ОБЬЕАИНЕННЫЙ ИНСТИТУт
 ЯAEPHDX
 ИССЛЕАОВАНИЙ

$29 / 4 \pi-25$

E2-9218
$5011 / 2-75$
Yu.M.Kazarinov, B.Z.Kopeliovich, L.I.Lapidus, I.K.Potashnicova

TRIPLE REGGE PHENOMENOLOGY
IN THE REACTION $p+p \longrightarrow p+X$

Yu.M.Kazarinov, B.Z.Kopeliovich, L.I.Lapidus, I.K.Fotashnicova

TRIPLE REGGE PHENOMENOLOGY
 IN THE REACTION $p+p \longrightarrow p+X$

Submitted to M $\mathbf{H T}^{\boldsymbol{\Phi}}$

1. Introduction

'There are many experimental and theoretical papere, devoted to the investigation of the procese

$$
\begin{equation*}
p+P \rightarrow P+X \tag{1}
\end{equation*}
$$

at high energy, appeared last time. The easential intereat oxcites the opportunity to carry out the analyais of the hard proton apectrum and to determine the values of the triple Regge couplings. Depending on the $t=0$ value al the triple Fomeron vertex $\mathcal{V}_{\mathrm{PPf}}(t)$ (zero or nonzero?) one has difforent possibilities of the theory: weak couping $/ 1 /\left(g_{\mathrm{fp}} \mathrm{g}^{(0)}=0\right)$ or atrong coupling $/ 2 /\left(g_{\mathrm{PPP}}(0) \neq 0\right)$.

Diflerential cross gection of the reaction can be tied by means of the unitarity condition with the triple Regge graphe contribution. (see.rig.1).

The summing up on lig. 1 is carried out with Pomeron P and Reggeons f, W, ρ, A_{2}. Because of the neamess of the secondary Regeeon trajectoriea it is hard to diatinct them, so they are usually substituted by contribution of the effective pole R.

The expression for the differential inclusive croes eection, which has boen used in the analybis, hea a form:

$$
\begin{align*}
s \frac{d^{2} \sigma}{d M^{2} d t} & =\sum_{i, k=P, R} G_{j k}(t)(1-x)^{\alpha_{k}(0)-\alpha_{i}(t)-\alpha_{j}(t)}\left(\frac{s}{s_{0}}\right)^{\alpha_{k}(0)-1}+ \\
& +\left(s \frac{d^{2} G}{d M^{2} d t}\right)_{\pi \pi P} \tag{2}
\end{align*}
$$

Here, M ia an eftective mass oi the produced shower; t 4. momentum transferred squared; $x=P_{2} / P_{\text {max }} \simeq 1-M^{2} / 5$, were $P_{L} \quad$-longitudinal component of acattered proton momentum, $P_{\max }=\max \left(P_{L}\right), \quad S-c . m$. protone energy squared. Lngt term in (2) arises from one pion exchange contribution and has a form $/ 3 /$

$$
\begin{equation*}
\left(b \frac{d^{2} \sigma}{d M^{2} d t}\right)_{\pi \pi e}=\frac{Q^{2}}{(4 \pi)^{2}} \sigma_{\operatorname{tot}}^{\pi N} \frac{(-t)}{\left(\mu^{2}-t\right)^{2}}(1-x) e^{R^{2} t} \tag{3}
\end{equation*}
$$

Here $\quad \mu$ is a pion mage; $g^{2} / 4 \pi \simeq 15 ; R^{2}=3.3(\mathrm{Gev} / \mathrm{c})^{-2}$. The main purpoae of this paper is the attempt for the determination of the phenomenological functions $G_{i j k}(t)$ by meane of the compariagn of (2) with experimental data in the region of $x \geqslant 0.85, \quad M^{2} \geqslant 5 \operatorname{Ger}^{2},|t|<0.6(G e v / \varepsilon)^{2}$. The preliminary results of this anslysis were published in $/ 4 /$. Hetween exiating papers on queations considered it worth while reler to /5-7/, where the necessity of triple Pomeron term in (2) was rirat shown, and to $/ 8,9 /$, where the whole ammount of experimental information was used in the fitting. As a jugtilication to our work it ought to note, that in the previous analysis the interference terme contribution has been neglected. The fit procedure contained some shortcomings, which are considered in eection 3. The uniqueness of the finding solutions was not checked, so gome good solutions have been loosed. The finite mase aum rule, used in $/ 9,8 /$ for the extraction of the supplementary information from the region of small M^{2}, is not a very reliable source, and itself
needs for the verification on the analysia resulta. It is geen from our solutiong, that RRR contribution is extracted irom the data in high M^{2} region with a good precialon.

The content of the paper is constructed as lollows: in section 2 the parametrization al the phenomenological lunctions $G_{i j k}(t)$ is explained. Some restrictions on the interlerence terma value, which lollows irom the Buniakowsky-Schwarz inequality, are l'ound.

In aection 3 experimental data, included in analysia, are liatened. Some detaila of fit procedure are conaldered. Special attention is drawn to the relative nomalization of the data.

In eection 4 the resulte of the analysis are submitted. Two types of solutions with a good values of $\chi^{2} \approx \overline{\chi^{2}}$ are found. The correaponding aeta ol the parametere are accomodated into the tablea, and the agreement with the experimental data is illustrated on ligures for one of the solutions.

The experimental data, which have not been included in the analysia, are compared with the solutions founded in section 5.

Some troublea in the triple Regge phenomenology, when it is used in the region of low $x \leqslant 0.85$, or amall energy $S \leq 50 \mathrm{Gev}^{2}$, make us to consider in sec. G the mechanism, which can cause another X and S-dependences. It ig shown that the growth of spectra with the decreasing of x in data /10/may be explained by the $R-R$ cut contribution.

