





S Over the last years consrderable attentlon has been payed to the theoretlcal i
’ analy51s of heavy quark’(QQ) or heavy-llght quark (Qg) systems in relativistic. o
o (’: models[l] The cons1derat10n of relativistic models and _consequently relativis- .
" tic potentials must be 1mportant especrally for (Qq) systems (like B, D mesons) ;
where one of the quarks is llght Increasmg experlmental and theoretlcal inter- :
"estin heavy <light quark systems was a result of observatlon of B® — 1? mixing.
“The mass dlﬂ'erence Am = mp, — ‘mp;, which can be evaluated by the box,‘ o
dlagram, depends on' the square of the decay constant’ fp of the B meson. ' -
There are several. methods for evaluatmg pseudoscalar f,, and electromagnetlc(-‘
fv ‘decay constants. In this paper, the relativistic potentlal model is- used to e

: calculate the leptonlc decay constants of heavy mesons. '
'lhe decay constants fv and f,, a.re deﬁned m the standard way

<0|A IP(p) = ip Q.,\/_f,,

e <o lwqm>_eauo;g7, ' uyﬁ"

where Q.J is the meson ﬂavor matrlx, and the currents V“ and A,J are glven' ‘

. A =“a,-(¢)&"7’5q,-(r) 7
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Takmg into consrderatlon the relatrvrstlc eﬁects for pseudoscalar and electro— :

magnetlc decay constants the followrng expressrons are vahd (2]
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The wave function dig(k) = [ dr sin(kr)uo(r) is normalized as follows:

[ ko) =22 (@)

where M is the meson mass.

In the last few years several relativistic models and potentials were used
for computing masses and decay constants of heavy mesons [1],[2]. One of the
methods of deriving the quark-antiquark relativistic potential was developed
in ref.[3], where from QCD, up to an order of 1/c?, the velocity dependent
corrections of the ¢ potential were calculated. In the paper [3], using the
static part of the potential
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with N = E; = (kK* 4+ m})'/?

Vi(r) ==kfr+ C+or (5)

after developing a systematic method for deriving the ¢g potential in the form
of an inverse quark mass expansion, the authors have obtained the velocity
dependent part of this static potential:
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Using this potential, below we will discuss how it can describe the spectra of Q¢
and )7 mesons. In the reference system of the center of mass P = —P, = P
the S wave part (I ='0) of the velocity dependent potential V,4 can be written
in the form
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Below we consider only § wave states (I = 0). According to [4] the spin
dependent part of the potential for this case is given by
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Following ref.[5] we assume an ad hoc spread in the color charge performing
the replacement

Vea =
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with f = /2.3 [5].

We consider the wave equation

[(CAVE+mi )2 4 (—AV2Z4mE )2 V(AU = B¥()  (10)
which arises from the Bethe-Salpeter equation in QCD by replacing the full
interaction with the instantaneous local potential V' (r).

In the case of the potential (5),(7),(8) this equation gets the form (r=|7])
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In equations (10) and (11) the operator (—hV? + m2)V/2 is defined by the
following spectral representation:
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For the central potential V(7) = V(r) the angular dependence in ¥(7) can be
factorized

U(7) = Y (F)O(r) = Y (Fw(r)/r (13)

and after a simple transformation we get the following equation:
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rji(r) = where j(r) are spherical

with f(r) = (—7 + - )— mlk,nz Hxi(r) =
Bessel functlons The orlgm of the left hand side of this equation is the velocity
dependent part of the potential (7).

