





1 Introduction

Despite great successes achieved in the physics of elementary particles, it is
known that the search for a complete and consistent theory of the fundamental
interactions is yet far from being complete. It is expected that the final theory
will be a result of the theoretical analysis of numerous experiments. Of course,
such a permanent interplay of the theory and experiment is the most reliable
way of development of the physics as a whole. However, in the case under
consideration we see that this approach is followed be great difficulties and
may have a very long history. So, only the deductive method alone can give
a highly reasonable and simple solution of the problem in question. Now it is
interesting to recall the Einstein’s opinion on the discussed question (Einstein,
1933). He wrote: "It is my conviction that pure mathematical construction
enables us to discover the concepts and the laws connecting them which give us
the key to the understanding of the phenomena of Nature. Experience can of
course, guide us in our choice of serviceable mathematical concepts; it cannot
possibly be the source from which they are derived; experience, of course,
remains the sole criterion of the serviceability of a mathematical construction
for physics, but the truly creative principle resides in mathematics.”

In this paper we develop the theory of fundamental interaction from the
very general and most well-established first principles. The starting point of
the present research is the well known link between the fundamental sym-
metry of space-time and the laws of conservation of the energy, momentum
and angular momentum. It can be used to formulate the guiding physical
principle: Important properties of the space-time are tightly related with the
most fundamental laws governing the behavior of matter. In this sense the
essential space-time property predetermine the objective physical regularities.
Thus,the problem is to express all details of this intimate relationship in the
exact mathematical language and thereby to develop a new unified approach
to the problem of fundamental interactions.

The article is organized as follows. In section 2 we formulate the general
assumption which allows us to establish the structure of the fundamental sym-
metry groups. Then the proper exposition of the gauge principle is given. The
type of the basic fields is indicated and their detailed description is presented
from the point of view of symmetry principles. Section 3,4,5 content the
derivation of the simplest gauge invariant equations which describe different
form of interactions of the basic fields. In accordance with the correspon-
dence principle in section 6 we examine the link with the Dirac theory of the
electron.
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. In sections 4 and 6 one rather general consequence is considered which
has to do with the gravitational interactions. It is suggested here to measure
the force of gravity on electrons and positrons. The theory predicts that
. the measurements of the gravitational acceleration of electrons and positrons
. will have a zero result. As it is known, Fairbank and Witteborn (1967) have
measured the gravitational acceleration of electrons in the earth’s field. So it
is very important to make this for positrons. It must be noted that not so long
ago Fairbank and Witteborn (1988) reported that now there are no principal
technical difficulties for the propounding of the experiment with positrons.
In section 7 the notion of hyperbolic space-time is introduced that is a key
for understanding the nature of the so-called strong interactions. Here and in

the preceding section one can find some results on a fundamental role of the
Yang-Mills field (1954).

2 Essential Structures

2.1 Two First Principles

1. Space-time is an infinite-differentiable finite-dimensional simply con-
nected and orientable manifold M. ‘

Comments : It is now well understood that the theory of fundamental
interactions represents a highly complex and intricate problem. As is
well known, it is just abstraction that allows us to introduce the sim-
plicity into the study of the most knotty questions. Therefore we apply
to abstract space-time. All possible properties of space-time that do
not enter into its definition are not fixed and represent a kind of pa-
rameters of the theory which, in particular, include the dimension of
space-time. It is expected that constraints on these "parameters” will
naturally appear in the course of development of the theory. The defini-
tion of a differentiable manifold is supposed to be known (see Kobayashi
and Nomizu, 1963; Schutz, 1982).

2. Essential properties of space-time are closely related to fundamental
laws of matter and thus predetermine them.

In what follows, the latter principle will be of crucial importance as a

means for narrowing an infinite set of possible mathematical construc-
tions.

2.2 Symmetry Groups

According to the first principles, the symmetry groups that are intimately
connected with the concept of a differentiable manifold represent the impor-
tant property of space-time. One group of this kind is a group of transfor-
mations of the differentiable manifold M itself, and another is a group of
transformations acting in tangent vector spaces. Before describing these sym-
metry groups in detail, we malke some comments: the definition of a tangent
vector or simply a vector is assumed to be known; a set of tangent vectors at
point p from M denoted by T,(M) is called the tangent space of the manifold
M at point p. This concept is extremely clearly expounded in the treatise by
Misner, Thorne, Wheeler, (1973). The vector field X on a manifold M is the
correspondence of a vector to every point p on M. The set of all vector fields
on M is a real vector space L(M). A vector field can be expressed in terms of
a local coordinate system z°, . ,2" 1 as follows: X = V*9;, where functions
V? are defined in a coordinate neighbourhood and are called the components
of X with respect to z°,...,z" L.

