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Automodel Behaviour of the Fixed Angle Scattering 
Amplitude in the Framework of the Jost-Lehmann­
Dyson Representation 

Conditions for asymptotic power behaviour of the 
scattering amplitude at fixed angles and some properties 
of the limiting expressions have been established. There 
is a connection between short distance behaviour of the 
product of currents and the asymptotics of a particular 
off-shell amplitude at fixed scattering angles. 

The investigation has been performed at the 
Laboratory of Theoretical Physics, JINR. 

Preprint of the Joint Institute for Nuclear Research 

Dubna 1975 

1. INTRODUCTION 

In the last time the principle of automodelity /I/ has 
been applied successfully to high-energy scattering at 
fixed angles. If supplemented by assumptions about the 
quark structure of hadrons, automodelity allows one to 
understand the well known power behaviour 

d a_ "' _l_ f ( .!.... ) ; s , I t I -> oo , ~ fixed ( 1) 
dt sm s t 

observed in elastic hadron scattering 121. 
It is desirable however, to give parallel to this 

intuitive argumentation an investigation on the basis of 
general QFT, i.e., in the framework of the DJL repre­
sentation. For deep inelastic electron-nucleon scattering 
such an investigation has been performed in the basic 
paper/3/ and continued in a series of subsequent ones /4, 5/. 
The DJL representation has also been applied to the 
study of inclusive scattering amplitudes /6/. 

The questions we are concerned with in the present 
note are similar to those studied in connection with deep 
inelastic scattering. So conditions in terms of DJL spect­
ral functioms are formulated which are sufficient (and 
necessary, if a 3 -dimensional DJL representation can 
be applied) for automodel behaviour at fixed scattering 
angles. We compare on-mass-shell and off-mass-shell 
amplitudes with respect to asymptotic behaviour and 
establish some properties of the corresponding automodel 
or scaling functions. Finally, because scattering at 
fixed angles like deep inelastic scattering involves large 
momentum transfers one could ask if there are, also in 
this case, properties in x-space uniquely related to the 
auto model behaviour. 
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Whereas particular off-shell processes are found 
to be correlated with specific small distance behaviour 
of the product of current operators, the question must be 
answered negative for on-shell processes. 

2. KINEMATICAL CONDITIONS FOR FIXED 
ANGLE SCATTERING 

It is useful to consider simultaneously the following 
three processes as s _, oo , t -• - oo 

q~}(q1 ~\ 

e_ I P2. P.r Jr P2 

q1J=(qL 
P.1 1ii p2. 

Wavy lines denote virtual particles with masses tending to 
infinity in a particular manner. We choose the Breit 
system to write 

p = ; ( p l + p 2) 

Q = ~ (ql+ q2)' 

2 
(P + Q) ' s 

2 2 
P = m ' 1,2 

-> 
(E , 0 ), !'\ = ( q 2 - q l ) = ( 0 ' 2p) ' 

2 2 2 
t = !'\ = - 4 (E - m ) 

p ' 

q~,2=(Q:;::~i'\) 2 , (2) 

E = VP 2+ m 2 
p 

In every case scattering at fixed angles means P fl_, oo, 

~ fl ~ oo and Q fl -• "" so that a convenient parametrization 
1s given by 

Q = E q" ' qfl fl P r 
fixed. (3) 

4 

In other words, the four components of the dimensionless 
fixed vector q fl play the role of scaling parameters. The 
physical range for qfl is determined from t::; o , Q ~ o , 
spectrum conditions of the absorptive part ((P ± Q) 2~ m2, 

E0±Q0 ~m) and mass shell conditions (q 2 = m 2 and q 2 = m2 ) • 
1 1 2 2 

Process Physical range for qfl 

I ( 1 + q 0) 2 - q 2 > 0 qo::_ o 
(4) 

II q 2- 1 = 2q II = o qo ~ o 

Ill q2 = 1 qll = 0 q > 0 o-

( qll , q.1_ denote the components of q with respect to -P ) 
For one-shell process III one free variable remains, 
say q , which is related to _§_ by~=- 2

1 (I+ q ) 
0 t L 0 

qo 

1 !(l+q 0)2-q-+<z~o.q 0 .?0I 

qj_ 

Physical regions for the processes I, II, III. 
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Let us note that the endpoints of the physical range 
q0 =l(case III) and q 0 .... oo belong to th.e scattering at 
fixed u and J:.... .... 0 respectively. 

Finally we fuention the inequality for the absorptive 
parts 

.... 2 
IF(Q;p) I :::F(Q+; 0) F(Q_; 0)' 

(5) 

p + Q = p l + Q+ = p 2 + Q-' 

which relates non-forward scattering to forward scat­
tering. 