As it was noticed in ref.[6], in contrast with the Schrédinger equation, the
Coulombic divergence for » — 0 in the relativistic case (10) results in a loga-
rithmic divergence of the wave function ®o(r)(! = 0) at the origin. This is a
result of the approximation used in the Bethe-Salpeter equation. In our case,
we do not have such a problem and, consequently, we do not need to smooth the
potential for very small r to a constant as it was done for Richardson potential
in ref.[2]. It is easy to show that the wave function ®(r) for this potential
behaves as #*! at the origin. Therefore,

uo(r) = %rﬂr_.o — const

The reason for this, of course, is the dependence of the potential on PQ(\ vd)
and consequently the existence of the left hand side of equation (14). Using
Jo(r) = sin(r)/r and the "parity” relation

w(—r) = (=1)*w(r)

obtained from (11), if we set V(—r) = V(r), after replacing I(I+1) by (I+ 1/2)?
in equation (14), as it is accepted in the case of the WKB approximation in
Quantum Mechanics[7], we get the following S-wave equation satisfied by uo(r):
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To solve this equation we use the WKKB approximation developed in ref.[8] and
scarch for a solution in the form

ug(r) = explioo(r)/h + o1(r)] (16)

The functions oo(r) and o1(r) arc determined by the saddle point equations.
At the zeroth order in /i we obtain the following equation for o(r) = dog(r)/dr:

B = Vilr) = f(1) 2 ~ f(r)o3(r) = (o5 + md) 4 (34 m2 (17)

The spectrum is determined in the standard way

/rz ol(r)dr = r(n+1/2)  (h=1) (18)

where r; and r; are "classical” turning points defined from (17) by the condi-
tions

og(r1)-= a4(r2) = 0;04(r) > 0 when my <7 < 7y
(In the cases discussed below for g;(r) = 0 equation (17)
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has two "classical” turning points ry and ;).
Using the saddle point equations, after some calculations we obtain the
following expression for exp(o;(r)):
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and, therefore, for the wave functions ug(r) in the WKB approximation we

have (b = 1):
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where A is a normalization constant.

Using (17) and (18), from a fit of masses of bb mesons (S-states) we fix the
values of the parameters %, 0 of the potential and b quark mass. The value of
the third parameter C' in the potential (5) can be calculated according to the
prescription given in ref.[9]:

C = —2exp[—(y — 0.5)]0/? (20)

where v = 0.5772.. .. is Euler’s constant. The mass of ¢ quark m. was chosen by
fitting the masses of ¢€ mesons. We stress that, since we include in the potential

~ the spin-dependent term (8), we are able to distinguish between pseudoscalar

and vector states. We fix the values of the parameters as follows: k = 0.410,0 =
0.173, m, = 5.180, m. = 1.777. We have to note that these values differ a little
from the corresponding values given in ref.[3].

Table I. - The mass spectrum of heavy (QQ) systems (GeV/c).H(21) corre-
sponds to the mass spectrum calculated by the WKB method with the Hamil-
tonian (21).

cc bb
H(21) - exp H{21) exp

1 1S5 ({298 3.02° 298 9.41

2 151358 3.72 3.59 ‘

1 35,1310 3.09 3.097| 9.47 9.45  9.460
2 35,1367 3.65 3.686|10.02 10.01 10.023
3 35, 14.06 4.23 4.040 ] 10.35 -10.35 - 10.355
4 35,1440 4.69 4.415 1 10.60 10.63 10.580
5 38 10.85 10.88 10.865
6 35 11.04 11.12 11.019

Table II. - The mass spectrum of heavy-light (Qg) systems (GeV/c).

Mesons Theory Experiment

B,(0) 5.54
B.(1") 6.34
B(0-) 532  5.279
B*(1-) 5.57

D(0-) 177  1.864
D*(17) 222  2.010
D,(0°) 187  1.969
D:(17) 225 2110




The results for the heavy meson (QQ) masses are given in Table 1. There
are given also the meson masses H(21) calculated by the same method(WKB
approximation) but using the Hamiltonian