A diffeomorphism of a manifold M onto itself is a homeomorphism ¢ such
that ¢ and ¢! are differentiable (I{obayashi and Nomizu, 1963). A diffeo-
morphism is a transformation on M. Transformations on M form a group
denoted Dif f(M). The group of diffeomorphisms is often called the group of
general transformations of coordinates. Under the transformation ¢ , a curve
7 transforms into a curve 7 called equivalent to y. The transformation ¢ on
M induces an automorphism ¢ of the algebra of tensor fields that preserves
the type of tensor fields and is transposable with tensor contractions. Let
T = @T for any tensor field T; the tensor field T is called equivalent to T
with respect to the group Dif f(M). ,

The other group of symmetry can be characterized as follows: Tensor fields
of the type (1,1) on M are called affinor fields. Let S be a nondegener{a,te
affinor field on M, det(S}) # 0 and X € L(M). In a coordinate patch U with
local coordinates z0,...,2""! a nondegenerate lineaI_ ‘transfoymatior'l X -
X = SX has the form Vi(z) = Si(z)V7(z) , where Vi(z) ,Vi(z), Si(z) are
components of X, X, S, respectively, with respect to z%,...,2"1. A set- of
nondegenerate affinor fields is a group with an associative binary operation
P=ST , where . ' '

Pi(z) = Si(z)T}(a). e
The relation (1) at every point pfrom M can be considered as the composition
law for parameters of the general linear group #* = a;z’ . Consequently, to the
coordinates a on the group GL(n, R) one can put nondegenerate affinor fields

j
on the manifold M into correspondence. So, the second group of symmetry



underlying the very notion of differentiable manifold will be called the group
GL(n, R) of tangent bundle or simply the gauge group.

2.3 Gauge Principle

Now we are ready to formulate the gauge principle as the very important
property of space-time. The tangent space T,(M) is identified here with the
so-called gauge or internal space. The group GL(n, R) of tangent bundle is
the gauge-symmetry group. To complete the gauge principle it is to be added
with an important concept of a polarized particle. '

" Any pair (p, X) , where p is a point of space-time M and X is a vector
tangent to the manifold M at the point p , will be called the polarized particle.
Polarization of a particle is associated with direction of the related vector X.

2.4 Physical Meaning of the Diffeomorphism
Group ‘ |

Here we will expound some known results of General Relativity in an
appropriate form.

Let g be a symmetric tensor field of the type (0,2). It is the only field that
can obey equations derived from the variational principle and invariant under
transformations of the diffeomorphism group, § = @g. For simplicity we as-
sume that the transformation ¢ in M maps the coordinate patch U onto itself.

If 2°,...;2" ! is a local coordinate system in U , then the transformation ¢

can be represented by smooth functions in U

p:af = @), 07 i > f2) el (f(@) = 2, Filpa) = o'

The transformation § = @g in terms of the local coordinate system is of the
form

§ij(z) = gu(f(2) fi () fi(), (2)

where ff(z) = 8;f¥(z). Equations of motion of a particle defined by the
field g, are the Euler-Lagrange equations for extremals of the functional

q
S = [ \/gij(z)&i2idt. If 7 is an extremal of the functional S, a curve 7 = @y
P

. pd q .’ 13
equivalent to it will be an extremal of the functional S = [ {/g;;j(z)z*27dt .

R p
Thus, it can be said that the tensor field g is unseparable from the  diffeo-
morphism group that is a group of symmetry of gravitational interactions, in
accordance with the Einstein theory of gravity. Systematic and deep thorough

g i o i

account of the questions raised in this section may be found in ref.(Anderson,

1967).

2.5 Equations of motion of polarized particles

To establish the type of fields defined by the gauge principle, we derive
equations of motion for polarized particles. Transformations of the gauge
group act on tangent vectors and do not act on coordinates. Therefore, it is
important to determine the laws of change of polarization. Our aim is then
to derive the simplest equations of motion of the polarization vector when a
particle is moving along the given curve. '

Let us take points p and q on the curve ¥(t) corresponding to the moments
of time ¢ and # = ¢t + dt. To determine an infinitesimal change in the vector
X(t) in time dt, the vector X (%) at point g should be transported along the
curve (t) to the point p and compared there with the vector X () at point p.
In the general case the infinitesimal change of the vector field on curve (t) is
given by the expression (Schrédinger, 1950; Anderson, 1967)

§Vi = dvi + I aivhdt,

where V¢ are components of the vector X (t). To derive equations for V(t),
we apply to symmetry considerations. We assume that at every moment of
time ¢ an infinitesimal change of a vector along the curve v(t) is equal to an

_infinitesimal linear transformation of the vector induced by the gauge group.

