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1. INTRODUCTION' 

The usual source of information about the electromag
netic structure of nuclei is the elastic electron scattering 
experiments. The characteristic feature of measured dif
ferential cross sections is the appearance of diffraction 
minima at definite values of photon momentum trarsfer 
which are a reflection of a compound nature of nucleus. 

On the other hand, if one confides in quantum electro
dynamics than all information about the electromagnetic 
structure of nucleus is contained in nuclear electromagne
tic form factors. 

It is important at this point to define clearly what we 
shall understand by the nuclear electromagnetic form 
factor. 

Generally two definitions of form factors exist in 
description of electron-nucleus scattering experiments. 

The first o n e / 1 ' 2 / considers a scalar function of one 
variable appearing in the general structure (determined 
only by kinematics) of the electromagnetic current of 
nucleus. The form factors defined by such a way a re the 
Fourier transform of the nuclear charge distribution. The 
future dynamical theory of strong interactions of nucleons 
in nuclei is expected to give their behaviour which of 
course will clearly exhibit the cause of the appearance 
of diffraction minima in experimentally measured diffe
rential cross sections. As is known, their forms and posi
tions very much depend on the structure of a nucleus . 

The second type of form factor (defined in a generali
zed sense) appears in connection with the calculation of 
electron-nucleus scattering differential cross section in 
the framework of high energy approximation model / 3 , / . 
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In this case, complex, in general, form factor is a func
tion of two variables (equivalent to the energy and the 
scattering angle) and plays a role of an effective function 
in experimental differential cross sections, which com
pensates the departure from the Mott formula both due 
to the space extension of nuclei and due to the neglect 
of two and more photon exchange contribution? !:s t>4 scat
tering amplitude. 

This paper concerns the first type of nuclear electro
magnetic form factors only and presents an att-.Tipt to 
analyze them from the point of view of analyticity. The 
method for model-independent determination of chargo 
radii and charge distributions is proposed. 

The paper is organized as follows. In the next sectio.\ 
a brief summary of investigations of analytic propertieb 
of nuclear electt omagnetic form factors in perturbation 
theory is given. In section 3 we analyze in detail the 
existing experimental data. Section 4 is devoted to the deri
vation of explicit parametrization of form factors, the fit 
of experimental data is carried out, and the correspoding 
root-mean-squared (r.m.s.) charge radii are calculated. 
In section 5 we try to get a model-independent information 
about the charge distribution functions. The final section, 
6, presents the conclusions. 

2. ANALYTIC PROPERTIES OF ELECTROMAGNETIC 
FORM FACTORS 

It is generally believed that the electromagnetic form 
factors of elementary particles are analytic functions in 
the cut complex plane of momentum transfer squared t = q 2 . 

For the pion form factor it can be proved exactly 
starting from the axioms of local quantum field theory /4 / . 
On the other hand, the same results have been obtained 
by means of the investigation of analytic properties of 
Feynman diagrams in perturbation theory /S-<>/. 

This was the reason why the methods of perturbation 
theory were used with confidence to obtain the information 
about the analytic properties of electromagnetic form 
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factors of those hadrons (e.g., nucleons, К -mesons, etc.) 
for which the exact proofs of the analyticity do not exist. 

The utilization of the methods of perturbation theory 
to get the information about the analyticity of electromag
netic form factors of deuteron has been well discussed 
elsewhere /7-9/ w e extend these methods to the spin-
zero light nuclei He , 2 С and l f i O. 

Owing to the fact that the spin of hV , 1 2 C and l 6 0 
is zero, there is only one form factor Рд(0 for each 
nucleus fully describing its electromagnetic structure, 
which generally can be represented by the diagram shown 
in fig. 1. The shaded area represents all intermediate 

Fig. 1. The eleciromagentic form factor of nucleus A 

states which conserve quantum numbers and can be under
stood as a sum of an infinite number of diagrams pictured 
in fig. 2. 
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Fig. 2. The decomposition of shaded bubble of fig.H'int®-
an infinite number of diagrams. 



The electromagnetic form factor FA(t) depends on one 
variable usually chosen in the form of squared momentum 
transfer t = - q 2 (q is 3-dimensional space-vector of 
moraentum transfer q = ( t 2 - t , ) in the Breit system), the 
physical region for the scattering process being t <0 . 