Section 7 is devoted to the consider ation of the one pion exchange model (OFE) for the triple Regge vertex. The calculationa, oarried out, show that the OPE-model agreas well with the oxperimental results.

In section 8 some reactions are proposed for the further investigation of the triple kedge vertices. The polarization effects in the process (l) are discussed.

2. The parametrization of the expression (2)

Some parameters, contained in (2), were fixed from the proparties or the binary reactions. For $\alpha_{i}(t)=\alpha_{i}(c)+\alpha_{i}^{\prime} t$ the following values were adopted:

$$
\begin{aligned}
& \alpha_{R}(0)=1 ; \quad \alpha_{P}^{\prime}=0.3\left(G_{e v} / 2\right)^{-2} \\
& \alpha_{R}(0)=0.5 ; \quad \alpha_{R}^{\prime}=0.75\left(G_{R v} / c\right)^{-2}
\end{aligned}
$$

The 自 P -diagram contribution was determined in $/ 3 /$ from the data on reaction $p p \rightarrow r_{i} X$.

All the functions $G_{i j k}(t)$, besides interference terms Gerk (see below) were parametrized as

$$
\begin{equation*}
G_{i i k}(t)=G_{i i k}(0) \operatorname{eikp}\left(R_{i i k}^{2} \cdot t\right) \tag{4}
\end{equation*}
$$

On the $G_{i, k}(0)$ the restriction $G_{i j k}(0) \geqslant 0$ was imposed.
The interference terms. The parameters of the functions

$$
\begin{equation*}
G_{P R k}(t)+G_{R P k}(t)=2 R_{e} G_{P R k}(t) \tag{5}
\end{equation*}
$$

are not complitely free, because they are connected by Byniakovsky-Schwarz inequalities to the values of $\mathcal{G}_{\mathrm{ppk}}(t)$ and $G_{R R E}(t)$.
'To obtain the corresponding restrictions, let us neglect for the ρ and A_{2} contributions, because their couplings with a nucleon are mall.

RPP. It is clear, that only Reggeon from R, which can give the contribution here is f-pole. Because the phase of $f P \rho$ is determined by the signature factors of f and P, the Hunia-konsky-Schwarz inequality takes the form:

$$
\begin{equation*}
2 \operatorname{Re} G_{f P \rho}(t) \leqslant 2 \cos \left[\frac{\pi}{2}\left(\alpha_{\rho}(t)-\alpha_{f}(t)\right)\right]\left[G_{f f \rho}(t) G_{\rho P \rho}(t)\right]^{1 / 2} \tag{6}
\end{equation*}
$$

If one recalls that $G_{f f P}(t) \leqslant G_{R R P}(t)$, then
$\operatorname{Re} G_{R P P}(t) \leqslant \cos \left[\frac{\pi}{2}\left(\alpha_{P}(t)-\alpha_{f}(t)\right)\right]\left[G_{R R P}(t) G_{P P P}(t)\right]^{1 / 2}$.
According to (6) and (7) let us adopt following parametrisation for $G_{R P P}(t)$:
$\operatorname{Re} G_{R R P}(t)=\sqrt{2} \operatorname{Re} G_{R P P}(0) \exp \left(R_{R P P}^{2} \cdot t\right) \cos \left[\frac{\pi}{2}\left(\alpha_{P}(t)-\alpha_{R}(t)\right)\right]$.

The substitution or (8) into (7) gives the restrictions on the values of the parameters

$$
\begin{equation*}
\left[G_{R P P}(0)\right]^{2} \leqslant \frac{1}{2} G_{R R P}(0) G_{P P P}(0) \exp \left[\left(R_{P P P}^{2}+R_{R R P}^{2}-2 R_{R P P}^{2}\right) t\right] \tag{9}
\end{equation*}
$$

The necessity of the analogous restrictions for $G_{R P R}(t)$ is not so obvious, because R-exchange does not give a leading contribution to absorbtion part, shown in fig.1. Nevertheless it can be picked out if one uses an idea of duality and integration of the created particles momenta replaces by summation on production cross section of resonances. Then the Buniakowsky-Schwarz inequality can be written for the nonccaling terms separately. The PRR contribution contains Eff and PWW parts. There are reatrictions for each of then:
$2 R R_{R} G_{e f f}(t) \leqslant 2 \cos \left[\frac{\pi}{2}\left(\alpha_{f}(t)-\alpha_{f}(t)\right)\right]\left[G_{f f f}(t) G_{\text {eff }}(t)\right]^{1 / 2}$.
$2 \operatorname{Re} G_{E \omega \omega}(t) \leqslant 2 \sin \left[\frac{\pi}{2}\left(\alpha_{p}(t)-\alpha_{\omega}(t)\right)\right]\left[G_{\omega \omega \rho}(t) G_{P P f}(t)\right]^{1 / 2}$.
The distinction between (10) and (11) arose from difference 01 tue ω and f signatures. for the name reason $G_{f} \omega(t)=0$ and $G_{\text {KR }}=G_{f f f}+G_{w w f}$.
B_{j} adding (10) to (11) we have

$$
\begin{equation*}
\operatorname{Re} G_{R P R}(t) \leqslant\left[G_{R R R}(t) G_{P P R}(t)\right]^{1 / 2} . \tag{iv}
\end{equation*}
$$

So, unlike to (8) the convenient parametrization for

$$
\begin{align*}
& G_{R P R}(t) \text { is following } \\
& \operatorname{Re} G_{R P R}(t)=\operatorname{Re} G_{R P R}(0) \exp \left(R_{R P R}^{2} \cdot t\right) . \tag{13}
\end{align*}
$$

Then we have for this parameters:

$$
\begin{equation*}
\left[R_{e} G_{R P R}(0)\right]^{2} \leqslant G_{R R R}(0) G_{P P R}(0) \exp \left[\left(R_{\rho P R}^{2}+R_{R R R}^{2}-2 R_{R P R}^{2}\right) t\right] . \tag{14}
\end{equation*}
$$

Such parametrization corresponds to the strong coupling variant or the theory $/ 2 /$. In the weak coupling theory $/ 1 /$ all the runctione $G_{i j k}(t)$, besides $G_{R R k}(t)$ should tend to zero as $t \rightarrow 0$. But the parametrization of $G_{i j k}(t)$ in such pure form is meaningless. . This is because oi' the cut contribution which can strongly affect the t-dependence of $G_{i j k}(t) / 11 /$. The last fact follows from the fact, for instance, that in the weak coupling theory all total cross sections should be equal, and the observed large differencies ought to be connected with the cut contribution, which in this case comprises about 100%. So, we restricted ourselves by strong coupling variant only.