If S;: = 6;: + BJ‘:dt is an infinitesimal gauge trausformation, then we have
§Vi= BiVdt,

from which we obtain a system of ordinary linear Liomogeneous differential
equations ) )

dv’ ;odad ivri ,

r jk—(—lTV = B;V’, (3)
defining the law of change of the polarization vector in the course of motion
of a polarized particle along the curve ~(t).

A qualitatively new system of equations can be obtained when an infinites-
imal change in the polarization vector is set equal to an infinitesimal linear

transformation of the vector 4 tangent to the curve y(t). So, we have

§V' = Fjildt
and consequently, . .
dv? o da? sdad
= 4 Tk _ i /
a TV = W
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Functions I‘j.k in eqst (3) and (4) are called the Christoffel symbols or com-
ponents of affine connection I .

Let us show that eqs. (3) and (4) allow us to establish the laws of change of
fields I, B, F’ under gauge transformations in a natural way. Let vector fields
X and X are equivalent with respect to the gauge group, then Vi = S]‘:Vj I
the components V* obey the equation (3), it is not difficult to verify that the
components V* will be a solution of the equation

where . _
% = SIS, I + Si9,T4, Bi = SLBfT,

and T‘ are components of the affinor field S~! inverse to S . In the other case,
we get .

dv: 4T dz?

dt ik
where the functions F‘L are expressed through I, e and S by the same formulae
as early , and

VL_Fz

=S F}'. .
Thus, the transformation laws of fields T, B, F' under gauge transforma-
tions are determined.
2.6 A General Description of Basis Fields

Inasmuch as the fields ¢,I', B, F' are directly connected with the most
general structure properties of space-time, they are to be treated as primary
fields according to the first principles. Let us mention some characteristic
properties of the basis fields.

For brevity, we will use the matrix notation

= (B;), F= (F;)’ I;= (Fj'k)’ E =(5;), TrB = Bx!.’ ST = (Sij-;k)’

in which the transformation law of the affine connection I is of the form
;=815 +50,81=T;+SV.§7!, (5)
where V; stands for the covariant derivative with respect to the connection T

VS =0;S+T;S - ST, =8;S + I, S].

'As SV;S7! is a tensor field of the type (1,2), then T is the affine connection
together with I' . Let

(Rfy) = Rij = oL — Ol + [T, T5] (6)

components of the Riemann tensor of the affine connection I' , then from (5)
and (6) we obtain ,
R = SR;S™". (7)
From relations (5), (6), and (7) it follows that the aﬂine connection is a gauge
field. .
The affinor field B transforms under gauge transformations by the follow-
ing law

. B =5BS™, (8)

whereas the affinor field F',
F=SF ’ 9)

As is seen from these formulae, affinor fields can variously transform under
gauge transformations; therefore, they are denoted by different letters in egs.
(3) and (4). A fundamental difference between the gauge transformations (8)
and (9) consists in the following: let S be an element of the gauge group; ob-
viously, (—S) also belongs to that group. Further, under the transformations
B = B = SBS~!, the same transformation of the affinor field corresponds to
different elements S and (—S) of the gauge group; whereas under the trans-
formations F' = F = SF this is not the case. For comparison, we remark that
two different elements of the group SU(2), z and (—z), = = (z1, 22, 3, T4),
z? + 22 4+ 22 + z2 = 1 give the same transformation in the usual vector space
and different transformations in the spinor space. Therefore it is not difficult
to suggest that theories of affinor fields B and F will radically differ from each
other. We will distinguish affinor fields of the boson and fermion type, which
can, in fact, be understood from the adopted symbols B and F. -

So, it is clear that an affinor field should be associated with structure
elements of matter. An important point is that the correspondence between
fields and observable particles is here more implicit unlike the usually assumed
direct correspondence.

To complete this section, we express, in terms of the local coordinate
system, other required transformation laws of basis fields induced by the dif-
feomorphism group, B =@B, I' =g . Using (3) and (4) we immediately
obtain

Bj(2) = pi(f(2)) Bi (f(2))f}(®), (10)



where i(z) =8;¢(x) ,

Ti(z) = Gi(f @) Tha(F @) M) fE(2) + @i (f(@)0i fi(x).  (11)

As can be verified by simple algebra, under changes of the variables F =
F(2%,...,2™ "), ¥ = 2%(20,...,2""!) the components §7(z), Bi(z), Fj-k(:c) of
fields §, B, T, are transformed as needed.

3 Affinor fields of the Boson Type

3.1 Formulation of the Problem

- As is noted above, the diffeomorphism group is responsible for gravita-
tional interactions, and thus, the gauge group we have defined is a symmetry
group of all other interactions. All that is required is to derive all the simplest
equations for basis fields invariant under transformations of the gauge group
or its subgroup because any of them can exist independently. In this section
we derive the simplest gauge-invariant equations of second order describing
interactions of an affinor field of the boson type with a gauge field . It is
assumed that the field B like g and I is real. This assumption means the
following: we would like to determine how the transition to complex fields is
related to the properties of space-time. 'We have no such possibility when in-
troduce the complex field ad hoc. This relation is of fundamental importance
as it will provide further information on the nature of the electric charge.