Further we shall be interested in the analytic proper
ties of FA (t) in the complex i -plane. For our purpose 
it will be sufficient to know the lowest branch point t L • 

Applying the well known rules (see, e.g., r e f . / , 0 / ) to 
the diagrams shown in fig. 2 one can see immediately that 
the lowest normal threshold in all three cases is that 
coming from the first diagram at t 0 = 4m2 ( mn is the 
pion mass). 

The lowest anomalous thresholds for Ei||,j[t) , Fi^Oancl 
Fi6 0(c) a re given by triangle diagrams shown in figs. 
3(a)-3(c) respectively and their positions (the masses of 
corresponding particles are denoted by П1Д ) 

r 2 2 2 T 2 
, 2 [ m 4 H e - m 3 H ~ m p ] , •> 

t, =4ni U5 H P _ „ 9.63m 2 

3 H 

r „ 2 „ 2 2 ,2 

, = 4m f. I . 6.72m; (1) 
' • m 

И В 

2 1 6 0 1 5 N P 

1 1 й =4m „ , = 4.92m,, 
2 

N 

are still higher (unlike the deuteron) than the lowest nor
mal threshold t 0 . 

So, the consideration of perturbation theory shows that 
each of FA(t)(A= 4 He, 1 2 C, 1 б О) is an analytic function 
of t in a plane cut along the real axis from 4m2 to ». 

Further, it follows from the unitarity condition 
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Fig. За. The triangle diagram and its dual diagram giving 
the lowest anomalous threshold of F 4 . ж (t). 

VUT, 

Fig. 3b. The triangle diagram and its dual diagram 
giving the lowest anomalous threshold of F 1 2 ^ (t). 

Fig-. 3c. The triangle diagram and its dual diagram 
giving the lowest anomalous threshold of F , 6 (t). 



T

f i - T f f - ю * > 4 ? T f „ T i ; s U ) ( p

f - p i > (2) 
that the vertex amplitude corresponding to fig. 1 (the 
photon is off the mass shell) is hermitian for space-like 
region values of momentum transfer squared. This results 
in a hermiticityof electromagnetic current of nucleus from 
which the reality of corresponding form factors follows. 

Now, since in this case the Schwartz reflection prin
ciple holds one can write for nuclear electromagnetic 
form factors the following Schwartz condition 

F * ( t ) = F A ( t * ) ( 3 ) 

which must be fulfilled in the framework of the future form 
factor dynamical theory. 

3. ANALYSIS OF EXISTING EXPERIMENTAL DATA 

The electromagnetic form factors of nuclei a re not 
directly measurable quantities. The main experimental 
source of information about them is measurements of the 
elastic electron scattering differential cross section * 
at different energies. An essential ingredient in the prac
tical analysis of such measurements is the assumption 
that the process can be approximately described in one 
photon exchange approximation (see the first diagram of 
series pictured in fig. 4) i.e., that the matrix element 
is proportional to a photon propagator times a form factor 
which depends only on the structure of the nucleus. Then 
the differential cross section in an invariant form looks 
as follows 

*In future the same information may be obtained from 
the positron and muon scattering experiments. 
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where FA(t), M and Z are form factors, mass and 
charge number of corresponding nucleus respectively, 
m,, mass of the electron and s ,t are common inva

riant variables defined through four-momenta of electron 
and nucleus (see fig. 4\ by the following expressions 

я -• ( P , < « , ) * . 

2 (5) 
« = ( P 2 - P , ) , 

"P'X':' T-V 
Fig. 4. The elastic electron-nucleus scattering amplitude 
and its power series expansion in coupling parameter (Za). 

The formula (4) requires some comments. Although 
it is now becoming clear / 2 / that even for very light 
nuclei the one photon exchange approximation of the 
amplitude is no longer sufficient to describe the electron 
scattering process it is however still used with advantage 
as a qualitative guide of what to expect in experiments. 