3. The init procedure.

The fitting was carried out by means of the minimization of the functional:

$$
\begin{align*}
X^{2}= & \sum_{i} \frac{\left(Y_{i}-N_{k} Y_{i}^{t e o z}\right)^{2}}{\left(\Delta Y_{i}\right)^{2}}+\sum_{k} \frac{\left(N_{k}-1\right)^{2}}{\left(\Delta N_{k}\right)^{2}}+ \\
& +\sum_{j} \frac{\left(\oiint_{j}\right)^{2}}{\left(\Delta \phi_{j}\right)^{2}} \tag{15}
\end{align*}
$$

Here Y_{i} is the i-th experimental point for the inclusive cross section; $\Psi_{i}^{\text {tear }}$ - their value, given by (2); $\Delta \Psi_{i}$ - the experimental error. N_{K} is a scale factor, which has been introduced for the $k-t h \quad$ set oi tine experimental points (see table I). About ϕ_{j} see below, A normalization problem deserves of the consideration.

In the papers $/ 8,9 /$ and in the most of existing fittings the normalization factors are fixed by 1. As a result one has strongly enchanced value of λ^{2}. Besides the experimental data with a high statistias and incorrect nom can cause a large deviation in the parameters value. Another opportunity, frequently used, if a free variation of N_{k} in the first am in exp. (15). This approach is not satisfactory also, because the difference in the normalization precision for distinct experiments is not taken into account. In addition, some experimental energy or angular dependence can be distorted and attracted to theoretical ones by moans of the norm variation. In the last case the X^{2} value ia too little.

In this work the nome \mathcal{N}_{k} have been varied as a free parameters but in accordance with the normalization errors ΔN_{k},

Lijven by tho experimentatore. dhia han been achioved by introun-

 la guch canee $j t$ hars been taken to he equal to he nowlemutiond

Wuble 1...

tixperiment	$\left.\begin{array}{l} \text { mereb } \\ 0(G e v \end{array}\right)$	1.omontiun trungeo red/th(Gev/c)	ΔN	I1 ${ }^{(1)}$	$11^{(2)}$
	$\begin{aligned} & s=1,29 \\ & a=531 \\ & 9=536 \\ & n=11,45 \end{aligned}$	$\begin{aligned} & u, 24</ t /<0,55 \\ & 0,15 \div / t /<0,5! \\ & 0.3 ., \therefore / t /<0.5 \\ & 0.5,</ t /<0.5 \end{aligned}$	$\begin{aligned} & 15 \% \\ & 10 \% \\ & 10,5 \end{aligned}$	$\begin{aligned} & 0.80 \pm 0.03 \\ & 0.8 \pm \pm 0.03 \\ & 1.03 \pm 0.03 \end{aligned}$	$\begin{aligned} & 1.50 \pm 0.03 \\ & 0.91 \pm 0.03 \\ & 1.01 \pm 0.03 \end{aligned}$ 1
	$\left\{\begin{array}{c} : 18 \\ -48 \\ \\ 3=108 \\ 213 \\ 285, \\ 503, \\ 752 \end{array}\right.$		25, 25 15% 15\% 15\% 15\%	$\begin{aligned} & 0.98 \pm 0.03 \\ & 0.92 \pm 0.03 \\ & 0.95 \pm 0.03 \\ & 0.95 \pm 0.03 \\ & 0.92 \pm 0.03 \\ & 0.87 \pm 0.03 \end{aligned}$	$\begin{aligned} & 0.0 .4 \pm 0.03 \\ & 0.09^{ \pm} 0.03 \\ & 0.9 ; \pm 0.03 \\ & 0.95 \pm 0.03 \\ & 0.91 \pm 0.03 \\ & 0.85 \pm 0.03 \end{aligned}$
$\mathrm{MLWMS}^{\text {/ }} 14 /$	$a=38 i$	$0.02</ t /<0.37$		1	1
hichigan- Vrocnester $/ 15 /$	$\begin{aligned} & s=193 \\ & s=762 \end{aligned}$	$\begin{aligned} & 0.02</ t /<0.5 \\ & 0.05: / t /<0.5 \end{aligned}$	$\begin{aligned} & 10 \% \\ & 25 \% \end{aligned}$	$\begin{aligned} & 1.05 \pm 0.05 \\ & 0.86 \pm 0.07 \end{aligned}$	$\begin{aligned} & 1.04 \pm 0.04 \\ & 0.72 \pm 0.07 \end{aligned}$
Bonn-liambureWunchon $/ 16 /$	$s=400.8$	$0.05</ t /<0.43$	10:3	1.27 ± 0.04	1.24 ± 0.04
J.V.ALLaby/17	$7 \% \quad \theta=46.8$	$0.1</ t /<0.4$	10\%	1.3 ± 0.04	1.27 ± 0.04
U.W.Andersof ${ }^{18}$	8) $\quad 0=58.1$	$0.16</ t /<0.43$	10\%	0.98 ± 0.03	0.96 ± 0.03

The norm Cor the a=1995 data has not been varied, because they contain only a few points with $/ t /<0.6$ (Ge voc) ${ }^{2}$. The noemi of The ANL,NAL data has also been fixed by 1 , because the corrosponMine aygtematical and normalization errors bothers unknown. This. : Wees not play a gifrigicant role in vow of the fact that the sta contains not very large amount of the points with such gtatiatial errors, that normalization error may be neglected.