3.2 Connection between Symmetry Groups

Here we will carefully analyse the relation between groups of gauge and
space-time symmetries and start with a general consideration. Let I{ is a class
of theories whose equations can be written in a functional form F(Q, B) = 0,
where B is a set of dynamical fields and @ is a set of external fields. Note
that almost all known field theories belong to the class Ii'. Let G be the group
of internal symmetry of a theory; it induces transformations B = B = SB
and F(Q,B) = 0 if F(Q,B) = 0. It is also assumed that the group G is the
group of invariance of the equations F(Q, B) = 0 for all admissible changes
of the external fields @ . Besides,let H be the group of covariance of the
theory under consideration. The covariance means that the group H induces
transformations Q = Q = AQ, B= B = AB,and F(Q.B) =0, if F(Q,B) =
0. If B is a solution of the cquation F(Q, B) = 0, it can be shown that B’ =
(A~'SA)B = S'B is also a solution of the same equation. Hence it follows that
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the covariance group H is a group of external automorphisms of the group
G. In other words, the group H does not break the equivalence determined
by the group G. Really, from the relation B = SB it follows that the fields
B = AB and B = AB are also equivalent as B = ASB = (ASA™!)B, and
the transformation ASA~! = §' is shown to belong to the group G together
with § . The symmetry group of the theory under consideration can be
extended with the use of its covariant group in two ways. One way is to solve
the equation Q = AQ. If a set of solutions of this equation is not reduced
to the identical transformation of the group H , the external fields will be
invariant under transformations of a certain subgroup of the group H. The
most interesting are, of course, such external fields for which the invariance
group is a maximally large subgroup L of the group H. The other way is to
treat external fields on an equal footing with dynamical fields and to construct
a theory invariant under transformation of both the groups, G and H, if a
theory like that does exist.

It can be verified that the group of diffeomorphisms is a group of external
automorphisms of the gauge group, i.e. the gauge group is invariant under
transformations of the group Dif f(M). It can then be concluded that the
gauge group GL(n, R) is to be considered as the group of fundamental sym-
metry. To answer the question on the diffeomorphism group as a symmetry
group, we should first construct a theory invariant under transformations of
the gauge group and covariant under transformations of the diffeomorphism
group. Thus, we will consider at the first glance the fields B and T' as dynam-
ical, and the field ¢ as external. ' :

3.3 Gauge Covariant Derivative

To simplify computations and to write equations in a symmetric and man-
ifestly gauge-invariant form, we introduce the gauge covariant derivative. We
will say that a tensor field T of the type (m.n) has the gauge type (p,q) if
under the transformations of the gauge group there is the correspondence

T=>T=§---S:l§“---5".
P q
where

0<p<mand 0 < g<n.

The Riemann tensor is a tensor field of the type (1,3) and according to
(7) has the gauge type (1,1). From (8) and (9) it follows that the affinor field
being a tensor field of the type (1,1) may have the gauge type (1,1) or (1,0).



As follows from the con51derat10n made in sect. 2, the geometrical quantlty g
being a tensor field of the type (0,2) is to be assigned the gauge type (0,0).

Let now T' be components of the tensor field (tensor density) of the gauge
type (1,1), then by definition

DT = 6T + [F,', T]
is the gauge covariant derivative. For instance, for the Riemann tensor
D;Rjir = O;Rj;. + [I'i, Rjx).

For the affinor field of the boson type the gauge covariant derivative coincides
with the standard covariant derivative ,

D;B =B +[I;, B = VB

In the general case the operator D; is not covariant since D;T will not always
be components of the tensor field together with T'. However, the commutator
[D;, D;] is covariant, since

[Di, D;IT = [R;;, T].
Hence we obtain the important relation for the Riemann tensor
[Di, Dj]Rit = [Rij, Rui)- (12)
The basic property of the gauge covariant derivative follows from its definition
DT = S(D;T)S™", (13)

where T = STS~! , and D; is the gauge covariant derivative with respect to
the connection T' = I' + SV.S~L. So, the tensor fields B and D;B are of the
same gauge type.