For on-shell processes at high energy s this inequ­
ality is in accordance with the well known fact that fixed 
angle scattering decreases more strongly than forward 
scattering. In the off-shell case we obtain the same rela­
tion between the process I and the corresponding forward 
process in the Bjorken region (which would measure the 
light cone singularities of hadronic currents). 

3. ASYMPTOTIC POWER BEHAVIOUR AND 
CONDITIONS ON THE DJL SPECTRAL FUNCTIONS 

A general framework for a discussion of asymptotic 
power behaviour at fixed angles for on- and off-shell 
processes is the DJL representation. On this b.asis it is 
also possible to study the x-space properties (pro­
perties of the product of current operators) which could 
be determined from fixed angle scattering. The general 
problem with nonidentical currents demands the investi­
gation of the four-dimensional DJL representation. For 
simplicity we restrict ourselves to the case of identical 
currents where a three-dimensional representation can 
be applied. 

6 

Let \IS begin with the absorptive part* F ( Q:p) given 
by 

.... .... 2 2 .... .... 2 2.. .... 2 .... 
F(Q;p) =dQ )JdufdA o(Q -(Q-u) -A J'l'(u,A;p), 

I~ I :; E p ' (6) 

A > max I 0 , m - y E 2 - 1. 2 I . 
- p 

.... -> 
We introduce the scaling variables Q 

11 
= E qfl' 

e'2 = l and write P 
p pe ' 

~ = E ~' p 

A2=E2r2 
p ' 

.... 2-> -3 .... 2 2 .... 
'l' ( u , A ; p ) = E <1> ( E 11 , E r ; pe ) . 

p p 

Then 

(7) 

F(E q;pt;)=< (q
0
)Jd/ldr2o(q

0
2-(q-/n 2 -r 2)<t>(E iU= 2r 2 ;pe'). (8) 

p p p 

It is important to have a precise definition for the fixed 
angle limit EP .... oo. The basic fact that F (Q; phs a genera­
lized function with respect to Q 11 indicates that one has 
to deal with a limit of functionals. We apply a quasi­
limit which is a generalization of that used in I 4 I . 
In this sense asymptotic power behaviour 

F ( E q; p-;;) = E a F 0 ( q; e') 
P E .... oo P 

(9) 
r 

will be understood as 

*Here only the first term of the Jost-Lehmann repre­
sentation is investigated. 

-> -> 2 2 -> 2 2) ( (-> 2 ...._ QOm r> 2 """") F(Q,p)=dQJJduJdA o(Qo-(Q-u) -A 'l' u,A ,pJ+ Tl\U,A ·P'' 
The second term can be treated analogously. 
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fim ~Jd~F(Epq,pe') f(q)=Jd
4
qF0(q;e') f(q), f(q)~S 4 • 

EP-- E P (10) 

By Fourier transformation this equation can be re­
written in x -space as 

l 4"" "" 4= = 
eim --

4
-Jd xF(2--.;pe') f(x)=JdxF

0
(x;e') f(x), (lla) 

E -+""Ea+ Ep 
p "" p .... "" -> 

where F ( x; pe) and F
0

( x; e) are the Fourier transforms 
of the absorptive part F ( Q; p) and the scaling function 
F0 (q;~) respectively: 

-( -->) l 4 -iQx --> 
F x ; pe = - 4 J d Q e F ( Q ; pe) , 

( 217) 

- ( -->) 1 J 4 -iqx . ( -->) F
0

x;e =-- dqe f 0 q;e. 
(217)4 

Formula (11a) may be used to derive a condition for the 
spectral function <fl. Therefore we apply the Jost-Leh.:: 
mann formula determining the spectral function <fJ from F 

IJI( .... ,\2 ..... ) =E-3<1l(E2-. E2 ..... ) u, ,p p pfl' pr,pe 

=2_j_ ~IO(A2)Jdx2JO(,\y'x2)fd3x/iE;X' F(x,x2;p)}, 
17 aA. o 

- .... 2.... - .... 
F(x, x ;p) = f (x

0
) F(x; p) , 

(12) 

and study the functional 

J d~J dr2 <1l( E piL, E~r 2 ; p~') £(~,, 2) 

( f: test function). Because of the fact that 

f( ;, x2) =I djl'J dr2e ¥it ~-2 10 ( r 2) J
0 

(ryxzl l £(~', r2) 

Jr -> 2/4 1 
is a test function with respect to x and x 'we get 
the functional 

2 -->- -;z X 2 --> - --> 2-J dx fdxF(-,-
2

;pe) Hx, x-J = 
Ep E p 

4"" X --> -_, 2->2 
= J d x F (- ; pe) x0 f ( x, x 0- x ) . 

