3). Also, it is easy to see that the constraints (7) and (8) are independent of the spin reference frame, and that these constraints improve in particular all the bounds derived by Kamei et al. and Dass et al. /see rej. $1 / /$. Eqs. (7) and (8) require that, if the bound (3) is exactly saturated then

$$
\begin{equation*}
\stackrel{-\vec{\xi}}{\beta \mathbf{1}}^{=} \vec{\xi}_{\beta \mathbf{2}}=\vec{\xi}_{\beta 3} . \tag{11}
\end{equation*}
$$

for all $\vec{\beta}$ and any spin reference frame.

We note that eqs. (7) and (8) represent a complete extension, to reactions with arbitrary spins, of the corresponding constraints previosly derived
for the $\left(0^{-} 1 / 2^{+} \rightarrow 0^{-} 1 / 2^{+}\right)$and $\left(0^{-} 1 / 2^{+} \rightarrow 0^{-} 0^{-} 1 / 2^{+}\right)$reactions $/ 6 /$, respectively.

Next, we observe that the lower bound (8) is equivalent to

$$
\begin{equation*}
\left[\mathrm{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}-\mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{j}}\right]^{2}+4 \mathrm{H}_{\leq}-2 \mathrm{c}_{\mathrm{k}}^{2} \sigma_{\mathrm{k}}\left[\mathrm{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}+\mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{j}}-\frac{1}{2} \mathrm{c}_{\mathrm{k}}^{2} \sigma_{\mathrm{k}}\right] \tag{12}
\end{equation*}
$$

where $i \neq j \neq k$ are any permutation of channel indices 1,2,3.

Therefore, if

$$
\begin{equation*}
\sigma_{k}\left[c_{i}^{2} \sigma_{i}+c_{j}^{2} \sigma_{j}\right] \underset{s \rightarrow+\infty}{ } 0 \tag{13}
\end{equation*}
$$

$/ \sqrt{s}$ is the c.m. energy/ when the other kinematical variables 2 are fixed, then the isospin bound (12) implies the Pomeranchuk-like theorems

$$
\begin{align*}
& \mathbf{c}_{\mathrm{i}}^{2} \sigma_{\mathrm{i}}-\mathrm{c}_{\mathrm{j}}^{2} \sigma_{\mathrm{j}} \xrightarrow[s+\infty]{\longrightarrow} 0 \tag{14a}\\
& {\left[\mathbf{A}_{\beta \mathrm{i}}, \mathbf{P}_{\beta \mathrm{i}}, \mathbf{R}_{\beta \mathrm{i}}\right]-\left[\mathbf{A}_{\beta \mathrm{j}}, \mathbf{P}_{\beta \mathrm{j}}, \mathbf{R}_{\beta \mathrm{j}}\right] \underset{\mathbf{s} \rightarrow+\infty}{\longrightarrow} 0} \tag{14b}
\end{align*}
$$

for all β in any spin reference frame, or, conversely the ${ }^{\sigma}{ }_{\mathbf{k}}$-differential cross section cannot vanish for $\mathbf{s} \rightarrow+\infty$ if one of the Pomeranchuk-like theorems $(14 a, b)$ is violated at high energies.

Hence, if the indices i, j, k, are chosen such that they correspond to the elastic and change exchange channels, respectively, then the bound (12) makes it possible for us to understand the small elastic differential cross-sections

at high energies and small $|\mathrm{t}|$-fixed, in terms of small charge exchange differential cross sections $\left[\sigma_{p n \rightarrow n p}\right.$,

${ }^{\sigma} \mathbf{K}_{\mathrm{L}}^{\mathrm{p}} \rightarrow \mathbf{K}_{\mathbf{s}}^{\circ} \mathbf{p}$ ${ }^{\sigma} \mathrm{K}_{\mathrm{L}}^{\circ}{ }_{\mathrm{n}} \rightarrow \mathrm{K}_{\mathrm{s}}{ }_{\mathrm{n}}$
respectively], and
to predict the validity of the Pomeranchuk-like theorems for all the differential observables of the elastic reactions for $s \rightarrow+\infty$ and $|t|$-fixed.

For the nucleon-nucleon scattering, since there are five independent amplitudes ${ }^{/ 7}$, we are far from having a complete set of measurements for comparison of the isospin constraints (7) and (8) with the experiments. However, by a systematic study of the usual triangular isospin inequalities /see eq. (3)/ one can find the kinematical regions where the bound (3) is exactly saturated. Then, using eqs. (7), (8) we predict the equalities (11), which imply:

$$
\begin{align*}
& P_{p p}^{C l}=P_{p n}^{e l}=P_{p n}^{C F}, \quad D_{p p}^{e \ell}=D_{p n}^{\prime l}=D_{p n}^{C E}, \\
& C_{p p}^{\cdot \cdot \rho}=C_{p n}^{e l}=C_{p n}^{C E}, \quad K_{p p}^{d P}-K_{p n}^{d P}=K_{p n}^{C E} \text {, } \tag{15}
\end{align*}
$$

where $P_{N N}, C_{N N}, D_{N N}$ and $K_{N N}$ denote the "polarization asymmetry", "correlation tensor", "depolarization tensor" and "polarization transfer tensor", for the elastic and charge exchange scattering, respectively, defined in ref. 7 . Therefore, these isospin constraints can be used for a test of the treatments of experimental data since the extraction of $p n \rightarrow p n$ data from $p d$ scattering usually employs the Glauber theory and also some further simplifying assumptions. At high energies, one expects get a good bound on elastic proton-neutron differential cross sections because of smallness of charge exchange data. Comparisons of these bounds with the experiments have been carriedout by Dass and Froyland for $\mathrm{P}_{1 \wedge \mathrm{~B}}=12,19.2$ and $24 \mathrm{GeV} / c$, and they find that the elastic pn data $; 8$ / lie consistently above the upper bound. Therefore it would be interesting to have new experimental data for $p n$-elastic scattering and also the data for the polarization asymmetry for all elastic and charge exchange channels in order to compare the predictions (15) with the experiments.