3.4 Gauge Invariant Equations

Now it’s easy to write the simplest Lagrangian of the affinor field which
is invariant under the gauge transformations B = B = SBS~!,T= =T+
SDS™!,g = g = g. We have: ~

1 .
Ly =-3Tr(D:BD'B - m’BB), (14)

where m is a constant, D' = g”D; . In the last formula g are the components
of the tensor field g~! inverse to g, g;;¢*/ = 6f . Here g is simply the tensor field
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on a manifold and nothing else. But we shall use it for raising and lowering
indices in the usual way as this contradicts nothing (Anderson, 1967). From
(14) by the variation with respect to B we obtain the following equations of

the affinor field _
Di(\/|9|D'B) + m*\/|g|B =0, (15)

where |g| is the absolute value of the determinant of the matrix (g;;). When
deriving (15) one should take into account that Tr(D;B) = 8;(TrB). From
(7) it follows that the simplest Lagranglan of the gauge field is given by the
expression

Lp= —ZTr'(R;jRij), - (16)
where RY = ¢*¢/'Ry; . The total Lagrangian of the interacting fields B
and T is equal to the sum of the Lagrangians (15) and (16). Varying the

Lagrangian L = Lp + Lr with respect to I' with the help of the relation
6R;i; = Di8T'; — DjéT';, we obtain the following equations of the gauge field

Dy(V/lg|RY) = V/1glJ? (17)
the right hand side of which contains the tensor field of the third rank
=[B,D'B]. (18)

This field obviously has the gauge type (1,1). The tensor current J has to
satisfy the equation )

Di(Vlgld*) =0 (19)
as in accordance with (12), D;D;(1/]g|R”¥) = 0. From (15),(18) it follows
that J really satisfies the equation (19) and thus, the system of the equations

(15),(17) is consistent. The tensor character of the equatlons (15),(17) can be
seen from the relations

1 . , .
—D; D'B) = (V;V'B +w;V'B),
75l (V1g|D'B) = ( w’ )

= ViRY + w;RY - —(I‘fk -y )R"‘

1 i)
Di(V|g|R?)
Vgl
where w; = §;ln\/[g| — T¥; are the components of the covector field. Thus,

it’s shown that the group of diffeomorphisms is the group of covariance of the
equations (15),(17).

11



3.5 The Metric Tensor of Energy-Momentum

Varying the Lagrangian L = Lp + Lr with respect to g we obtain the
so-called metric tensor of energy-momentum of the considered system of the
interacting fields

Ti; = Tr(D;BD;B) + Tr(RiR}) + gi;L, (20)

where Rf = g“RJ-I. As is known, the metric tensor of the energy-momentum
plays an extremely important role in General Relativity. Let us find the
divergence T ij . The semicolon denote the covariant derivative with respect to
the Levi-Civita connection, belonging to the field g. The Christoffel symbols
of this connection are

. 1.
{5} = 59”(31‘9&1 + Orgjt — Digje)- (21)

If the fields B and T satisfy the equatious (15),(17) we can show that the
metric tensor of the energy-momentum satisfies the equation

T, =0. (22)

When deriving (22) besides (14)-(18) one should use the standard relations of
the tensor analysis (Schouten,1954) and the identity of Bianchi

DiRji. + DRy + DiRij =0

which can be easily obtained with the help of the relation [D;, D;]B = [R;;, B).
According to (20) the metric tensor of the encrgy-momentum has the gauge
type (0,0). From (22) and the gauge invariance of the metric tensor of energy-
momentum it follows that the complete system of equations derived from the
Lagrangian L = L, + Lg + Lr, where L, is the Einstein-Hilbert Lagrangian
will be consistent and invariant both under gange transformations and those of
the group of diffeomorphisms. This invariance has the profound meaning that
the group of diffeomorphisms as is mentioned above is the group of external
automorphisms of the gauge group and thus the procedure of the derivation
of the metric tensor of energy-momentum is gauge-invariant.

3.6 The Non-Linear Equations of The Affinor
Field : o

The derived equations of the affinor field itsclf are linear. Let us show that
it is possible to construct also a completely nou-linear gauge-invariant system
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of equations describing the interactions of the basis ﬁ'elds. As is known, the
determinator |gij] # 0 that, actually, allows us to obtain for the tensor field g
the equations invariant under the transformations of diffeomoyplusm group.
By analogy let us consider the case when the determinator |B*;| # 0. U.nder
this condition the affinor field B has the inverse one for which the non-linear
gauge-invariant equations can be suggested. The simplest gauge-invariant
Lagrangian has the form

. 1 ..
= _%TT( D;BD'B™Y) + ATrB — ZTr(R;,-R"), (23)

where ) is a constant. Taking into account that 6B = —B (6B‘1)L? by varying
with respect to B and I' we obtain from (23) the following equations

D(VIgIRY) = Vigl7,

Di(/1gIB7'D'B) = AVlgIB.

Ji =[B!, D'B].
It is easy to make certain that the tensor current J = [B~!, DB sa:tisﬁes
the equation (19) and thus the written system of the equations is con51st.ent.
Varying the Lagrangian (23) with respect to g we obtain the gauge-invariant
metric tensor of energy-momentum

Ti; = Tr(D;:BD;B™") + Tr(RuR) + g L

which satisfies the equation (22).