Now using the experimental data on the differential 
cross sections of e*He->e4He rrom ref. ' ' •'' e 1 2C->e 1 2C 
from r e f s . / l z - , 4 / , e 1 6 0 >e , 6 0 from r e f s . / l 2 ' 1 3 / and 
formula (4) one can calculate the absolute values of the 
electromagnetic form factors | F A (t)| in finite interval 
of momentum transfer t . If further one supposes that 
the form factors for t < 0 take the real and positive 
values only we get their approximate behaviour around 
the diiiraction minima as is shown in figs. 5(a)-5(c) 
(see also refs. n I - l 4 / where they are drawn in a lo
garithmic scale). 
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Here we would like to analyze the afore-mentioned 
two assumptions in more detail. 

It follows from the analyticity and unitarity (see the 
discussion in the previous section) that the form factors 
for t < t L ( f

 ь is the lowest branch point) a r e real 
quantities. However, there a re no fundamental principles 
forbidding the form factors to acquire the values zero 
or even negative values in this region of t . Just opposite, 
if one believes in the analytic properties obtained in sec
tion 2 it is too hard to understand the nature of the sharp 
change in the behaviour of FA(t) (see figs. 5(a)-5(c)) in 
the vicinity of the diffraction minimum. There is well 
known fact in mathematics that function suffers intense 
changes in behaviour in the vicinity of dome singularity 
only and there are no near singular points on the first 
Riemann sheet of the t -plane following from the pertur
bation theory which should be responsible for such sharp 
changes. 

It seems for us to be natural to explain this phenome
non as an occurence of a zero ( see the next section) of 
the form factor at the value of t which corresponds 
roughly to the diffraction minimum of elastic electron-
nucleus scattering. 

So, the application of the analyticity of form factors 
to their experimental data leads to the results, which have 
been obtained in nuclear physics simply by Fourier t rans
form of various chargo distribution functions. 

Further we shall try to clarify that the introduction of 
form factors zeros seems not to be in contradiction with 
the present-day experimental data about electron scat
tering differential cross sections. 

There is a question why these zeros of form factors 
are unobserved as zeros in elastic electron scattering 
experimental data. 

The whole problem resides in the rate of convergence 
of expansion of scattering amplitude into the ser ies repre
sented by means of Feynman diagrams i;i fig. 4 * 

* We have not shown in fig. 4 the diagrams correspon
ding to the radiative corrections, because they a r e not 
important in the understanding of the idea which we would 
like to clarify here. But in practical calculations they 
must be taken into account. 10 



Let us denote this series by 

M(s,t) = M1 + M2 +M 3 +... (6) 

where indices 1,2,3... mean the number of exchanged 
photons. Then the elastic scattering differential cross 
section exactly looks as follows 

-Tk- = Т Г ' - ' 1 M i | 2 + , M 2 ! Z + ' M 3 l + - + M,M| + M , M 3 + » . (7) all orr s s я, - —\i 

and the form factor squared is connected with experimen
tally measurable differential cross section -~£— in 
the following way ' v%p 

д.. contributions from two and more 
-.-— - I photon exchanges + interference terms! 

F 2 , - Зав _ . (8) 
Л da 

d n M « t i 
One can see from eq. (8) that the zero value of form factor 
does not cause the zero in da/dfi inevitably. If 
elastic electron scattering experiments give for corres
ponding value of t the nonzero value of do/dfl ,., p then 
it insinuates that the contributions to brackets of eq. (8) 
are noticeable and they must be taken into account in 
determination of experimental behaviour of nuclear-
electromagnetic form factors. Moreover the series (6) 
is a power ser ies expansion in coupling parameter Za 
( Z is the charge number of nucleus and a = . L ) and 
its rate of convergence will be changed from nucleus to 
nucleus. As a consequence, the contributions in brackets 
of eq. (8) will increase with an enlargement of the charge 
number Z. If one uses the one photon exchange approxi
mation for extraction of form factors data for all nuclei 
under consideration uniformly then this effect must appear 
in minima of obtained behaviours of form factors as is 
shown in figs. 5(a)-5(c). 
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Fig. 5a. The data on F-ti^O obtained in one-photon 
exchange approximation of the electron scattering am
plitude. 
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Fig. 5b. The data on FI«Q (t) obtained in one-photon 
exchange approximation of the electron scattering am
plitude. 
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Fig. 5c. The data on Fi<-,0(t) obtained in one-photon ex
change approximation of the electron scattering am
plitude. 