The notus N_{k} for the anta $/ 10,13 /$ were introduced at each value of t separately, because an error in the differential cross section slope value, which was used in the normalization pocedure, should bring to the monotonous t-dependenoe of N_{k}.

Let us explain now, how the Buniakowaky-Schmarz restrictions for the interference terms value have been supplied. For this purpose the last term in (15) has been introduced with a notation

$$
\dot{p}_{j}=\exp \left(B \Lambda_{j}\right)
$$

where d numerates the inequalities (9) and (14).
\wedge_{j} in the case o! inequality (9), for instance, has the rollowing form:
$\Lambda_{j}=\left[R_{e} G_{R P P}(0)\right]^{2}-\frac{1}{2} G_{R R P}(0) G_{P P P}(0) \exp \left[\left(R_{R R P}^{2}+R_{P \rho P}^{2}-2 R_{R P P}^{2}\right) t\right]$.
If the value of B ia chosen sufficiently large, then one can suppose with needed precision that

and
$\phi_{j} \ll 1$ for $\Lambda_{d}<0$.
So, the last term in (15) generation a sharp increase of χ^{2} value Ba one of the inequalities (9) or (14) is violated. At the same time the value of error $\Delta \phi$ j has been chosen large enough, for
the (15) last term contribution to the final value or χ^{2} to be negligible amall.

A. The fit resulta.

The conditions or vaildlty oi expresaion (2) are typical for the Ragge pole modol:

$$
s / M^{2} \gg 1, M^{2} / s_{0} \gg 1,|t| \leqslant m^{2}
$$

The maximum value of $/ t /$ and minimum of x, for which the Iinal resulta were obtained, have beon chosen so, that the narrowing of the analyeed intervala for $/ t /$ below $|t|_{\text {max }}$ and for x above $X_{m: n}$ ahould not alf'ect the parameter values in the error limite. The following values have been found:

$$
|t|_{\max }=0.6(\mathrm{Gev} / \mathrm{c})^{2} ; \quad x_{\min }=0.85
$$

The upper bound of $\times \quad L_{s}$ determined by the energy value, at which the Regge behaviour begins. It was chosen $M_{\min }^{2}=5 \mathrm{Gev}^{2}$. Together with $x_{m i n}$ thia defines the lower value oi' a in the table I. It worthwile to note, that the leading protone can be emerged irom the $\Delta(1236)$ decay. The deacription of such cases by graphs RRK is gensible only with a relerence to the duelity. But, the Δ-production contribution has a maximum at $x \simeq 0.6$ and is negilgibly smaji in the chosen region $x>0,85$ /19/. In this interval of x and t data from table I contain 554 experimental points. A few solutions were found, which give a good description of the date. Those of them, which were reoognised to be atisfactory sare shown in tables II, III.

TaUle II. Solution 1. $X^{2} / \overline{X^{2}}=0.91$

	$G_{\text {PPP }}$	G_{map}	2 ReG HPP	$\mathrm{a}_{\mathrm{PPR}}$	${ }^{\text {GRIKK }}$	${ }^{2120 G}$ PIRR
$G_{i j k}(0) \frac{m b}{G e v^{2}}$	$\begin{array}{r} 3.24 \\ \pm 0.35 \end{array}$	$\begin{array}{r} 7.2 \\ \pm 1.9 \end{array}$	$\begin{array}{r} 6.9 \\ \pm_{1.1} \end{array}$	$\begin{array}{r} 3.2 \\ \pm 0.6 \end{array}$	$\begin{gathered} 5.19 \\ \pm 7.8 \end{gathered}$	-9.3 ± 2.2
$R^{2}\left(G_{e v} / c\right)^{-2}$	$\begin{array}{r} 4.2! \\ \pm 0.24 \end{array}$	$\begin{aligned} & -1.2 \\ & \pm 0.50 \end{aligned}$	$\begin{array}{r} 8.5 \\ \pm 3.7 \end{array}$	$\begin{array}{r} 1.7 \\ \pm 0.4 \end{array}$	0	0

Table III. Solution 2. $\quad 7 / \sqrt{X^{2}}=0.93$

	$G^{\text {PPP }}$	$\mathrm{G}_{\mathrm{RRP}}$	2ReGRPP	$0^{\text {PPR }}$	$G_{\text {RRR }}$	${ }^{2 R 0 G}$ PRR
$G_{i j k}(0) \frac{m b}{G_{e v^{2}}}$	$\begin{array}{r} 3.23 \\ \pm 0.35 \end{array}$	$\begin{aligned} & 13.2 \\ & \pm 0.9 \end{aligned}$	$\begin{array}{r} 5.7 \\ \pm 4.9 \end{array}$	$\begin{gathered} 2 \\ \pm 1 \end{gathered}$	$\begin{aligned} & 23.6 \\ & \pm 5.0 \end{aligned}$	$\begin{aligned} & 13.4 \\ & \pm 4.5 \end{aligned}$
$R_{i j k}^{2}(G e v / c)^{-2}$	$\begin{array}{r} 4.2 \\ \pm 0.3 \end{array}$	0	$\begin{array}{r} 19.5 \\ \pm 16.1 \end{array}$	1.8 ± 1.1	0	$\begin{array}{r} 9.7 \\ \pm 7.6 \end{array}$

The norms values are placed in
table I.
The quality of the experimental data deacription by the expreasion
(2) with the parameter values from the first solution is demonatrated on IIgs.2-8.