3.7 The Invariants of The Gauge Group

Some very interesting gauge-invariant quantities can be constructed fro.rn
the fields B and R;; . We dwell here on some of them. The invariants in

particular are ) ‘
p= TTB» A= lB;la Wij = TT‘R"']"

If B and R;; satisfy the equations (15) and (17) then taking th(? trace we
obtain that a scalar ¢ satisfies the Klein-Gordon equation and a bivector w;;
satisfies the Maxwell equations without sources

a(Vlglw¥) =0,

since from (18) it follows that TrJ = 0.

13



Let Q; = TrIi = % . According to (5) and the differentiation rule for
determinants, the transformation law for @ under gange transformations has
the form

Qi = Q; — 9;ln|D), :
where D = det(S}). From (6) it follows that w;; = 8;Q; ~ 9;Q;. Thus, the
object @) represents in some seuse a vector potential. It can be verified that
as a topological object, the differential form w = %w; ;da* Adad s the so-called
characteristic class w = ¢;. If B obeys non-linear equation . then takihg the
trace of both sides of this equation we obtain that the invariants ¢ and A
satisfy the equation

3:(Vlglg? d;in| ALY = A/ |gle.

From gauge invariance it follows that if there exists a state (B, RRj;), there
should also exist states obtained from this state by applying to it all possible
transformations of gauge symmetry. A state Is said to be singlet if it is
invariant under all the symmetry transformations. In our case a singlet state
is given by the equations B = SBS~!, R;; = SR;;S™ to be satisfied at any
S . The first equation has the solution B = «E, where « is a scalar field. If
a gauge field obeys the equation, I;; = SR;;S™1, it also obeys the equation
Ry = %TT(R,'J')E. Let I be components of the connection the Riemann tensor
of which equals zero, Rij = 0. Then the connection components I'; = Li+w;E ,
where w; are components of a covector field will satisfy the equation R;; =
1Tr(Ri;)E. To complete the description of the singlet state note that i
non-linear eq. for B it is convenient to set B = ¢“E, because in this case
B! = e™®E. As in this case ¢ = ne®, A = ™ then from the equation for
invariants ¢ and A we obtain that o will obey the Liouville equation

d(\/1glg" 9;a) = Ay/|gle”

which establishes the link with the Liouville field theory.

3.8  On First-Order Equations

It is noteworthy that nontrivial gauge-invariant cquations of the first order
cannot be constructed for affinor fields of the boson type. Indeed, the most
general tensor linear differential equation of the first order that can be satisfied
by an affinor field is of the form

C'V;B = MB,

where C* and M are components of given tensor fields of the types (2,1) and
(1,1) respectively. From (13) it follows that the field B = SBS~! will obey the
same equation when C* = SCS~! | M = SMS™! for all transformations of -
the gauge group. Hence it follows that C' = V'E , where V* are components
of the vector field X, and M = mE , where m is a scalar. As a result, for B
we obtain a very special equation VyB = mB, that is not interest.

3.9 General Physical Interpretation

The Einstein equations of gravity reads
Gij = K'T’ij )

where
"Tij = (€ + p)uiuj — pgij

is a hydrodynamical tensor of the energy-momentum (Lahday and Lifshitz,
1971). This tensor energy- momentum is similar to the 4-vector of current in
the Maxwell macroscopic theory of an electromagnetic field . In both cases the
right hand side of the equations is not related with the symmetry principles.
It is well known , that in the framework of quantum theory the equations
of electrodynamics are completely defined by the laws of symmetry in full
correspondence with the principle initiated by Einstein according to which
symmetry dictates interactions (Yang, 1980). With this and on the basis of
the results obtained above we can interpret equations (15), (17) together with

the equations
Gij = lzTij» : (24)

T;; = Tr(D;BD;B) + Tr(RuR}) + gi; L, (25)

where [ is the Plank length, as the equations of Einstein gravity on a quantum
level; we use the natural system of units (G = & = ¢ = 1)..The equations in
question are uniquely determined by the symmetry principles. So an affinor
field of the boson type has the meaning of the ”wave function ”for gravitating
particles. These particles, as it is shown earlier, are a single source of the
gauge field T that is called the affine connection in terms of geometry. Now
a central problem is to establish the role and status of the gauge forces in
the Einstein gravitationl theory and to detect them at the laboratory. In this
connection it must be noted that the equations of motion for the test particle
in external gravitational and gauge fields have the form

d*t - dxidz*  f ,dxF
e LA G, Lt = 2
ds? + {ie} ds ds + m ¥ ds 0, (26)
15



. ;
where w;; = TrR;j, and f is the constant of interaction with the gauge field. It
should be noted that the given physical interpretation is not complete without
consideration affinor fields of the fermionic type.