EP 
8 

Now it. is obvious that equation (lla) is equivalent to the 
existence of the quasi-limit for the spectral function 

. l .... ,2 2 ..... .... 2--> 
q-f1m -<l>(E fl,E ,r ;pel= <ll 0 (f1,T ;e). (13) 
E ->oo Ea P 1 

On ttfe oth~r hand, postulating the q -limit (13) for the 
spectral function, the generalized power behaviour (10) 
can be derived: 

, .... a ( --> 
q- Pim F( E q; pe) = E F 

0 
q; e) . 

F P P 

Notic~Ptt7'at the integral 

(14a) 

Jd 4q£ (q0 )o(q~-Cq -~)
2 

-r
2

) f(q), f(q).,:: S
4

, 

defines a test function. The automodel or scaling func­
tion F 0( q;-;; )fulfills the representation 

.. ( .... .... 2 2 .. , .... 2 2 .... 2 .... 
f 

0 
q ; e) = f ( q 

0
) I df1 dr o ( q - ( q -11 ) - T ) <fJ 

0 
( ll , r ; e) , 

-· 2 (14b) 
ill I < 1 ' T > 0 . 

For illustration we investigate the Born terms: 

.... 2 2 ? 2 
E( Q; p) = ( ( Q o+ P0 ) o ( ( Q + P) -m ) -u (Q 0- P0 ) 8 ( (Q -P)- -m !, 

fim E
2
F(E q;peJ =£ O+qJ8(0+qJ 

2-q l +f (q 0-1}8(0-q~ 
2-q l, 

E ->oo p p 
p 

- X --> -2 -2 2_ 
fim F(-;Epe) EP = (217) £ (x0 ) cosx 08(x J, 
E -.oo E P p 
IJI(t; A2· .... p)= 1_E !e(E 2-~ 2)o'(E 2-;;' 2 -1)8(AZJ-

' ' 17 p p 

2 a2 2 .... 2. a .... 2 
-0(/..) [O(E -u J-x(u,A )]!, 

a (u 2 ) 2 P a>.. 2 

5 -> 22 .... 2 2 ->2 2. e im E IJ1 ( E IL ' E T ; p, e) = ;-e ( l - f1 )8, ( l - f1 )8 ( T ) • 
E .... oo p p p 

p 

Let us finally discuss the behaviour of the total am­
plitude (retarded commutator). As usual, one has to be 
more careful with the investigation of the R-product 
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(problem of subtractions with respect to A 2 ). In addition 
to condition (13) we must assume that some finite number 
of subtractions is sufficient for the convergence of the DJL 
representation for all values of t ~ 0. In other words we 
assume 

N = sup n ( t) < oo , 

- oo < t s;o 

where n ( t) denotes the number of subtractions for fi­
xed t • Note that equation (10) gives no restrictions on 
the large ,\2 behaviour of IP(~,i\2; p) at t fix. If further-
more 

--> 2 -~ 2 k 
<I> (11,r ;e) 

2
"' (r) , 

r --> oo 

we choose 
n = maxlN;[ k + l]l, 

so that a representation with n subtractions 

--> l --> 2 --> --> 2 2 n 
T(Q;p) =--Jdu[ Q 0- (Q-u) +F] x 

TT p 

2 --> 2 -· -> ( 15) 
X j' -~- _ _lli_L~--J.?) + p ( Q; p) 

? 2-n 2 --> --> 2 2 n 
(A-+EPJ Q 0 -(Q-u) -A+iO·dQJ 

is valid for all values of t. 

The coefficients of the polynomial Pn 
functions of the variable p. 

If we want to understand the limit EP ___, oo 

of a functional 

J d 4
qT(E q;peJ f(q), 

p 

are unknown 

in the sense 

then the representation (15) leads to the functional 
--> 2 --> 2 2 --> --> 2 J d f1 J dr <I> ( E pfl , E P r ; pe ) g ( 11 , r ) , 

where g ( ,7, r 2) is infinitely differentiable and vanishes 
as some inverse power for r 2 --. + oo :!'his is sufficient for 
the existence of the limit for T( E P q; pe) : 

fim T( E q; pe') = E~0 ( q; e') + P ( E q; E {{) , 
E -->"" q p n p p 
~p 

(16) 

10 

--> 2. --> 
oo 2 <I> o< 11 , r , e ) 1 -> _,. --> 2 ]nJ dr 

TO(q;;) =-;-fdl1[q~-(q-11) +1 0 (r2+l)n q~-(q-ii) 2_ r2+ iO.£ ( qr} 

In any case the subtraction term becomes polynomial in 
q multiplied, however, by unknown powers of E P • 

Let us summarize the essential properties of the 
limiting procedure for the off-shell processes: 

1. Condition (13) is obviously a necessary and suffi­
cient condition for the generalized power behaviour of 
process I. 

2. The limit (14) of the absorptive part itself fulfills 
a DJL representation where, however, the spectrum of 
the intermediate states contains massless states. 