H=2m+p*/m—p*[Am® +V | (21)

which is an approximation of Hamiltonian presented in equation (10). As one
can see, the agreement with the experimental data is quite good for bb and cc
states. If we compare our results with the spectra evaluated from this poten-
tial in ref.[3] (with other values of the parameters), by using the Hamiltonian
(21)instead of (10) some improvement in the agreement with the experimental
data can be seen, expect of course for those states that have been used in ref. [3]
as inputs. The reason for this is the existence in (21) of terms like p/m(in
the case of the WKB approximation, o’2/m term). Eq.(10) and, consequently,
eq.(17) do not contain such terms. The only term like this presented in (17) is
o'2/m? but not o'5/m. Since the WKB approximation works very good for bb
and ¢ states (¢'2/m and of course o’3/m? are enough small) in both the cases
((10) and (21)), the agreement with the experimental data is satisfactory. But
as one can see, the superiority of the Hamiltonian (10) is indeed, especially for
¢t states, since m, < my. In the case of 7 states, eq. (10) gives much better
results (0'3/m is not enough small) than (21). Even for B, meson the average
value < o's/m >~ 1.

On the other hand, it must be mentioned that even the Hamiltonian (10) is
not able to describe the mass spectra of Qg systems with ¢ = u, d, s well. From
the fit of B, D, D, meson masses it follows that m, = mq = 0.46 GeV while
m, = 0.36 GeV, which, of course, does not correspond to the real situation
(m, > my!). The reason for this is the fact that the velocity dependent part
of the potential has the form of an inverse quark mass expansion. Therefore,
it seems impossible, using the velocity dependent relativistic potential (5)-(6),
to describe well the B, D, D, meson spectra and, consequently, to determine
the light quark (u,d, s) masses from the fit of heavy meson spectra. In spite of
this, the calculated values of these meson masses are given in Table II.

Using the wave function (19) and expressions (3) for decay constants we
calculated the values f, and f, for different mesons. The results are given in
Tables 111 and IV. For QQ systems the decay constant f, can be related to the
IV — efe) '

fo=(BM’T(V = ete) /(amela?))/? (22)

(The difference between (22) and the corresponding formula in [3] arises from
a different definition of f,). As one can see from Table III, the agreement
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Table IIL. - Heavy (QQ) vector mesons decay constants f,(GeV?).
ct - bb

1 35, [1.20 1.185+0.05 | 6.72 6.765 + 0.00
2 35, {091 1.03540.05|4.92 4.89+0.12
3 35,081 0.70540.08 | 4.62 4.44 +0.15
4 35,1059 0.63940.07 |3.36 3.39 +0.36
5 38, 4.08  3.99 +0.45
6 35, 3.18  2.64 +0.30

Table IV. - Decay constants of heavy-light (Qg) systems.

Pseudoscalar mesons | Vector mesons
Jp (GeV) fv (GeV)
. 0.449 B 3.059
B 0.222 B* 1.102
B, - 0.179 B; 0.773
D 0.230 D 0.514
D, 0.149 Dz 0.435
n¢(cE) 0.176 :
75 (bb) 0.300

between theoretical results and experimental data is quite good for c¢ and bb
s.tates. As it has been mentioned above, it seems impossible to determine the
light quark (v, d, s) masses using this potential (5),(6),(8). But it can be found
that the heavy Qg meson decay constants are not very sensitive to the value of
mq.(The m'a.in contribution to the decay constants comes from the value of the
wave function at the origin ®¢(0), ®(0)). Therefore, in spite of the fact that
the potential cannot describe the mass spectrum of heavy-light (Q§) mesons
-satisfactory, the values of the decay constants are determined quite well. That
is why the approximation scheme proposed in the limit mq — oo [10] gives the -
values of f, and f, in a quite good approximation. The values fu, fp given in
Table IV do not change very much of u,d, s quark masses change z’m l;i’ttle.

o Let us note that the value of the B meson decay constant fB = 222 MeV
1s in agreement, with the recent calculations in the lattice QCD [11].

In conclusion, we have discussed the model for heavy (QQ) and heavy-light
(Qq) mesons based on the relativistic wave equation and the relativistic velocity
dependent potential. We have calculated the mass spectra of heavy mesons
and their leptonic decay constants. The analyses, with the use of the WKB
approximation, have shown that this potential cannot describe the heavy-light



(QQq) mesons spectra for ¢ = u,d, s quarks satisfactorily though can determine
the values of the decay constants quite well.
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