4 Affinor fields of the Fermionic Type
4.1 Definition of the Gauge Derivative

In this section, we consider problems of deriving and analysing the second-
order gauge-invariant equations for affinor fields of the fermionic type.

From (5),(8) and (9) it follows that it is necessary to define the gauge
derivative of the affinor fields of the fermionic type for constructing their
gauge-invariant theory, which is realized as follows. Let Aj = (A;k) be compo-
nents of a given affine connection A. Then components of any other connection
T can be represented in the form Fj-k = A;L_ + HJ‘:L,, where H; = (H;fk) are com-
ponents of a tensor field of the type (1,2). We assume that the connection
A is not changed under gauge transformations and accordingly we malke the
substitutions . .

=N+ Hjy, Dy = Ay + Hjy
in eq. (5). As a result, we find that under gauge transformations the tensor
field H is transformed by the following law

H;=SH;S '+ 5V;571, (27)

where V; is a covariant derivative with respect to the connection A.
For affinor fields of the gauge type (1, 0) we assume

P, F =V,F + H;F. (28)
Let P,F = V;F + H;F , then from (27) and (28) it follows that
BF = S(PF), (29)

where F' = SF. Thus, F and BF are transformed by the same law. If an
affinor field belongs to the gauge type (0, 1), we put

PF =V,F - FH;. (30)

From (27) and (30) we get P.F = (P,F)S™!, where F = FS~1.

Therefore, for affinor fields of the fermionic type the gauge derivative F; is
determined by a tensor field of the type (1, 2) and a given affine connection
A. This connection is not changed under gauge transformations and it will be
called the background connection.
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4.2 Reduction of the Gauge Group

The scalar Tr(FF) is not invariant under the gauge transformations F' =
SF and F = FS~'. Therefore we define F' = (F}) = (g* F{ g;) and will call
the affinor field F' conjugate to F through g. It can easily be verified that
these fields obey the following relations

17’; = F, 15;772 = FQ 1’;1,, TT(F) =TrF. : (31)

The scalar Tr(FF) is invariant under the gauge transformations satisfying
the equation X .
SS=F. (32)

From (31) it follows that the elements of the gauge group that obey equation
(32) compose ‘its subgroup. Rewriting (32) in the form g;; Si S; = g, we
conclude that the structure of that subgroup is determined by the quadratic
form g(X, X) = g;; ViVi. Then we denote the gauge group we are interested
in by Oy(p,q) where p and g are positive and negative indices of the inertia
of the quadratic form g(X,X),p+ q = n = dimM.

It can be verified that in the case under investigation we cannot avoid the
reduction of the gauge group, and we should fit the definitions of the gauge
derivative (28) and (30) to this fact.

If F is of the gauge type (1.0), then from (31) and (32) it follows that F is
of the type (0,1). According to (30), it must be B;F = V;F — F H;. However,
from (28) we obtain }3,7*:’ = 6,77’ + F'H;. Therefore, the gauge field H; and
covariant derivative V; should obey the conditions

H +H;=0 (33)

and . . :
V,F = V,F. (34)

As a result, for the gauge derivative we have PF = PF. From (27) and
(32) it follows that the relations (33) are gauge invariant. The condition
(34) is fulfilled provided that V;g;r = 2w; gjx , where w; are components of an
arbitrary covector field. It is of interest to study the case when the background
connection is the Weyl connection, however hiere we restrict our consideration
to metric connections, the Levi-Civita counection and integrable connection;.
the Riemann tensor of the latter is zero. The tensor gauge field H it is possible
to consider as dynamical component of the affine connection.



4.3 Equatio.ns of Interacting Fields

The simplest gauge-invariant Lagrangian is of the form
- .1 .
L= —%TT(P,-FP'F —m?FF) - Z:rv,-(R,-jR'J), (35)

where R;; are components of the Riemann tensor of the connection I = A+ H.
According to (5),

R,'j = R,‘j(A) + ViHj - v]’H,’ + [H,', Hj] + T,%HL-, (36)

where R;;(A) are components of the Riemann tensor of the background con-
nection and T,’; = Afj - A_’;i are components of the torsion tensor of this
connection. For the integrable connection R;;(A) = 0, and for the Levi-Civita
connection T,’; = 0. The Lagrangian (~35) i~s invariant under the gauge trans-
formations F = SF,H = SHS + 5V5, S5 =E.

Applying the variational principle to the Lagrangian ( 35) we arrive at the
equations

(P - T,)P'F + m?F =0, (37)
DI = VB, -
J'= 3PP~ 5P PR (39)

1
connection; for the Levi-Civita connection T; = 0. The gauge derivative D;

in eq. (38) is taken with respect to the connection I' = A + H. From (39) we
obtain that J; 4+ J; = 0, which is in agreement with the relation R;; + R;; =0
following from (33) and (36). The tensor current (39) is of the gauge type
(1,1) and obeys the equation D,-(\/I—_(]_IJi) = 0 if F is a solution of eq.(37).
Thus, the system of tensor equations (37)-(39) is consistent.