3. F0 ( q; ~) is a generalized function with respect 
to q . Therefore the asymptotic behaviour (14) must not 
necessarily be valid on the restricted regions corres­
ponding to on-shell processes II or III. 

4. The limit in equation (11) is the Qatural generali­
zation of the classical limit x 1L -• 0 for F ( x: p) (whereby 
the relative momentum p tends to infinity too). Therefore 
this relation constitutes a connection between the asymp­
totic fixed angle (off-shell) amplitude and the matrix ele­
ment of the current commutator near x

11 
= 0 

n· l j[•( x ) •( X )]I l Jd -iqxr.' ( -->) urn -- < p
1 

j -- ,_) - -- 1 p > = --
4 

qe r q;e . 
E .... oo E a+ 4 2E P 2E P ( 2rr) 

p p (llb) 

4. ASYMPTOTIC BEHAVIOUR FOR THE ON-SHELL 
PROCESSES II AND III (ABSORPTIVE PART) 

A separate investigation of on-shell scattering is 
needed because we have to expect different asymptotic 
power behaviour for on-shell and off-shell processes. 

The following considerations deal with one-variable 
processes including case III and special cases II (see 
eqs. (4)) which are determined by 
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q2 = - k ' 2q11 = - ( l + k ) ' k - constant 

This means s .... oo , t .... - oo, q 2->-00 
l ' 

..§... 

t 

q2 2 
_I = lo + k) , q

2 
fixed • 

t 2 

(17) 

Let us choose q0 as an independent variable. 
As usual, we assume that F ( E pqo; phs a generalized 

function with respect to q 0 • This postulate is the starting 
point to obtain another condition on the spectral functions 
guaranteeing power behaviour for process (1 7). Applying 
an odd test function f(q 0 ) = q0 g(qG) we evaluate 

f dqJ(qJ F(Epq 0) = f dhf.di'LJJ dr2<1>(Ei,E;r 2; pe) f dq~( qijl x 

xo(r2-q2+J'Ln+/1i -2qlli'LJJ -2<Ili1J cosy)= (18) 

2 .... 2 2 2 2 e < qi- Y 
2 

) 
=2fdi1Jfldi'LJ] dr <I>(Epi'L'Epr ;pe)fdq0g(q0) ----, 

v q2- y2 
1 

with 

r 2 + J'l + + ( i'L]j + l ) 2 + ( k -1) (l '1/Lj\ ) 
y = -------- (19) 

2J'l+ 

and 
q 2 = q 2 + k - ( l + k) 2 
+ 0 4 

where the restriction (17) has been taken into account. 
We note that 

""' ') 

h(y2) =f dq~g(q~) (q+2-y2)~% = f da g(a+y2+ il+k)- -k) (20) 
0 ya 4 

defines a test function h ( y2) • 

Therefore we can write 
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l 

' 

' ' 

f dq 0f(q0) F(E pq<ip;) = f dq~g(q~[ f (q·J F(Epq
0
;p;)] 

=f dyx(EPy;p;) h(y 2), 
(21) 

where 

.... 2 J'Lt+.~.Jtl)2+(k-l}(l+fiJJ) .... 2 .... 
x< E y; pe )= fdl'll J dfi]! 8(v-·- -------- )<fJ(E fl,~r,pe). 
'p +I. 2p p p 

+ (22) 
From equation (21) we conclude: 
1. The absorptive part F(EPq 0 ; p-;;) has an integral 

representation in terms of the symmetric part 
l .... .... 

x = -lx<E y;p) + x<-E y;p) I 
s 2 p p 

F(E q ;pe') 
p 0 

qJ. X s( E ~ ; pe') 
=2dqJ f dy--!..._-

0 
(23) 

yql-:-Y2 

2. A sufficient condition for asymptotic power 
behaviour at fixed angles, i.e., for F(Epqo;pe'),E~Fo(qo;e') 
is 

-!3 .... 2 .... 2 
fim E fdyx5 (Epy;pe)h(y) =fdyxso(y;e)h(y) • (24) 
E ->oo 

p 

Condition (24) should be understood not as an alternative 
to formula (13) but as a supplement. In the former case 
we had a quasi-limit with respect to p and r 2, whereas 
equation (24) is a one-dimensional quasi-limit applied 
to the reduced spectral function. Indeed, there exist spect­
ral functions fulfilling both conditions (13) and (24) 
with a f, f3,e.g., (in case k =- l) 

.... 2 2 .... . 8(r2- E-2) 
<I>(E /l.E T ;E e)=o(i'LJJ) p 

P P P [ E2 (r 2 - l + J'lj)] + 4E211l (E 2!'l1 + 1)2 
p 

Ei!'Ll 

-4 .... 2 2 
EP o(J'L..L) o(I'LII)o(r + 11 -1) 

E .... oo . .... 
P as a functional in 11 

<I> 

and r 2, 
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-3 
x "" ~<= o(y) 

E --.oo P 
as a functional in y • 

p 

This has as consequence for the absorptive part that its 
on-shell and off-shell asymptotical behaviour are diffe­
rent. 