It ia seen irom table I that in the mogt of cases N_{k} differ from 1 by the value of an order of ΔN_{n}. But the low energy data deserve a care: the norms or two experimenta irom three in this energy region are out of two standard deviations from 1. Way be this ract indicates that exp. (2) is invalid at such energies. Nevertheleas, this data were included in the

[^0]

Fig.2.CKRN-Holland-Lancaster-Manchester data at $s=930 \mathrm{Gev}^{2}$.

Fig. 3 The same as on fig. 2 at $g=551 \mathrm{Ger}^{2}$.

PIg. 4
Imperial College-Rutgers data.
Pig. 5
$p p-p^{X}$

Fig. 6
Michigan-Rochester data.

- - s=193 Gev^{2}
- - g=762 Gev2.

Fig. 7

ANL-FNAL data at $B=386 G e v^{2}$

Fig8.

Bonn-Hamburg-Muachen datu. $\mathrm{B}=46.3 \mathrm{Gev}{ }^{2}$. Only statiaticaj. errors are shump.

analyais, becauae at nomalization errors, preacribed to then, they don't ailect noticenbly the parameter valuec. below, f : 50c. 6, we shall come back to thin queation.

It worth while to note that a solution wan lound, whicil has
 This in a aurpriaing result from the point oi view of the numerioal estimations in the one pion exchange modal, lulilled in gect. 7. Go suoh solutions were rajeoted.

5. Home predictione

Uaing parnmeters, outained above, ono car sive some predictions. For this purpose we chose those experiments, which have not been included in the analyais.

The results of the experimenta $/ 21 /$ at $6.9 \mathrm{Gev} / \mathrm{c}$ and /22/ at $s=565 \mathrm{Gev}^{3} \quad$ which have been published aiter our work oompletion, are shown in figs,9,10 together with our predictions.

The reaction $p d \rightarrow X d$ has been studied in the work $/ 23 /$. de can give predictions for this reaction, with sone reservations. At 'irst, one ahould avoid the $\pi \pi P$ term and the $\rho_{1} A_{2}$ contributions from (2). The latter are suppresed by small couplinge and can be neglected. Then one ought to multiply (2) by deutron formfactor squared (nomalising to 1) and aome Factor. This factor can differ from the total deutron and proton cross section ratio squared, because the Glauber corrections in the inelaatic reaction are governed by another aet of graphs than in elastic one. Indeed we.Ind that this ractor is 20% lower that $\left(\sigma_{\text {tot }}^{\pi d} / \sigma_{\text {tot }}^{\pi N}\right)^{2}$. So the Glauber corrections, in the $\mathrm{pd} \rightarrow X d$ are about 10% larger than in the elastic acattering. our predictions, nomalized to the data are showen on lig. 1^{4}.

Fig. 10
The same as on fig. 9 at $s=565 \mathrm{Gev}^{2}$ and $\mu^{2}=40 \mathrm{Gev}^{2} \cdot / 22 /$

Fig. 11
The aame as on fig. 9, but for reaction $d+p m d+X$ at $P_{1 a b}=275$ Gev/c and $M^{2}=11$ Gev ${ }^{2}$. For detaila see the text.

1. The maln reason lor chooging $x_{\min }=0.85$ if u lest crowh of inclusive spectra with decreasing of x below $x_{m i n}$ found in /10, 13/. Such Lehaviour oannot be deacribed by (2) ind can be tied with some othar mechanims.

The exprenaion (2) correaporda to the triple Hegre grupha, e.E., pure kegge pole model. It is elear however, that $P-P$ ant R-P cuts give an elrective contribution to (2) ulso, he for the K-k cut, it doea not contribute to (2) beoauac oi ita apecial.
x-dependence. the iniduence oit $h-R$ cut can in principle explain the dil'iculty, considered above. To be convinced ai this, let us give a crude estimation oi diagrang on i'ig. 1 Contribution.

Flg. 12
Ii to identily K with f ior aimplicity and to make une ois the quasieiconal model, then one can write for lig. 12 a and b graphe contribution:

$$
\begin{equation*}
\Delta\left(s \frac{d^{2} \sigma}{d M^{2} d t}\right)=\left(s \frac{d^{2} \sigma}{d M^{2} d t}\right)_{R R P} \frac{2 Z}{\left[\lambda^{2}+\left(\frac{\pi}{4}\right)^{2}\right]}\left(Z-\lambda+\frac{\pi}{4}\right) \tag{16}
\end{equation*}
$$

where

$$
\begin{aligned}
& z=\frac{C_{1} \sigma_{0}}{32 \pi} \sqrt{1-x} e^{-\frac{\lambda t}{2}} \\
& \lambda=R_{f}^{2}-\alpha_{R}^{\prime} \ln (1-x)
\end{aligned}
$$

Here we armure, that f-exchange takes place between the proton and one of the inst (in the labe.) particles in the produced shower. the f-particle couplings are supposed to be the name un tor pungron. So, we chose $\sigma_{0}=30 \mathrm{mb}$ and $R_{f}^{2} \sim 1(\mathrm{Gev} / \mathrm{c})^{-2}$. ($\left.S d^{2}=d / d M^{2} d t\right)_{R R E}$ In the right hand gide of (is) is the (ARP Graph contribution, which has been written out in (2).
C_{f} is a factor, increasing $f-f$ out contribution at the expense 0 i inelintiaity in the intermediate state. Figure 13 shows x-depenHence oi $\Delta\left(\frac{d^{2} e^{2}}{A H^{2} d t}\right)$ at dillorent values oi C_{f}. It ib seen that at $C_{f}=8$ one can dencribo the experimental data behaviour for ${ }^{f_{x}<0.85}$. Such value or C_{f} can seam surprisingly large in comparison with corresponding strengthening factor C_{F} for the vacuum cut: $C_{P} \leqslant 2$. Nevertheless, we can five some arguments in favour of this result. Let us estimate C_{f}. using the concept oi duality. Then the correction to the eikonal dur tu resonances and shower in the intermediate state can be eotimatod by mana of aubatitution, shown graphically in (17):