Really while 4He is the case where the contributions 
in brackets of eq. (8) are tiny (for i = -0.407 GeV2 

F i„ (,(0 is equal to zero inthelimitof experimental e r ro r ) 
the values of F |2 C (t) a n d F ] 6 o (t) at the minimum a re 
different from zeros and are increasing with an enlar
gement of the charge number Z. 

This is the unrefutable evidence for our conjecture 
that jigs. 5(a)-5(c) (see also the figs, in ref. / n - U / ) a re 
no real behaviours of corresponding nuclear electromag
netic form factors and can be considered at most as 
a behaviour of an effective function F(t) compensating 
the neglect of two and more photon exchange contributions 
(here we include also dispersion effects and radiative 
corrections) in the one photon exchange approximation of 
elastic electron scattering amplitude. 

Another convincing evidence supporting our hypothesis 
about zeros is a result obtained in /l™ where in the 
framework of the multiscattering theory the contribution 
of two photon exchange is evaluated. It is clearly demon
strated that already in the case of 4 He the two-photon 

QUI • 
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exchange contribution takes around 30-40% of the form 
factor values in the vicinity of diffraction minimum. 

The model-independent support of our hypothesis is 
expected in elastic positron-nucleus scattering in which 
the interference terms of one- and two-photon exchange 
diagrams have opposite sign to the corresponding terms 
in elastic electron-nucleus scattering. If form factors 
really acquire the value zero at diffraction minima and 
just higher photon exchange contributions are responsible 
for the nonzero value of differential cross section in 
diffraction minima, the data obtained in elastic positron 
scattering experiments must differ noticeably from the 
electron scattering data. 

4. PARAMETRIZATION OF FORM FACTORS, 
RESULTS OF THE FIT AND CHARGE RADII 

If we consider the results obtained in sect. 2 (i.e., 
the electromagnetic form factors of 4 He , 1 2 С and | б О 
are analytic functions in the whole complex plane t be
sides the cut from 4m | tc ~ ) with the aim of optimal 
use of analyticity one can do the conformal mapping into 
the unifocal ellipse in the z -plane by the following way. 
The point i = 0 and the most distant experimental point 
in space-like region are mapped into i-l and - 1 , respec
tively, and the cut for 4m2 < t <•» is mapped onto the 
ellipse. 

By such a procedure we get the analytic function FA (z) 
in the ellipse and one can write the following maximally 
convergent series in the whole t -plane (see ' X b l and r e 
ference therein) composed of the Tschebyscheff poly
nomials 

м 
F A U ( t » M + ^ / „ B ^ T ^ - l l O) 

in which the normalization condition is automatically 
taken into account. Here Bn=(Ra(n-'VR-2<»-Uh28 , ^ R is 
the sum of the semiaxes of the ellipse and An"~ a re coef
ficients to be found from a fit. 
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Naw there is a question to what experimental data the 
parametrization (9) will be applied through the least 
squares method procedure to find the minimal number 
of unknown coefficients An . 

We would like to note that besides the question with 
zeros discussed in the previous section and the fact, 
that also after the introduction of zeros the data a r e 
approximate only (they have been calculated in one photon 
exchange approximation using (4)) there are inconsistent 
data obtained in different measurements (see, e.g., the 
data on F 4 (t) from ref. / M / and ref. / l 7 / ). It is t r ans 
parent that through fitting of such data one can never 
get the x2 inside its normal region Xj| 0™A^N-l)tx/^N^lT 
( N is the number of degrees of freedom (n.d.f.)) also 
in the best possible agreement of existing data with our 
parametrization. 

So, before fitting we ha,e reelaborated the data 
in the following sense. 

All inconsistent data nearly for the same values of 
momentum transfer squared were replaced with the effec
tive value obtained by method of a calculation of the centre 
of gravity where the reversed value of an experimental 
error is playing the role of the mass . 

Further, by our arguments discussed in the previous 
section we have desired to alter the sign in diffraction 
minimum of an experimental form factor and moreover 
we have removed some points with large partial value of 
\ ' 2 around those form factor zeros. 

