





Taiiep B, u ap. E2 - 9251

ABTOMOAeMbHbIE ACUMIITOTHKH aMINIATYyAbl pacCesHus Ha
duKcHpoBaHHble YLAbl B paMkax npeacrtapilennsa [Jalicora-Hocrta-
JlemaHa

B paGoTe ycTrauoBleHbl HeO6XOOHMMble H AOCTATOUYHBIE YC/IOBHA CYIleCT-
BOBAHHUHA CTENEHHbIX aBTOMOAE/BLHBIX ACHMITOTHK aMIUIMTYAbl PacCCesHHS Ha

fonblune yIibl,

Pabora sBrimonsena B JlaBoparopuu Teoperuueckoi ¢usnku OUHAU.

Mpenpunr O6beIMHEHHOrO MHCTHTYTA AOEPHBIX HCCAedoBaHMH
Jy6ua 1975

Geyer B. et al. E2 - 9251

Automodel Behaviour of the Fixed Angle Scattering
Amplitude in the Framework of the Jost-Lehmann-
Dyson Representation

Conditions for asymptotic power behaviour of the
scattering amplitude at fixed angles and some properties
of the limiting expressions have been established. There
is a connection between short distance behaviour of the
product of currents and the asymptotics of a particular
off-shell amplitude at fixed scattering angles.

The investigation has been performed at the
Laboratory of Theoretical Physics, JINR.

Preprint of the Joint Institute for Nuclear Research
Dubna 1975

1. INTRODUCTION

In the last time the principle of automodelity // has
been applied successfully to high-energy scattering at
fixed angles. If supplemented by assumptions about the
quark structure of hadrons, automodelity allows one to
understand the well known power behaviour

do 1 (b, s b, S 1
1 Sm(s), o |t = fixed (1)
observed in elastic hadron scattering /.

It is desirable however, to give parallel to this
intuitive argumentation an investigation on the basis of
general QFT, i.e., in the framework of the DJL repre-
sentation. For deep inelastic electron-nucleon scattering
such an investigation has been performed in the basic
paper/3/ and continued in a series of subsequent ones /4, 5/
The DJL representation has also been applied to the
study of inclusive scattering amplitudes /6/,

The questions we are concerned with in the present
note are similar to those studied in connection with deep
inelastic scattering. So conditionsinterms of DJL spect-
ral functioms are formulated which are sufficient (and
necessary, if a 3-dimensional DJL representation can
be applied) for automodel behaviour at fixed scattering
angles. We compare on-mass-shell and off-mass-shell
amplitudes with respect to asymptotic behaviour and
establish some properties of the corresponding automodel
or scaling functions. Finally, because scattering at
fixed angles like deep inelastic scattering involves large
momentum transfers one could ask if there are, also in
this case, properties in x-space uniquely related to the
automodel behaviour. ’
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Whereas particular off-shell processes are found
to be correlated with specific small distance behaviour
of the product of current operators, the question must be
answered negative for on-shell processes.

2. KINEMATICAL CONDITIONS FOR FIXED
ANGLE SCATTERING

It is useful to consider simultaneously the following

three processes as s » =, t » —x
q ,_,./“Q
1 2 9 q

1 2 9, t;( 9,
B 1 P2 B gtem R P
Wavy lines denote virtual particles with masses tending to

infinity in a particular manner. We choose the Breit
system to write

P=olp +py) = (E,0,  A=(qy-q,)=00,2).
Q=5 (q,+ ay), v= A - s a2,

s = (P+0Q)2, a2,-(0F %A)z’ (2)
Ploms E = y§2m?

In every case scattering at fixed angles means P ;- =,

A# > o and Q# -» o so0 that a convenient parametrization
is given by

Q# = qu# » Ay fixed. (3)

In other words, the four components of the dimensionless
fixed vector 4, play the role of scaling parameters. The
physical range for ¢, is determined from :1<0,Q >0,
spectrum conditions of the absorptive part (P£Q)2>m?,

PtQ,zm)and mass shell conditions (q21= m% and qg = m-; ).