As a result of the condition (23) we obtain for the 
absorptive part 

11 
F ( E Pq 0 ; p;) '" E P F 0( q 0 ; ;) 

with the scaling function 

__, ql. X ( y; ;) 
F

0 
( q ; e) = 2 < ( q 

0
) f dy ----

0 v q2- y 2 
1 

(25) 

qi = q ~ + k - ( k + l )2 
4 

It is important to note that condition (24) is a neces­
sary and sufficient one. This follows from the fact that 
equation (20) defines an one-to-one mapping from S onto 
S. This guarantees the existence of the limit of the 
right-hand side of formula (21) for all h ( y2 ) ~ S provided 
the q-limit for F( F:P q 0 : pe') exists. For completeness we 
list the inverse transformation to equation (20) and (23): 

g(q2
0
) =e(ql2)=-[I'(;)J-2_a_fdy2h(y2)(y2-q2)-I/~ c26) 

- a 2 1 qj_ 

y1y2 Xs ( Epy; peJ = [I' ( 21) r (- ~ ) f If dqi < (qo) F (EP q~;peJ (y2- q!J-:/2. 

(27) 

It is remarkable that there is a one-to-one correspon­
dence between the absorptive part and some integral of the 
DJL spectral function (even before taking the limit E p__,"") 
in this special kinematical case (17). 
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5. ASYMI?TOTIC BEHAVIOUR FOR THE ON-SHELL 
PROCESSES II AND III (DISPERSIVE PART) 

The foregoing considerations will now be extended 
to the total amplitude ( R -product). For simplicity it is 
assumed, that its DJL representation is free of subtractions 

T(Q;p) =- .!..JdjTfdr2_<P(EP~'E2Pr2;p;) 
TT ( q

0 
+ i O) 2 _ ( q _ ~ )2 _ r 2 

(28) 

In the special region (17) this takes the form 

-~ 1 2 --> 2 2 --> TT 1 
T(E q d pe) =-I dyJ d11ll d11 

1 
<P (E 11, E r ;pe) I dy·------ (29) 

P rr P P o y-i0<(q0)-q1cosy 

and finally 

x(E"y;pe') 
T ( E 

. ptr) =I dy ( ) ) 2 - ql oqo, y(y-iO< qo 
(30) 

where x has been defined in equation (22). 

A careful handling of the cut properties of this square­
root leads to 

T(EPqrype) =I dy 
1 

lx(Epr;pe) -x(-~y; pe) l + 
q-t,. yyLq2 . 

ql x(Epr:re) 
+I dyl ___ 

2 
2 

0 v ( y - i 0 f ( q 0 ) ) - q.L 

X ( -Epy; pe') l 

v (y + iodq Qi )2 - ql ' 

or 

oo X (E y;p;) ql.x (E y;pe') 
T(E q 0 pe') =2 I dy a P +2idq

0
)f s P • (31) 

p qj_ v y 2 - q 2 0 \1 q 2 - y 2 
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Comparing formula (31) with the well known relation 
T=D+iF we conclude that the dispersive part D is rela­
ted to the antisymmetric part of x . £y the way, we note 
that there exists an inverse transformation similar to 
equation (26). 

To obtain the asymptotic power behaviour for the 
dispersive part ,too, condition (24) is not sufficient. There­
fore we demand a similar condition for the antisymmetric 
part X a· In principle X a could show a power behaviour 
different from that of x s . Consequently in this case 
absorptive and dispersive parts would behave differently 
in the asymptotic region of fixed angle scattering. This 
is a sharp contrast to the situation in off- shell fixed 
angle scattering (process I considered in section 3). 

For the special off-shell process II with k 2 1 , ho­
wever, we have according to equation (22), x ( E y; pe') ~ o 

p for y < o, so that 

-) ) I -) 
v ( 1<: v: pe) ~ \' ( E ~ . Jll') = - v n: ''"JlC) for v :> 0 . /\ a P' . s p· ' 2 /\ I>'' , 

Thus absorptive and dispersive parts have the same 
asymptotic power behaviour. This must be not the case 
for the on-shell process III. Here He T and ImT (which 
can be identified with D and I' in the case of identical 
particles) may behave differently. 