The reason for the latter is our conjecture that one 
photon exchange approximation of an electron scattering 
amplitude totally fails around the diffraction minimum. 
The practical performance supports it because after the 
removing of corresponding experimental points the values 
of coefficients A „ are nearly the same. 

The truncation point of the expansion (9) in the fitting 
procedure is found through minimization of quantity / , G / ' 

x = У 2 +Ф. (10) 

where ф is the so-called Cutkosky convergence test 
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function / 1 0 / which controls tiie goodness of convergence 
of our parametrization. 

The results of the fit a re (see figs. 6(a)-6(c)) as 
follows: 

for He: M-5 ,V2 - 15.1 n.d.f. = 19 
for l 2 C : M=7 X 2 - 53.3 n.d.f. = 45 
for l f , 0 : M=7 у а = 59.9 n.d.f. = 43 

(11) 

At the beginning we carried out the fits without intro
ducing zeros of form factors at the diffraction minima 
and we have no criterion where to stop in the fitting. 
The last knowledge supports the indications that the data 
of nuclear electromagnetic form factors shown in fig. 
5(a)-5(c) are in contradiction with the analytic properties 
obtained in section 2. 

tlGeV)" 

Fig. 6a. The result of the fit of (9) to the experimental 
data o /F 4 , H t ( t ) with a zero in the diffraction minimum. 
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Fig. 6b. The result of the fit of (9) to the experimental 
data o / F 1 2 ( . (0 with a zero in the diffraction minimum. 
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Fig-. 6c. The result of the fit of (9) to the experimental 
data of F I G Q M with a zero in the diffraction minimum. 
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Finally we shall discuss here a model-independent 
calculation of nuclear electromagnetic charge radii (for 
more detail see ref. / l 9 / ). 

If somebody speaks about the model-independent method 
of determination of r.m.s. charge radius one has in mind 
the use of the well known expansion 

F(t)=l + i -<r 2 >t + ... (12) 
о 

from which the formula for the calculation of <г2>' 2 

follows. 
However the expansion (12) is nothing but the Taylor 

series which can be written provided that F(t) is an 
analytic function inside the circle around the point t=0 . 
Its radius of convergence equals R = t L ( t L is toe 
position of the lowest branch point) and so it is clear 
that one may use (12) to fit the data only in the t -re
gion where |«|<R. 

On the other hand, in our expansion (9) we have no 
such restriction. If one believes in analytic properties 
obtained in the framework of perturbation theory (see 
sect. 2), the series (9) is convergent in the whole region 
-«< t < 4m 2 and always it can be used for the model-
independent determination of <r 2 > -For that purpose one 
must take the limit 

i i m 6 - d 2 W 0 L j ! £ « . = < r 2 
t-o d z d t k ; 

where F[z(t)] is given by (9). 
Now in concrete cases (taking the coefficients A n 

determined by fitting the data with zeros) from (14) one 
gets the following values of the charge radii. 

<r 2 > 1 ? =1.51 F, <r 2> ,. / 2 =1.86F, < r 2 i / 2 -2.08F, (15) 

which are smaller than the averaged values 
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< r 2 ^ 2 = 1.67F, <rM, / 2 -=2.44F, < r 2 > ' / 2 =2.69F (16) 
*He " c l 6 0 

of those now accepted in l i terature. 
The last effect is again an immediate consequence of 

the dependence of the rate of convergence of ser ies (6) 
on Z and the use of the data about FA(t), obtained in 
one photon exchange approximation. 

While for He the difference between the values (15) 
and (16) is only 0.16 F, for 1 2 C it is already 0.58 F 
and in the case of I 6 0 the latter acquires the value 
0.61 F. So, the contributions in brackets of (8) a r e 
considerably larger for 1 2 С and 1 б О than for He , 
what again confirms our conjecture that for nonzero 
values of da/daexp in diffraction minima two and 
more photon exchange contributions are responsible. 

If, at least two photon exchange contributions might 
be evaluated, one could expect an improvement in beha
viour of F.(t). 

Its slope will be steeper and as a consequence the 
values of charge radii obtained by our method will ap
proach the averaged values (16). 