Process Physical range for Ay
I 7(1+q0)2_q2>0 402 0
(4)
Il q2-1 =2qH: 0 qOZO
m q® =1 a = 0 q,2 0

( qy; » 91 denote the components of q with respectto p )
For one-shell process III one free variable remains,
say q,, which is related to 2 by ‘f:"%““‘o)

1 ‘(1+q0)2— _’220"1020‘

)

N lqz— 1—2qH= 0, qOZOi

91

Physical regions for the processes I, II, III.



Let us note that the endpoints of the physical range
q, = 1 (case III) and q,~> = belong to the scattering at
fixed u and 1 -0 respectively.

Finally we mention the inequality for the absorptive
parts

[F(Q;p) |*<F(Q,;0) F(Q_;0),
(5)
P+Q=p,+Q,=p,+0Q_,

which relates non-forward scattering to forward scat-
tering.

For on-shell processes at high energy s this inequ-
ality is in accordance with the well known fact that fixed
angle scattering decreases more strongly than forward
scattering. In the off-shell case we obtain the same rela-
tion between the process I and the corresponding forward
process in the Bjorken region (which would measure the
light cone singularities of hadronic currents).

3. ASYMPTOTIC POWER BEHAVIOUR AND
CONDITIONS ON THE DJL SPECTRAL FUNCTIONS

A general framework for a discussion of asymptotic
power behaviour at fixed angles for on- and off-shell
processes is the DJL representation. On this basis it is
also possible to study the «x-space properties (pro-
perties of the product of current operators) which could
be determined from fixed angle scattering. The general
problem with nonidentical currents demands the investi-
gation of the four-dimensional DJL representation. For
simplicity we restrict ourselves to the case of identical
currents where a three-dimensional representation can
be applied.
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Let us begin with the absorptive part* F(Q;E) given
by

F(Q;p) =€ (Q ) fdufdA’s(Q2=(Q-m 22D v, A%,
WI<E,, (6)

)\Zmax{o,m—-\/Eﬁ—_"rZ b,

We introduce the scaling variables Q,-E, q,, p = pe ,
¢2=1 and write
> - E > ’
u pH (
7)
A= Egr%

- - - - 2 2 o
¥(3,A%p) =Ep3(l>(Epu,E r%pe).
Then
~ - N ~-» RN g ~ ¥ ﬂ2 2 >
P(qu;pe):e(qo)jd(ulr25(q(2)—(q—»[L)z—rz)(D(E‘p/L,hpr ;pe) . (8)

It is important to have a precise definitior}) for the fixed
angle limit Ep - o, The basic fact that F(Q;p)is a genera-
lized function with respect to Qu indicates that one has

to deal with a limit of functionals. We apply a quasi-
limit which is a generalization of that used in /4/ .
In this sense asymptotic power behaviour

—~ .—7 = a - '-> 9
F(E,qipd) | = EFola:d) O

will be understood as

*Here only the first term of the Jost-Lehmann repre-
sentation is investigated.

> > > 2 >, 2 0 2
F(Q,5) = (Q 9 faafdA*8(Q2-(Q-1)" -A") (¥ W, A%, p)+Q"¥ @A %p)),
The second term can be treated analogously.
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Ilélm ——fd qF(E pd° pe) f(q)=fd ql‘ (q;e) f(q), flg)esS,

P (10)

By Fourier transformation this equation can be re-
written in x -space as

fim 4fd xF(———,pe)f(x) fdxF (x; e) f( ), (11a)
E —>ME p Ep
where F(x pe) and Fo(x e) are the Fourier transforms
of the absorptive part F(Q; p) and the scaling function
Fy(q;¢) respectively:

Flxipd) = —Lofa'Qe Ok (Q:pe)
(2m)*

4  —igx .. N
e

l;o(x;_é)= 1 fd Fo(q;e).