(17) The contribution oi the Bf and of graphs to the absorptive part of amplitude can be calculated by using the results of the present work. If M^{2} integration is restricted above by $M_{0}^{2}=4 G e v^{2}$, then (17) takes a form

$$
\begin{aligned}
& C_{f} \simeq\left[1+\left(\frac{3 G_{R R P}(0)}{R_{R R P}^{2}+\alpha_{R}^{\prime} \ln \left(s / s_{s}\right)}+\frac{2 G_{R R R}(0)}{R_{R R R}^{2}+2 \alpha_{R}^{1} \ln \left(s / s_{0}\right)}\right) / \frac{s_{0}^{2} G_{0}^{2}}{32 \pi\left(R_{f}^{2}+\alpha_{R}^{\prime} \ln \left(s / s_{0}\right)\right)}\right]^{2} \simeq \\
& \cong\left[1+\frac{16 \pi}{\sigma_{0}^{2}}\left(3 G_{R R P}(0)+2 G_{R R R}(0)\right)\right]^{2} .
\end{aligned}
$$

Fig. 13
Imperial College - Rutgers data at an752 Gev ${ }^{2}$ and
$t=-0.16(\mathrm{Gev} / \mathrm{C})^{2}$. Thin curve is a calculated cross section according to exp. (2). Dotted lines are the calculation resulta with using of (16) for different factor O_{f} VAluses. Thick curve in a aum of (2) and (16) at $C_{f}=8$.

The nubatitution of the parameters irom solution IIleads to the value $C_{f} \approx 9$, which agrees with above conclusion. It is clear now from (17) and (18) why C_{f} is so Iarge in compariaon win C_{e}. duin in a congequence ol the more general result: © So dil'rative jnelagtio prorluction (PPP and PPR) is suppressed $1 I^{\prime}$ comparison with Reggeon contribution (RRP and RRR). That Gin in seen irom tathes II-III, and would be under diacuasion in wie rext section.

So $R-R$ cutg cannot ve neglected in the region of $x<0.85$. At the same time the conaiderable componsation of Fig.l2a and b Lraphs contributions allows to believe tliat $R=R$ cut influence for $x>0.85$ la not large.
2. No was mentioned ubove the noraalization tectors \mathcal{N}_{K} for the experimente at low energy $5 \approx 40 \div 60 \mathrm{Gev}^{2}$ difler irom 1 to about 20\%. Let us examine a lew mechaniams with a more rapid a-dependence then (2) can give.

The diagram on lide 14 doea not give any contribution to the hislunive crode aection. It can be ahown that the num ol dif'rereat contributions to the absorbtive part of the Reggeon-particie acattering amplitude is complitely reduced (an amplitude with

$\alpha_{c}(0)=0$ is real).

Fig. 14

Fig. 15

The observed deviation from $5^{-t / 2}$ dependence can le wien with the reaction $\rho P \rightarrow \rho N^{\prime} \pi$, described in tho bock model, an is shown on lite. 15 . this staph contribution into x-gpoutrun rapidly dies with energy as 5^{-2}, but at low onorey comprises about 10:\%/19/.
3. At a and M^{2} nuridiciently large e deviation tron formula (2) will emote gain. It would we caused by the Reggeon--particle exon section growth, which is not contains in the expression (2). It in natural, that in M^{2} interval, where the analysis was performed, this effect did not dovelcr.

7. Comparison with the one-pion exchange model (orts)

Let us compare the gets of parameters, founded in sec.b, with the ORb calculation results. The triple Rogue coupling a have been estimated in papers $/ 24-26 /$. In addition, tho reaction (1) was considered in the Hogealsed OPE model in ${ }^{19 /}$.
ide shall give a short derivation more simple then in /24/ of the OPS expreastion cor the triple Regex coupling.

In OPE model a graph from lis. 2 can be redrawn as:
$\operatorname{lor} G_{i j k}^{n}(0) \quad t=0 \quad$ it corresponds to the following expression
$G_{i j k}(0)=g_{N N i} g_{N N_{j}} g_{N N K} q_{\pi \pi i} G_{\pi \pi j} q_{\pi \pi k} \eta_{i}(0) \eta_{j}^{*}(0) I_{i j k i(10)}$ where $g_{N N i}$ and $g_{\pi s i}$ - the emiseion vertex or Reggeon by N and $\pi . \quad \eta_{i}(t)$ is the signature ipctor.

$$
\begin{equation*}
I_{j=}=\frac{3}{(4 \pi)^{4} S_{0}} \int_{-\infty}^{0} \frac{d u}{\left(\mu^{2}-u\right)^{2}}\left(\frac{M^{2}-u}{S_{0}}\right)^{\alpha_{i}(0)+\alpha_{j}(0)} F(u) \int_{0}^{\frac{-u}{\mu^{2}-u}}\left(\frac{M_{1}^{2}}{1^{2}}\right)^{\alpha_{x}(0)} d\left(\frac{M_{1}^{2}}{M^{2}}\right) \tag{20}
\end{equation*}
$$

Here u ie the virtual pion 4-momentum squared, μ - its mae;
M_{f} - is the energy, corresponding to the T_{k}-exchange. The structure of (20) is understandable. The factor 3 takes into account the three charge slates of π-meson. $\left(4^{2}-11\right)^{-2}$ correapendee to the virtual pion propagator.