We urge experimenters to measure the data on F ^ ^ t ) , 
Fi^(t) and Fi60(t) also for lower values of momentum 
transfer | t | than those shown in figs. 6(a)-6(c) because 
these can be crucial in the finite decision between the 
future model-independent values obtained by our method 
and those now scattered in wide intervals(l-63Fs;<r2>1/2.s:1.71F 
re f / n £ .35F*<r 2 >\& ^2.53F refs . А ! 2 " и / а п й 2.65F< <г*>!Д 
<. 2.73F refs. / , 2 - 1 3 / ). l 6 o 

5. DETERMINATION OF CHARGE DISTRIBUTIONS 

The procedure is commonly to test various model-
dependent forms of charge distributions p(r) containing 
a number of free parameters . By x2 minimization 
technique these are chosen to be such as to optimize 
the agreement between the calculated and experimentally 
measured values of cross sections. 
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Due to the fact that there are a few charge distribu
tions well describing the experimental data it is impos
sible also within models, to determine the charge dis tr i 
bution unambiguously. For a particular charge distribu
tion it may be possible to determine at most the parame
ters necessary to fit the experimental data. However, 
in this manner no information is obtained about possible 
variations in the shape of the charge distribution if other 
parametrizations are taken into account. As a conse
quence, we do not know how the results a re restr icted 
by the assumed form of the model charge distribution 
and thus it is impossible to decide whether certain pro
perties of p (r) follow from the experimental data or 
from the concrete parametrization. 

One of the possibilities to solve this problem is the 
utilization of inverted Fourier transform 

р(г)=-Ц— f F(q)sin(qr)qdq (П) 

and the calculation of p(0 in a model-independent way, 
which however is not also without defects. The experi
mental behaviour of F(q) is always known only in a res t 
ricted region of q and there is a question to what 
extent one can get the objective information about p (r) 
from the approximate equation 

'• M I 
Р ( г ) = ~ - ( ) / F(q) sin(qr)qdq (1 8 ) 

where q m n , is the position of the last experimental point 
of F (q) in space-like region. 

We shall not discuss here the reliability of expres
sion (18) and we confine ourselves only to quoting that 
such an approximation is justified to some extent by 
present-day experimental data. One can see in figs. 
6(a)-(c) that form factors for higher values of q are 
relatively small. From here we expect that the contri-

buiion from the integral J" F(q) sin (qr) qdq will be 
,, . . . 'mux 

negligible. 
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Taking, instead of F(q) in (18), our parametriza-
tion (9) obtained by combination of analyticity and expe
rimental data with zeros in diffraction minima and cal
culating the corresponding integral we get the behaviour 
of p(r) for *He , , 2 C and , 6 0 as they are shown 
in figs- 7(a)-(c), respectively. Also the comparison with 
the most popular Fermi distribution is presented there. 

By using of (9) with coefficients A n obtained by 
fitting of the data without zeros in diffraction minima, 
the general feature of p(r) is an absolute inconsistency 
with the Fermi charge distribution. In that case p(r) ap
proaches rapidly to zero already for lower values of 
momentum transfer q. 

Fig. 7a. The charge distribution рц. (»') obtained from 
(18) and parametrization (9). The dashed line corresponds 
to the two-parameter Fermi distribution. 
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rifml 
Fig. 7b. The charge distribution p ia c W obtained from 
(18) and parametrization (9). The dashed line corresponds 
to the two-parameter Fermi distribution. 

5 rifml 

Fig. 7c. The charge distribution p leo (r) obtained from 
(18) and parametrization (9). The dashed line corresponds 
to the two-parameter Fermi distribution. 
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6. CONCLUSIONS 

In this section we summarize what has been learnt 
by the application of analyticity to the spin-zero light 
nucleus form factors. 

The diffraction minima in elastic electron scattering 
differential cross section seem to be real zeros of form 
factors. The arguments supporting such interpretation 
are discussed in detail. 

The maximally convergent parametrization for nuclear 
electromagnetic form factor is presented by which the 
model-independent values of charge radii and charge 
distributions can be found, provided that reliable experi
mental data do exist. 

One of us (S.D.) would like to thank Prof. V.A.Mesh-
cheryakov and Drs. V.K.Lukyanov and Yu.S.Pol' for 
useful discussions. 
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