@m?*

Formula (11a) may be used to derive a condition for the
spectral function ®. Therefore we apply the Jost-Leh-
mann formula determining the spectral function ¢ fromF

‘P(u /\2,p) —E—3(I)(E y,Ezr;pg)

=5 W{e(ﬂ)fdx% v [ T ol
F(X,x%p) =€ (x) Flxsp) (12)
and study the functional
[dif &0 (E o E2 Zope) £, 7
(f: test functlon). Because of the fact that
(3.2 = [aif dr2e 0_0-3{9(72) T (rvxD G, 72)

7 -
is a test function with respect to x and x2/4/we get

the functional
e % x2 5= o
fdx2fdxF(i,5—-—;pe)f(x,x2> =
Ep El2)
=fd4x§(-ﬁx—-;pg) xof_(;,xg—;z) .
p

Now it. is obvious that equation (11a) is equivalent to the
existence of the quasi-limit for the spectral function

g-fim ——‘I’(E E,Ez ,pea) ) (y r2 . (13)
E o0 E? P
On the othér hand, postulating the q-limit (13) for the
spectral function, the generalized power behaviour (10)
can be derived:

q-fim F(E KE pe) >E F (q e) . (14a)
F,
Notice that the integral
fdqe PREICERT S, @es
defines a test function. The automodel or scaling func-
tion I (q;¢)fulfills the representation
Fo(q;g) =€ (qo)fdt_t’drzﬁ(qZ— (q )29 (DO(/T,r 2.9,

il <1, 72> 0. (14b)

For illustration we investigate the Born terms:

E(Q:p) =¢ (Qg+ Pg)8((Q+ P2 —m?)4e (Qg=Py) 8 ((Q-P)2=m 3,

tim E P(Eq pe) =¢ (1+ qp & (1+ qp) —q2)+f (qo- D81~ qéz q

L—)OO

fim F(—E e)F »(277) f(xo)cosxoﬁ(xz)
Fp—»oo Ep

W (A m%——E{6m2*2m(h2'ﬂ_n5u%—

0% <2 [O(E % x(u A1,
8(u2)

fim E°W(E u J212;p.e) =-2—9(1—y2)8'(1—;2)5(72) .
E oo P p T
P

Let us finally discuss the behaviour of the total am-
plitude (retarded commutator). As usual, one has to be
more careful with the investigation of the R-product
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(problem of subtractions with respect to A2). In addition
to condition (13) we mustassume that some finite number

of subtractions is sufficient for the convergence of the DJL
representation for all values of t<0. In other words we
assume '

N = sup n(t) <o,
——oo<t£0
where n(,) denotes the number of subtractions for fi-

xed t. Note that equation (10) gives no restrictions on
the large A2 behaviour of ¥(u,?;p) at t fix. If further-
more

()} (;,72;;) = (72)k >

T 2—» o0

we choose

n = maxi{N;[ k + 111,
so that a representation with n subtractions

T(Qsp) ==/ dal Q- (F-u) 1"
(15)

) > 2 o R
x f =5 n 2 wiu’jép)z + B (Qp)
OWHED"Qo- (G- -2% 10 0y

is valid for all values of t.

The coefficients of the polynomial P, are unknown
functions of the variable 5 .

If we want to understand the limit Ep -» = in the sense
of a functional

fd4qT(qu;pg) f(q),

then the representation (15) leads to the functional
fd;fdrqu(Ep;f,Eirz;pg ) g(,uﬂ,fz) ,

where g(ﬁ,rz) is infinitely differentiable and vanishes

as some inverse power for 72- + ~ This is sufficient for
the existence of the limit for T(E q;pe) :

fim T(qu;pz) =E"p’r0(q;€) +Pn(qu;Epé’) , (16)

E_ 00

P
10

> g

-> - > - ood2 (DO(H-:Tae)
T (gse) :—%fd#[q%—(q—#)zﬂ]“f T Ty g 1 .
0 (24 1) qo_(q_ﬁ) -7 +10-6(q()

In any case the subtraction term becomes polynomial in
q multiplied, however, by unknown powers of E .

Let us summarize the essential properties of the
limiting procedure for the off-shell processes:

1. Condition (13) is obviously a necessary and suffi-
c¢ient condition for the generalized power behaviour of
process I.

2. The limit (14) of the absorptive part itself fulfills
a DJL representation where, however, the spectrum of
the intermediate states contains massless states.

3. Fy(q;e) is a generalized function with respect
to q. Therefore the asymptotic behaviour (14) must not
necessarily be valid on the restricted regions corres-
ponding to on-shell processes II or III.