The energy, which attitudes to the Z_{i} and Z_{j} exchanges, equals to $\left(M^{2}+\dot{d}_{\perp}^{2}\right) S /\left(M^{2}-M_{1}^{2}\right)$, where \mathscr{R}_{\perp} is a transverse momentum of the produced pion. So, it is seen from the comparribbon with (2) that factor $\left[\left(\mu^{2}+X_{\perp}^{2}\right) M^{2} / S_{0}\left(M^{2}-M_{1}^{2}\right)\right]^{\alpha_{i}+\alpha_{j}}$ should be included into $G_{i j} k$. It is not difficult to see, that

$$
\mu^{2}+x_{\perp}^{2}=\left(\mu^{2}-u\right)\left(1-M_{1}^{2} / M^{2}\right)
$$

So, $\left[\left(\mu^{2}-1_{1}\right) / s_{0}\right]^{\alpha_{i}+\alpha_{j}}$ arises in (20).
The form factor $F(u)$ takes into account the off mass shell affects. $F(u) \simeq \exp \left(R^{2} u\right), \quad$ where $R^{2} \simeq 1(G e v / c)^{-2} / 19 /$

The minimum value of $|U|$ is equal to

$$
|u|_{\min }=\left(\frac{M_{1}^{2}-m^{2}}{M^{2}-M_{1}^{2}}\right) \mu^{2}
$$

Consequently, the H_{1}^{2} / M^{2} integration is restricted by the value $(-u) /\left(\mu^{2}-u\right)$

The $G_{i j k}(0)$ values, calculated in ascordance with (19) and (20) are displayed in table IV.

Table IV. $G_{i j k}\left(m b / G_{e v^{2}}\right)$

At this calculations R wan identified with i, because ρ and A_{2} contributions are suppressed, and ω-exchange on ariphis forbidden (more about $\boldsymbol{\omega}$ gee below). It was adopted also that

$$
q_{N N f} q_{\pi \pi f} \simeq g_{N N E} q_{\pi \pi P}=s_{0} \sigma_{t o t}^{\pi N}
$$

The comparison of
table IV with the init results shows a good agreement. At the same time, one gets a natural explanation for the experimental fact that $G_{P P k} \ll G_{R R K}$, because, iL $\tau_{i}=\tau_{j}=R \quad$, then the expression (21) ie singular at $\mu^{2}-0$.
'The t-dependence of' $G_{i j k}(t)$, predicted by UPE is more steep than the experimental one. It is not very surprising because we did not introduced the cut corrections.

As for ω-contribution to R, the following diagrams can be drawn in this case, for instance:

a)

i)

Fig. 17
The graph a) on fig. 17 contribution is few times suppressed if compare with fig. 16 one. This is explained by the
above-mentioned singularity at $\mu^{2} \rightarrow 0$ in the expression (21) :or $f^{\prime} k$. To estimate the graph b) on fig. 17 role, let un use π° photoproduction data and vector dominance. Then it in cagy to get

where
$I_{\omega \omega k}=\int_{-0}^{0} \frac{d u}{\left(u^{2}-u\right)^{2}}\left(\frac{m_{p}^{2}-u}{S_{c}}\right)^{2 \alpha_{\omega^{(0)}}}\left(\frac{-u}{m_{\rho}^{2}-u}\right)^{1+\alpha_{k}(0)} Q^{R_{1}^{2} u}$.
(23)

Here f_{ρ} is the $\gamma-\rho$ coupling, $f_{\rho}^{2} / 4 \pi \simeq 2 ; \alpha=1 / 137-$ the fine structure constant. After simple calculations, one finds from (22), (23) that $G_{\omega W_{K}}(0)$ is approximately by an order suppressed in comparison with $G_{f f f_{k}}(0)$.

So, one of the main predictions of OPE is the f-dominance among the secondary trajectories (in opposite to the exchange degeneracy in the binary reactions).

8. What in interesting to measure?

It is desirable to extract f, ρ, W and A_{2} contribution to \mathbb{R} separately.

At first, let us discussed the scaling term $G_{R R P}(t)$. It is easy to see that the poles with the different quantum numbers don't interfere here; ie.,

$$
\begin{equation*}
G_{R R \rho}(t)=G_{f f P}+G_{w w P}+G_{\rho \rho P}+G_{A_{2} A_{2} P} \tag{24}
\end{equation*}
$$

It Iollows irom (24) that the value of $G_{R R E}(t)$ in the reaction $\bar{P} p \rightarrow \bar{p} X \quad$ should be the name. The ω, ρ and A_{2} contributions to (24) can be found separately from the study of the other reactions l'or example

$$
\begin{align*}
& \gamma p \rightarrow \pi^{0} X, \tag{25a}\\
& \pi^{p} p \pi^{0} X, \tag{25b}\\
& \pi^{-} p \rightarrow \eta^{0} X \tag{25c}
\end{align*}
$$

In the non scaling part $G_{R R R}(t)$ the number of diliferent combinations from f, ω, ρ, A_{2} is much more than in (24). So we omit the discussion of their aeparation mathoda. The next interegting point is the polarization eifecte. Their measurement is most sensitive one to the cut corrections. Pirat of all, it is neaded to emphasize that there is a great difference between the cages, when the target or the beam are polarized fhich is didferent from the case of elastic acattering).

In the triple Regge region of the beam, when a target is polarized no agymetry of acattering would emerge, if one uces a pole approach/27/. Only cut corrections generate some asymmetry. We believe, that the multipomeron cuts give a small spin flip artelitude, so the great eifect should arise due to secondary Reggeon-Fomeron cute and be non scaling, i.e. die as $5^{-1 / 2} / 28 /$.

In the case of poiarized beam an asymmetry can arine in principle. But as was ahown above, the aecondary Reggeons don't interfere in the acaling partasymatary in the pole approach can originate from the Pomaron- f Regseon interference. But both are known to give vary anall spin filip amplitude (in the binary reactiona), so we conclude, that the acaling polarization eflecte
jor the bean should be negligible in the pole case. The situation is like to the well-known $\pi^{\prime \prime} p$ charge exchange reaction. The polarization cilecte (in the asymptotic limit) are totally caused by cut corrections.