Let us assume for simplicity that both parts x a and 
x s show the same power behaviour, e.g., 

X ( E pY ; p;) ""' E ~X o ( Y ; ~') • 

so that 

T < E pq 0 ; pe) "' E ~·0 < q 0; e) , 

__. oo x < r; e) q .1.. x < r ; e) 
T 0(q 0 ;e) =2 f dy-aO --+ 2iE (q 0) J dy --==sO=== 

q+ v y2- ql_ 0 v q i- y 2 

(compare argumentation leading to formula (16)). 

(32) 

(33) 

It is interesting to discuss formula (33) at the 
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boundarie.s of the physical region (compare eq. (17)) 

s 
q .L--> 00 .... --> 00 

t 

q.l = 0 .... u fix . 

In the first case ( <J_J.--. oo) T0 (q ;eJ becomes purely absorptive 

--> . ( [ l ( ~ ] ( 2 )-Y, To(qo;e) =If qo) --=-X o y;eJ * Y I 2· 2 
I 2 s + } ='I -~= \ y 1 

(34) 

depending on the properties of Xso for large y. 
In the second case ( q.L -.0) we get 

--. oo 2Xao(y;e') 1 ., " y, 
~q ;e) =fim j dy +i< (q )l-=x (y;e)] *(y-)- 2

\, , (35) 
0 0 I ? ? 0 .I ? sO + 'y2,.,12.,o 

vy--ql vr + 
which reflects the properties of x a and x s at y - 0. 
For suitable spectral functions this expression may also 
become pure absorptive (case of t -u crossing symmetry). 

There remain a discussion of the analytic properties 
of T

0 
( q 

0
: ~) which can be studied at the representation 

T
0 

( q 
0

; e) = J dy 
X o< Y; e') 

2 2 y(y-iOdq 0)) -q-1-

2 2 l q+=qo+ k- 4(l+k)2. 

(36) 

It is crucial to note that the imaginary part iOE (q ) y of 
y can be understood as an imaginary part of q 0 ° if the 
integration extends over positive values of y only. This 
takes place if we choose the region (17) with k..? l(compare 
the definition (22) for x ). In this case T0 (q, e) is an ana-
lytic function in the' q0 -plane with two cuts starting 

l 2 
from ±v 4(1 + k) - k · Physically the restriction (17) 
corresponds to processes with masses q~ on shell and 
q2

1 
--. - oo, where qi It = ~ (l +k):I'hus analytic properties can be 

17 



proven for semi off-shell (k :::_ l) processes but not for the 
on-shell process (k = -1). 

It is quite reasonable that in cases.of analyticity the 
dispersive and absorptive parts show equal asymptotic 
behaviour (see considerations following equation (31)). 

Finally a technical remark should be added. It concerns 
the problem of subtractions. Here we have to use the sub­
tracted representation (15). A straight-forward calculation 
analogous to that leading from equation (32) to equation 
(33) gives (remember T = D + iF) 

"" xo(y,e) ... 
D 

0 
( q ; e ) = 2 J dy I a ---=::: - x ~ ( y , e ) I. 

q+ VY 2 - Yi 
In the case of one subtraction x~ is determined by 

... I 2ftfA"r--2~-l (rt£+0-II+D2+<k-D <vwmJ 
x'(y;e)= eim -)Jd/llld/12 --------x 

o F Ef) 1 2 ,r-->00 r 2/lJ_Y-/1 -o+/1
11

) -<k-n(p.wn+l 

-> 2 2 -> 
x <I> (E /1• E r ; pe ) J • 

P P antisym. part 

For higher subtractions there is an explicit polynomial 
dependence on q -l- in x 0. 

Also in this case the dominance of the absorptive part 
over the dispersive part w-ill be recognized, if we do not 
take care of the unknown polynomials with respect to q-l-. 

6. CONCLUSIONS 

The DJL representation allows the investigation of the 
amplitude for on- and off-shell scattering at fixed angles. 
A connection between the asymptotic behaviour of the 
matrix elements of the current commutator at x11 ... 0, I pI _, oo 

has been established (see formula (llb).). 
On- and off-shell amplitudes can show a different 

asymptotic behaviour because of the distribution character 
of the functions involved. There is a mathematical pos-

18 

sibility that dispersive and absorptive parts of the on-shell 
amplitudes have different limits for fixed angle scattering. 
This is not allowed in the case of off-shell amplitudes 
where analytic properties can be proved. 

For an one-parametric manifold of processes including 
the on-shell scattering the absorptive part dominates over 
the dispersive part as s .... "" , t -.-"" , ...L ... 0 if we do not 

s take care of subtraction polynomials. 