4. The limit in equation (11) is the natural generali-
zation of the classical limit x; > 0 for F(x:p) (whereby
the relative momentum p tends to infinity too). Therefore
this relation constitutes a connection between the asymp-
totic fixed angle (off-shell) amplitude and the matrix ele-
ment of the current commutator near Xy = 0

ti < ['(—L—),'(_L)]‘ >:_] d —iqu ( ;_é).
E ot d Pl £, T2k, " Tyt dae 1
p Tp

(11b)

4. ASYMPTOTIC BEHAVIOUR FOR THE ON-SHELL
PROCESSES II AND III (ABSORPTIVE PART)

A separate investigation of on-shell scattering is
needed because we have to expect different asymptotic
power behaviour for on-shell and off-shell processes.

The following considerations deal with one-variable
processes including case III and special cases II (see
eqs. (4)) which are determined by



q? = -k, Zq“ =~—(1+k), k- constant a7

This means s » o, t > — oo, q219_°°,

H 1 2
_..S .—1 = == 1 k ) ﬁ ed.
t ot 2( +k), gy fix

Let us choose q; as an independent variable.

As usual, we assume that F(Epqo;P)is a generalized
function with respect to q,. This postulate is the starting
point to obtain another condition on the spectral functions
guaranteeing power behaviour for process (17). Applying
an odd test function f(q,) = q4g(q}) we evaluate

quof(qO)F(quO) =f dﬁif.dyH d72¢’(Ep}r,—Egrz;pe)qu%dg( qg

x 8(r2- g2 +yﬁ + y_zL-2q|IFH —2qlpl cosy) = (18)
0(q2-y?)
2 > 02 2 2 2 a7y
=2fdy_u1_l_dy” dr (I)(Epy,Epr spe) [ dqyg(qy) —— )
2_ 2
vaj-y
with
T2+ [l.f'*- (P—H + 1)2 +(k—1)(14(lH)
y = * ) (19)
24
and ( 5
1+k)
qi=q%+ k - ——
where the restriction (17) has been taken into account.
We note that
oo 2
hyD =fdadelad (a2=y D% = [ 9L glasye Ly (20)
1 0 va 4

defines a test function h(y?).
Therefore we can write

12

. > _ 2 - . -
[dqf(q) F(E pque) —quog(qg)[ejqo) F(quo,pe)] @1)
= dyx(E_ y;pe) h(y?),
where

D) 2+ (k=D (Lep

gt

o
, “ )
. 2 > 22 2
X(EPY’Pe)=fd#ifd#He(Y" T )(D(Epy,Ef]r,pe).
(22)
From equation (21) we conclude:
1. The absorptive part F(E qq;pe) has an integral
representation in terms of the symmetric part

1 - -
X = Efx(Epy;p) +x(-E y;p)}

qJ_ >

S X {E y;pe)
F(E q 43 pe) =26(q0) f dy—pyi .
p 9 _—
\/fI_szyz

2. A sufficient condition for asymptoticﬁ power
?;havmur at fixed angles, i.e., for F(Eyqo;pe) =FFy (qo;€)

(23)

lin E 7 [dyx,(E,yiplh(y?) = Fdyxaoly:)h(y . (24)

E -0

Condition (24) should be understood not as an alternative

to formula (13) but as a supplement. In the former case
we had a quasi-limit with respect to ﬁ and 72, whereas
equation (24) is a one-dimensional quasi-limit applied
to the reduced spectral function. Indeed, there exist spect-
ral functions fulfilling both conditions (13) and (24)
with « # B,e.g., (in case k=-1)

0(r2-E3?) Efui

[E2p(12 -1+ uf)] +4E%E (E 22 1)?

> 2 2 > *
(D(Epy,Epr ;Epe)=5(#”)

4o 2 2
¢ = Ep 8(py) 5([1.”)5(7 +p° =-1)
P as a functional in £ and r2,
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X = [«;_35(y) as a functional in y .

E 00 P
This has as consequence for the absorptive part that its
on-shell and off-shell asymptotical behaviour are diffe-
rent.