Let us see the x-dependence for the scale part of the polarization parameter P_{0} in the case of polarized beam. One can write

$$
+\sum_{i=f, \omega, p \cdot A_{2}} P_{0}^{(i i p)}(t) \frac{G_{i i p}(t)}{(1-x)^{2 \alpha_{R}^{\prime} t}}
$$

Here $P_{0}^{(i j k)}(t)$ is the polarization arisen in the case, when only diagram jfk ia present. It is clear that $P_{0}^{(i j k)}(t)$ does not depend on x. It is implied in (26) that all vacuwn rescattering corrections are included. Ii one neglects by the first and second terms in (26) then he gets for x-dependence

$$
\begin{equation*}
Q_{0}^{(s c a l e)}(x, t) \sim(1-x)^{-2 \alpha_{R}^{\prime} t} / \mathrm{s} \frac{d^{2} \sigma}{d M^{2} d t} \tag{27}
\end{equation*}
$$

Here we are interested in x-dependence only. At $x \rightarrow 1$; the triple Pomeron part only dominates in the denominator of (27), then

$$
\begin{equation*}
P_{0}^{\left(s c a f_{e}\right)}(x, t) \underset{x \rightarrow 1}{\sim}(1-x)^{1-2 \alpha_{R}^{\prime} t} \tag{28}
\end{equation*}
$$

B. Conclusion

The analybia, fullfiiled abova, has showed, that the triple Regge phenomenology permits one to get a good description or the $p+p \rightarrow p+X$ experimental data in the region $x \geqslant 0.85$, $|t| \leqslant 0.6(G \mathrm{ev} / \mathrm{c})^{2}, M^{2} \geqslant 5 G^{2}$. The parametrization, which has been uged for the vertex functions, corresponds to the atrone coupling variant of the theory. But the good quality of description does not give any argument in l'avour of this variant, In the weak coupling case the large cut contribution radically changes the t-dependence and can eimulate the strong coupling $/ 11 /$.

Unlike to the previous works we have taken into consideration the nondiagonal diagrams and carefully perlormed the fit procedure. As a result l'ew solutions have been founded. The prodictions done on this ground are in good agreement with the new data at the small t-values. The comparison with the $\rho d \rightarrow X d$ data ahows also the noticable distinction between the elastic and inelastic Glauber corrections.

Some meohanisms additional to the triple Regge one, which can give important corrections, have been discuaged. The Deck diagram yields another s-dependence; $R-R$ cuts can give abnormal $\quad x$-behaviour.

The OPE-model calculations have been compared with the fit results. A good correspondence was establiahed.

The set of reactions to be measured for the distinction of the secondary trajectory contributions to the scaling part has been proposed. The polarization effecta as a method for the cut correction investigation have been discusaed.

The authors are indepted to Ya.I.Azimov, V.A.Khoze, d.M.Levin, L.A.Ponomarev for helprull diacuesions.

Reflerences:

1. V.N.Gribov, Yadernaya Fizika., 17, 603, 1973.
2. A. A.Migdal, A.M. Polyakov, K.A.Ter-Martirogyen, JETP, 67, 84,1974.
3. H. Bishar1, Phyb.Lett., 38, 510,1972; Preprint L.BL-2066, 1973.
4. Yu.M.Kazarinov, B.Z.Kopeliovich, L.I. -apidue. I.K. Potashnikova, Proc. of the XVIII -th Int. Conf. on High Energy Phygice, London, 1974.
5. A.B.Kaidalov, V.A.Khoze, Y.F.Pirogov, N.L.Ter-Iaaakyan, Phys.Lett., B45, 493, 1973.
6. A.Gapella, Phy日.Rev., DB, 2047, 1973.
7. D.Amati, J.Caneschi, M.Ciafoloni Nucl. Phys., B62, 173,1973.
8. D. P.Roy, R.G.Roberts, Nucl. Phye.177B2 2401974.
9. R.D.Fielà G.C.Fox, Preprint CALT-68-434, 1974.
10. K.Abe et al., Phys.Rev. Jett. 31, 1530, 1974.
11. Ya.I.Azimov, V.A.Khoze, E.M.Levin,'M,G.Riekin, Nucl. Phys., B89, 508, 1975.
12. M.G.Albrow et al, Nucl. Phys., B5, 388, 1973. ibid B54, 6, 1973.

13í F.Sannes et al., Phys.Rev.Lett. 30, 766, 1973.
14. S.I.Barish et al., Phys.Rev.Iett, 31,1080, 1973.
15. J.N.Chapman, C.M.Bromberg, Preprint UKBC 73-21, 1973.
16. V.Blobel et al., Preprint DESY, 4048/73, 1973.
17. J.V.Allaby et. al., Nucl. Phys., B52. 316, 1973.
18. V.Anderson et al., Phys=Rev.Iett., 12, 290, 1967.
19. K.G.Boreakov, A.B.Kaidalov, L.A.Ponomarev, Proprint Implo43 Moakow, 1973.
20. L. G.Dachno, Preprint IHEP, 75-59, 1975.
21. H. Bialkowaka et al., Preprint IHEP, 1975.
22. R.Schamberger et al., Phys.Rev. Lett., 34, 1121, 1975.
23. Yu.Akimov ot al., NAL = Preprint, 1975.
24. H.D.I.Abarbanel, C.F.Chew, M.L.Goldberger, J.M.Saundere, Annale of Phye., 73, 156, 1972.
25. C.Sorensen. Phyo.Rev., DG, 2554, 1972.
26. A.Shankar, Nucl. Phyo., D79, 126 1974.
27. M.D.I.Abarbanel, D.J.Grosb, Fhys.Rev.Lett., 2í, 732, 1971.
28. R.D. Field, Proc of Summer Studiea on IIgh-Energy Phye. with Polariged Beanio ANL/HEPP 75-02.

Reoeived bs Publishing-Departmeat on 0otober 8, 1975.

[^0]: *) To avoid this difficulty in/20/ aupplementary terme with $\alpha_{k}(0) \leqslant 0$ have been introduced.