Next, we remark that the experimental consequences of the isospin constraints (7) and (8) can be easily tested
(experimentally) in the quasi-two-body reactions with unpolarized (or polarized) target. Then, using the formalism developed in ref. we obtain a large number of equalities of the form

$$
\begin{equation*}
c_{1}^{2} c_{2}^{2} H_{\beta 12}=c_{2}^{2} c_{3}^{2} H_{\beta 23}=c_{3}^{2} c_{1}^{2} H_{\beta 31} \tag{16}
\end{equation*}
$$

/see eqs. (10a) and (9e)/ in terms of the spin density matrix elements in the transversity quantization system. For example let us consider three ($0^{-} 1 / 2^{+}, 0^{-} 3^{\boldsymbol{t}} / 2$) reactions related by isospin invariance via two-isospin channels [eq. $\pi \mathrm{p} \rightarrow \mathbf{K} \Sigma^{+}, \quad \mathbf{K p} \rightarrow \pi \mathbf{\Sigma}^{+}$, etc.]. Then, for reactions with unpolarized target, we obtain two sets of $\left[\sigma_{\beta \ell}, \quad \xi_{\beta \ell} \equiv\left(\mathbf{A}_{\beta \ell}, \mathbf{P}_{\beta \ell}, \mathbf{R}_{\beta \ell}\right)\right]$ observables and $\mathrm{H}_{\beta_{\mathrm{ij}}}$ which are listed in the table. We note that the exact saturation of the bound (3) on the differential cross sections implies the equalities:

$$
\begin{array}{ll}
\rho_{11}^{(1)}=\rho_{11}^{(2)}=\rho_{11}^{(3)}, & \rho_{-1-1}^{(1)}=\rho_{-1-1}^{(2)}=\rho_{-1-1}^{(3)}, \\
\rho_{33}^{(1)}=\rho_{33}^{(2)}=\rho_{33}^{(3)}, & \rho_{-3-3}^{(1)}=\rho_{-3-3}^{(2)}=\rho_{-3-3}^{(3)}, \\
\rho_{1-3}^{(1)}=\rho_{1-3}^{(2)}=\rho_{1-3}^{(3)}, & \rho_{3-1}^{(1)}=\rho_{3-1}^{(2)}=\rho_{3-1}^{(3)} \mathrm{m}, \text { etc. } \tag{17c}
\end{array}
$$

These relations are direct consequences of the isospin bound (8). Comparisons of the isospin constraints (16) with the experimental data are of great interest for a detailed test of the isospin invariance in the ($0^{-} 1 / 2^{+} \rightarrow 0^{-} 3 / 2^{\boldsymbol{t}}$) reactions of the types $\pi p \rightarrow K \Sigma^{*}$ and $K p \rightarrow \pi \Sigma^{*}$. They also can be used for a test of the resonance background (or $\Lambda-\Sigma^{\circ}$) separations.

Finally, we note that the isospin sum rules (2) impy that each of isospin constraints (7), (8), (12), (13), (14a,b), (15), (16) and ($17 a, b, c$) has an integrated analog. Proof of this statement can be obtained just as in ($\left.0^{-} 1 / 2^{+} \rightarrow 07 / 2^{+}\right)$ scattering case discussed in ref. 4,10\%.

References

1. R.J.N.Phyllips. Nuovo Cimento, 26, '103 (1962);
O.Kamei and S.Sasaki. Nuovo Cimento, 59A, 535 (1969);
G.V.Dass and J.Froyland. Nucl.Phys., B42, 153 (1972).
2. A.Gheorghe, D.B.Ion and El.Mihul. Ann. Inst. Henri Poincare, 22, 131 (1975).
3. M.G.Doncel, L.Michel and P.Minnaert. Phys.Lett., 38B, 42 (1972).
4. D.B.Ion. Nucl.Phys., B84, 55 (1975) and JINR preprints E2-7732, E2-7868, Dubna, 1974; E2-8695, Dubna, 1975.
5. D.B.Ion. Nucl.Phys., B96, 67 (1975) and JINR preprint E2-8432, Dubna, 1974.
6. D.B.Ion. JINR preprints, E2-8865, E2-8866, Dubna, 1975.
7. G.L.Kane and U.P.Suchatame. Nucl.Phys., B78, 110 (1974).
8. B.G.Gibbard et al. Nucl.Phys., B30, 77 (1971).
9. M.G.Doncel, L.Michel and P.Minnaert. CERN preprint/D.Ph.II/Phys. 74-7, 1974.
10. D.B.Ion. JINR preprint E2-9227, Dubna, 1975.

Received by Publishing Department on October 29, 1975.