As a result of the condition (23) we obtain for the
absorptive part

(K jqgspe) =B Fo(qq:¢)
with the scaling function
97 X (y;g)

Fo(q; e) =2((q0)f dy —_,
oy @)

(k + 1)?
. .

2o q%+ k -
q..L qO

It is important to note that condition (24) is a neces-
sary and sufficient one. This follows from the fact that
equation (20) defines an one-to-one mapping from S onto
S.This guarantees the existence of the limit of the
right-hand side of formula (21) for all h(y2) ¢S provided
the q-limit for F(E p 40° pe) exists. For completeness we
list the inverse transformatlon to equation (20) and (23):

g(q%) =e(ﬁ):-[r(%)1—2_32_fdy2h(y2) (y2- qi)—l/? (26)
2 i

)
V) (27

It is remarkable that there is a one-to-one correspon-
dence between the absorptive part and some integral of the
DJL spectral function (even before taking the limit E -»oo)
in this special kinematical case (17).
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N R SN | o
_xs(Epy;p3)=[l (3)1 (—5)] quic(qO)F(qug;pg)(y“—q_L)—(;m.

5. ASYMPTOTIC BEHAVIOUR FOR THE ON-SHELL
PROCESSES II AND III (DISPERSIVE PART)

The foregoing considerations will now be extended

to the total amplitude ( R-product). For simplicity it is
assumed, thatits DJL representation is free of subtractions

(I)(Epu E o7 ,pe)

T(Q;5) == L/ difdr2 ’ (28)
" (q0+10) ~(q-p) -
In the special region (17) this takes the form
-, 1 9 - 2.9 > " 1
T(E qo;pe) ==[dy[ du dplfp(E w, Er%pe) [ dy (29)
p 7 i PP Ty 0 (gp) —qpeosy

and finally

X(E y;pe)
T(Eqq:p8) = f dy : , (30)
V{y—i0e (qg))2 ~ qi

where y has been defined in equation (22).

A careful handling of the cut properties of this square-
root leads to

T(E qgpe) —fdytix(Epy pe) —x(=Epy;pe) i+
11 Vy2-q? :
il E _y:pe -E_y;pe)
v [ apt =X EpyipS) X Hpyipe »

0 VIy=i0e (q¢))* = q] Vly+i0e(qgp)®~q]

or
oy (E y,pe) q-l-x (E y,pe)

T(E qo,pe)—zf dy——-—-——-—-—+°1€(q0)f —:—_—_— . 81
U Vy?i-q? Vai-y?



Comparing formula (31) with the well known relation
T=D+iFF we conclude that the dispersive part D is rela-
ted to the antisymmetric part of x . By the way, we note
that there exists an inverse transformation similar to
equation (26).

To obtain the asymptotic power behaviour for the
dispersive part too, condition (24) is not sufficient. There-
fore we demand a similar condition for the antisymmetric
part x ,. In principle yx, could show a power behaviour
different from that of x_.. Consequently in this case
absorptive and dispersive parts would behave differently
in the asymptotic region of fixed angle scattering. This
is a sharp contrast to the situation in off-shell fixed
angle scattering (process 1 considered in section 3).

For the special off-shell process II with & > 1, ho-
wever, we have according to equation (22), y (kK y,pe) =0
for y < 0, so that

X (I< v p(‘) = \’ ([‘ \ p(‘) = -3- (l‘: py;p;:’) for y > 0.

Thus absorptive and dispersive parts have the same
asymptotic power behaviour. This must be not the case
for the on-shell process III. Here Rel and ImT (which
can be identified with D and I in the case of identical
particles) may behave differently.

Let us assume for simplicity that both parts X, and
X, show the same power behaviour, e.g.,

X (Eyipe) = Ef'o(y;g% (32)
so that
T(E g:p8) = EFT)(q 48
(y; &) L Xy (33)

TO(qO;_é) =2 [ dy —X%__ + 2ie (qq) [ dy
i Vyr-d) 0 Vaj-y?

(compare argumentation leading to formula (16)).
It is interesting to discuss formula (33) at the
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boundaries of the physical region (compare eq. (17))

o0 e d S——)oo
q-i-_) t
= 0 > u fix .