, We are deeply indebted to N.N.Bogolubov, A.A.Logu­
nov and M.A.Mestvirishvili for useful discussions. 

APPENDIX 

spectral Functions of Born Terms 

Here we consider the spectral function of the Born 
term 

T = l + 
(P+Q )2 _ m2 

with the imaginary part 

l 

( P-Q )2 -m2 

ImT=dP +Q )o((P+Q)2-m2)+t (Q -P )o((P-Q)2-m2), 
0 0 0 0 

In the Breit system P=(Ea,O,O,O) and choosing rif=l we 
can write 

2 ->2 2 .... 2 
lmT = dQ0+EJ3((Er+ Q0 ) -Q -l) +dQ 0-EP)o((CJo-EP) -Q -Th). 

Following 131 we have to calculate 

'l' (~'A 2) = _i _ _ a_-Ie (A 2) F dk 2Jo (kA) I d1] e-i~ t7 <ll(q, k 2)] ' 
2 rr a A2 0 

F(~,k2) =F(k2+;}2,;j2), 2 .... 
F(x ,x) =t: (x

0
)ImT. 

In the same manner as in 13/ we get 
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f:' ( X ) = - ! cos Ep X 0 D ( X ' 1) ' 

<fJ ( p' k2 ) = - i ( 2 TT )- 2 cos ( E v_k_2_+_p_2_) 2_[ e ( k 2) J 0 ( k) ], 
a k2 

'l'(\i,A2) = _l __ a_!O(A2)fdk2Jo(kA)~[ O(k2) Jo(k) ]x 
172 u aA2 0 ak 

DO 

x f dp p sin (up) cos ( E yk 2 + p 2) , u = IIi I 
0 p 

and also 

- 2 
IJI ( u, A2 ) = ..f..yl•:2 ____i__-10 ( E 2 -u 2) [ o (A 2 )-

TT P iJ (u2)2 

-o(A2)f""dk.J 0 (kv~~:-7) J 1(k)­
o 

2 iJ ':" 2 2 -O(A: )-j dkJ
0

(kA)J
0
(kyE -u )J

1 
(k)Jl. 

iJA 2 0 p 

For the investigation of the first term we use (see 17 I 
6.512.3) 

"" f J ( k yF: 2- u 2 ) J ( k) dk = () ( l - F: 2 + u 
2 ) 

0 0 p I p 
so that 

2 a 2 2 2 2 2 
o(A ) --IO(E -u ) 0-0( 1-EP +u ) l = 

a(u2) 2 p 

2 a 2 2 2 2 2 =D(A ) ---IO(E -u )O(E -u -l) l = 
a(u2)2 P P 

=D(A2 )8'(E 2-u 2 -l)O(E
2

-u
2
). 

p p 

For the spectral function we then write 

20 

'l'(u,A2 ) = 1-v""E2e(E 2 -u~o'(E 2-u 2 -l)8(A2 )- .!yE 20(A 2
)x 

TT P P p TT p 

2 a [ < 2 2 a < 2 2)] X--- e Ep-u )--xu ,A ' 
a(u2)2 aA2 

where 
DO ---

x<u2,A2) =J J
0

(kvE!-u 2)J
0

(kA)J 1(k)dk. 

Again using /I/ 6.578.3;-4;-8 we obtain 

0 for 

0 

l 

y("2,a~) ~ 
v -
TT 

----
l + A< \IE2- u2 

p 
---

A -1 > yE2- u2 
p 

0 < A < l - yE2 - u 2 
p 

IA>l 

---
11-A.I <yE2 -u2<l+A. 

P J A< l 

, 2 E2 2 
1\ + -u - 1 p 

v = acrcos -------

2AyE2-u2 
p 

A< vE 2
-u

2 + l 
p 

A> yE2 - u2 - l P __ _ 

>.. > l - yE 2 - u 
2 

p 

A > yE 2 -u2 -1 
p 

From general principles we expect as physical range 

a > max I 0, 1 - ·.J E 2- u2 l . - . 
This means that 

X (u,A2) = ~ 
TT 

11 - A I < y E2- u2 < l +A 

(taking into account the derivative) covers the physical 
range. Remark 
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A2+E2-u2-l 
arc cos __ _p_ __ _ 

2AyE2- u2 

).:-jE~.:~l"-1 

arc cos 1 = 0 for A=· 'E 2_u2 -1 
v p ' 

arc cos 1 = 'o 

arc cos (-1) = TT 

arc cos (-1) = TT 

E
1
;t1 

0 

2 2 A=yE -u + 1, 
p 

A=l-yE2-u2 
p ' 

A=-1 . 'E2-u2 
-y p ' 

~~ p 

)..: 1-(Ep-uz.' 