1

In the first case (qu) Ty (q ;¢) becomes purely absorptive

- 1 L ovH
To(qo;e)z]((qo)[—\?__y-:z—_xso(y;ej}*(y )+ I )‘Z:qfu)m (34)
depending on the properties of y , for large y.
In the second case (qu) we get
aO(y’ ¢) 2\ -4
\q .e) =fim j dv—————- ,__x (y se)] #(y= ) 2| 200 (35)
Vy?- ql O Vvy? Ur

which reflects the properties of y, and yx, aty-=0.
For suitable spectral functions this expression may also
become pure absorptive (caseof t—u crossing symmetry).
There remain a discussion of the analytic properties
of TO(qO;E) which can be studied at the representation

XO(Y;g)
Tylqg: )=/ dy ;qf_:q%+k—%(l+k)2.
V{y=i0e(q))?- g (36)

It is crucial to note that the imaginary part ioe(qo) y of
y can be understood as an imaginary part of q, if the
integration extends over positive values of y only. This
takes place if we choose the region (17) with k> 1(compare
the definition (22) for yx ). In thiscase T (q, 2)is an ana-
lytic function in the qo-Plane with {)wo cuts starting

from +\/i—(1 -k . Physically the restriction )
corresponds to processes with masses q2 on shell and
q21 » ~o,wWhere ql/ = 2—(1 +k)Thus analytic properties can be
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proven for semi off-shell (k> 1) processes but not for the
on-shell process (k=-1).

It is quite reasonable that in cases.of analyticity the
dispersive and absorptive parts show equal asymptotic
behaviour (see considerations following equation (31)).

Finally a technical remark should be added. It concerns
the problem of subtractions. Here we have to use the sub-
tracted representation (15). A straight-forward calculation
analogous to that leading from equation (32) to equation
(33) gives (remember T=D + iF)

o0 (y,é)

Do(q;_é) =2 [ dyl Xa0 Y — - XE)()’,Z) t.

U Vyl-yf

In the case of one subtraction XE) is determined by

1 2 2
Q#J_('{y— ._‘Z;I(#l+ (u||+1) +(k-1 (/LH+ Ml

XE)()’;‘;) = fim -1——[fd;1‘”d;t2 oS

R e E[: 2p1y - uf ~( 1+u‘ | ¥~ (k-1) (y‘ \+D +1

-> 2 92 -
><(IJ(EPF, EPT ,pe) Jantisym. part.
For higher subtractions there is an explicit polynomial
dependence on q | in  xg.
Also in this case the dominance of the absorptive part
over the dispersive part will be recognized, if we do not
take care of the unknown polynomials with respectto qay-

6. CONCLUSIONS

The DJL representation allows theinvestigation of the
amplitude for on- and off-shell scattering at fixed angles.
A connection between the asymptotic behaviour of the
matrix elements of the current commutatorat x> 0, | Pl = oo
has been established (see formula (11b).).

On- and off-shell amplitudes can show a different
asymptotic behaviour because of the distribution character
of the functions involved. There is a mathematical pos-

sibility that dispersive and absorptive parts of the on-shell
amplitudes have different limits for fixed angle scattering.
This is not allowed in the case of off-shell amplitudes
where analytic properties can be proved.

For4an one-parametric manifold of processes including
the on-shell scattering the absorptive part dominates over
the dispersive part as s 5 o ,to—o ,— 50 if we do not
take care of subtraction polynomials. S

- We are deeply indebted to N.N.Bogolubov, A.A.Logu-
nov and M.A Mestvirishvili for useful discussions.

APPENDIX
Spectral Functions of Born Terms

Here we consider the spectral function of the Born
term

T = 1 N 1
(P+Q)2 —m2  (P=Q)2 —m?2

with the imaginary part

ImT = f(PO+QO)3((P+Q)2—m2) +e (QO‘P0)5((P‘Q)2—"‘2)‘

In the Breit system P=(E_,0,0,00 and choosing r?=1 we
can write

InT = ¢ Qg E )5 ((E+ 0))%-Q2-1) +e (Qq-E,) 8((Qy-E,)*-Q%-.
Following /3/ we have to calculate

> 2 i ] PR el —igu >
VEAD = - o FESACHEE T @, k7) ],

F(;]),kz) =F(k2+;],2,;;2), I::(xz,;) =€ (xO)ImT.

In the same manner as in/3/ we get
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T“(x) =—:’—COSE xoD(x, 1),

®(p,k2) =—i(27)" 2cos(E VkZ+ p? )9 _ [6(k2)J () 1,
9 k2

W (3 )\2)—-——1——5\—{00\ ) a2 (m——[e(k %) J oK) Ix

77211

x [ dppsin(up) cos(Ep\/k2+p2), u = |uf
0

and also

.2
W)= 2y (BB (50
d (u?)?

_m)fduo(wp —u®) J, 0 -
()()?)————J dk J, (kM) 3 (kvE2=u®) g, (0 11
a2 o P

For the investigation of the first term we use (see/7/
6.512. 3)

fJ (k\/F2 u?)J (I\)dk;()(l—F2+u )

P
SO that
2

s(a2) 2 _10(E2 u 2y (1-0(1- E D))=

J(U%
2

S5(2) 10 (E2 —u D 6(E2 - - 1 =

d(u)2

=8(A2)8'(E§-u2 -1)0(E§-u2) i

For the spectral function we then write
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‘P(u,)\2)=%\/EEG(Ei—u258’(E§ 2_1)5(A2) - \/EZB(A)X
2
« =L Lo(EL —u?) Ly (u2aD) ],
3 (u2)? N2

where

x (2, A2) = [ J kvE2-u?) J (kA J () dk.
0 P 0 1
Again using /1/ 6.578.3;-4;-8 we obtain

0 for 1+A<\/E‘2)—u2

0 )\—l>\/Eg—u2

1 0<>\<1_\/E2p_u2

y(u2,a?) A>1 A< \/Ef)—u2 +1

A> VEZ- w -1

— 11 -7 <yE2-u2<1+A -
P A< }\>1—\/E§-—u

A >\/E§—u2—1

2 2
)\2+Ep-u -1

V= acrcos

2)\\/E2p—u2

From general principles we expect as physical range
a > max{0, 1 - vE2-u2}.
This means that

¥ (1,A2) = X 1- A< VE2Z-uZ <1 +2A
7

(taking into account the derivative) covers the physical
range. Remark

21



arccosl = 0 for A=yE2-y2 -1,
p
= U2 .2
2aE2-u2 ] BI‘C‘COS]. =0 )\—\/Ep—u +1,
arc cos — - = :
2AVE2 -~ 42 arccos (-1)=# A=1 _\/E[Z’_u2,

arccos(-1)=n A=~14/E2—y2,
P

EPM

This means there is no discontinuity along the straight

lines A = \/Ez—u2+1and A= 1—\/E u?in the allowed range.
In the interior of this domain the argument of arccos is

smaller than 1. Now we will perform the quasi-limit of
(D(Epp,E T ,pe)
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CIJ(EPp,EPZT'z;pg) =E§‘P(Edl, Eir %pe),

fim EZ (IJ(E B E T ,pe)
E 50
= tim 1 2ESO(E2-Fu?) 8 (E2-ELE -1 8(E)) -

E, - o0

P

2
2 2. 9 2 2 22
- -—E O(E"r") — [9(E E )—————— (En ,Er )=
- P’ Ed 0(u2P p 0(EP2)72)X pH sEp”

= %0(1—;12)5'(1—#2)502) :

The second term gives no contribution. To see this,
we write the full expression with test functions ¢(r2) g(p2):

2
lim [ dpp g(u%fdrzqﬁ(r% 9(?2)————-[9(1-—p )— J x(E2 2 E2: ).
Lp—)oo (F-z) 672

For the quasi-limit differentiation and limiting proce-
dure can be exchanged.
So we can consider the limit B;m X(E2p2 E2 ).
We remark: 1. | x| <1 Fpoee
2. The support contracts to a line

1 TZ:W{»é

z-l ‘ 1‘*;.

P

J/ T2=y1-pu
~2 2 4
Co=~y1- -z
1-1 g
£
4
E .
1’1741

2_1 - '
T—E 1p?

Therefore this term glves no contribution. 23
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