This means there is no discontinuity along the straight 

lines A= vE~-u2 ± 1 and A= l-vE~-u 2 in the allowed range. 
In the interior of this domain the argument of arc cos is 
smaller than 1. Now we will perform the quasi-limit of 
¢ ( E II E 2 

T 
2 . pt;) : pr' P , 

22 

( 2·2 ->) :t. .. 22-> ¢ E 11• E r ;pe = E ~'I' ( E JL, E r ; pe) , 
p p p I' p 

e. 2 ( 2 2 ->) 1m E ¢ E f1,Epr ;pe = 
E 

p p -> 00 
p 

= eim !.lE68(E 2-E 2f12) o'(E 2-F'. 2112 -1) o(F' 2r2 ) 
E 

1T p p p p -p -p 
Jp-> 00 

2 
_ 1_E6 O(E2r2) _l_ a [O(E2-E2 2) a x(E211 2,E2r2)l= 

" P P E: a( 11
2 )Z P rf a(E~r2 ) P P 

= 1. e < 1-11 2 ) o '( 1 - 11 2) o < r 2) . 
1T 

The second term gives no contribution. To see this, 
we write the full expression with test functions ¢ ( r2) g (f1 2) : 

2 

rim J d/111 2g( 11 ~ J dr 2¢ ( T~ e (r 2) _a--[ e 0-!1 2)..£__ X (E2112 ,E 2r,]. 
E ->00 a (f12) 2 ar2 

p 

For the quasi-limit differentiation and limiting proce­
dure can be exchanged. 

So we can consider the limit e im x ( E211 2, E 2r 
2) . 

We remark: 1. I xI < l F:P ->OO P P 

2. The support contracts to a line 

t 
1+1 ./ 'r2. = -/-'f-u2' + ~ tz ~ /1 , - Ep 

_{ t.' 1'2 
:: 11-.1"' 

2.'-1. t'~: -/-1 -/" Ep 
1-~ 

Ep 
-1. 
~-

l1~z/ 

..,...2- "" I ... ' II. - - - -t-~~ E,. r· 
Therefore this term gives no contribution. 23 



REFERENCES 

1. B.A.Mameeee, P.M.MypaOJIH, A.H. TaexeAu03e. llpo6Ae­
Mbl rjJU3UKU :JAeMeHmapHbiX 'IQCIIIUfl U QIIIOMH020 JIOpa, 
3f/AJJ, m. 2, ebm. I, c. 2 /1970/. 

2. V.A.Matveev, R.M.Muradyan, A.N. Tavkhelidze. 
Lett. Nuovo Cim., 7, 719 (1973). 
S.J.Brodsky, G.F.Farrar. Phys.Rev.Lett., 31, 
1153 (1973). 

3. H.H.EozoA106oe,. A.H. TaexeAU03e, B.C.BAaOuMupoe. 
TMcP, 12, 305/1972/. 

4. E.H.3aebJtAoe. TMcP, 17, 178/1973/. 
5. 3.But~opeK, B.A.Mameeee, j{.Po6awuK, A.H. Taexe­

AU03e. TMcP, 16, 315/1973/. 
3.But~opeK, B.A.Mameeee, )1.Po6awuK. TMcP, 19, 
14 /1974/. 

6. A.A.JlozyHoe, M.A.MecmeupuweuAu, B.A.Ilempoe. 
IlpenpuHm H4>B3, CT4> 74- 76, Cepnyxoe I 1974/. 

7. H. C.FpaowmeuH, H.M.PbiJKUK. Ta6AUI.Ibl uHmezpaAoe, 
cyMM, pJIOoe u npou3eeOeHuu. MocKea, 1963. 

24 

Received by Publishing Department 
on October 27, 1975. 

Conditions of Exchange 

The preprints and communications of tbe Joint Institute for 
Nuclear Research are distributed free of charge on tbe mutual 
exchange basis to tbe universities, institutes, libraries, scientific 
groups of more than 50 countries. 

Besides tbe regular distribution on tbe exchange basis, tbe 
Publishing Department fulfils annually about 4000 individual re­
quests for our preprints and communications. The index of our 
publication must be obligatory indicated in such requests. 

Addresses 

Letters on all tbe questions concerning the exchange of publica­
tions as well as requests for individual publications are to be sent 
at tbe address: 

Publishing Department 
Joint Institute for 
Nuclear Research 
Head. Post Office, 
P.o: Box 79 
101000 Moscow, 
U.S.S.R. 

We kindly ask to send all the publications on tbe exchange 
basis and also free of charge subscriptions to scientific journals 
at the address: 

Scientific-Technical Library 
Joint Institute for 
Nuclear Research 
Head. Post Office 
P.O. Box 79 
101000 Moscow, 
U.S.S.R. 