Let Hijx be components of a tensor ﬁgld skew-syminetric in two indices,
Hiji + Hij = 0. Setting H_;:L. = g“Hjlk, we may verify that this substitution
identically satisfy equations of constraints (33). From (29) it follows that
under gauge transformations the components Hiji change by the law

where T; = T}, are components of the torsion covector of the background

Hiji = HumSiSP + 9mSiViST'

This completely determines the essence of equation (38) as an equation of
the tensor field Hjje. It is interesting to note that the connection I' with the
Christoffel symbols I, = {#,} + ¢"Hju has a fine geometrical interpretation
given by Weyl in 1921 (Schouten, 1954).
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4.4 Reduction of the symmetry group of
gravitational interactions

The theory formulated in subsections (4.1)-(4.3) is gauge invariant. Fol-
lowing the analysis made in subsect. (3.2) we will deal with the problem of
the full symmetry group of this theory. First, we show that the gauge group
Oy(p, g) is not invariant under transformations of the diffeomorphism group.
Let an affinor field S be an element of the group Oy(p, ) and ¢ be a transfor-
mation in M. Setting as usual S = ¢S, = ¢ g, we obtain that g},-jS',‘;S'{ = gk
if gi;SiS] = gu. Hence it follows that the affinor field S is an element of the
gauge group Oj(p,q). When § = Ag, where X is a positive function on M,
then the gauge groups O,(p, q) and Oj(p, q) coincide. The inverse statement is
also valid. Thus, only those transformations of the diffeomorphism group are
external automorphisms of the gauge group Oy(p, g), that obey the condition
g = Ag. This condition in ‘the local coordinate system, according to (2), is
written as follows

gu{F(@))ff (@) fi(2) = A(@)gi5(2). (40)

The geometrical interpretation of equations (40) is that they define the group
of conformal transformations of the Riemann space V, with the metric ds? =
g,-,-d:z:i dz’. The group of conformal transformations V,, is a finite continu-
ous Lie group of dimension r not larger than ("—Hgﬂ?l (Eisenhart, 1949).
Consequently, the gauge group O,(p, ¢) is invariant under transformations of
the conformal group. It is just these transformations that do not break the
equivalence relationship established by the gauge group. In this sense the
reduction of the gauge group GL(n, R) automatically entails the reduction of
the symmetry group of gravitational interactions.

4.5 Gauge Principle and Gravitational Interactions

Two consequences follow from the performed analysis. The first implies
that the total symmetry group of the theory under consideration may contain
also conformal transformations in addition to the gauge transformations. We
do not examine it here as more important is the second consequence. Since
variations of the field g do not obey the condition 6 g = A g, the general method
of construction of the metric tensor of energy-momentum is not invariant
under gauge transformatiions (recall, this method results from the variational
principle). The metric tensor of energy-momentum of the Lagrangian (35)
being not invariant under transformations of the gauge group Oy(p,q) can
be verified in the following way. The invariant Tr(FF) characterizing the
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structure of the Lagrangian (35) and its symmetry properties varies when g
varies. The relation A= F F — F F, where A = (A}) , and

#dTr(FF)

A= dgit

shows that the tensor field A is not invariant under transformations of
the gauge group O,(p,q). Consequently, also the metric tensor of energy-
momentum is not invariant under these transformations. Thus, if we add the
Einstein-Hilbert Lagrangian to the Lagrangian (35), we arrive at the theory
with one of its equations being not gauge invariant. In this case the gauge
principle loses its meaning because the fields F' and H can be made to obey
equations not invariant under gauge transformations. So, in the theory of
affinor fields of the fermionic type the diffeomorphism group cannot be con-
sidered as a symmetry group. In this connection we note the following . The
basic idea of the Einstein theory of gravity consists in that the gravitational
field is associated with a tensor field of second rank. If this correspondence is
adequate to the nature of gravity, then the question is to be set concerning
a special role of the gravitational interaction. The principle of universality of
gravitational interactions requires experimental verification as it is not con-
sistent with the gauge principle in the case of affinor fields of the fermionic
type. Further discussion of gravitational interactions and experimental facts
will be continued upon derivation of the Dirac equation. Now we consider one
general problem of fundamental importance.

4.6 Energy-Momentum Canonical Tensor

Because of the contradiction of the principle of universality of gravitational
interactions with the gauge invariance it is necessary to solve the problem con-
cerning the energy conservation in the theory of affinor fields of the fermionic
type. To this end we apply to the method of derivation of the energy conser-
vation law in classical mechanics (Landau and Lifshitz, 1960). First consider
the case of integrable background connection. The Lagrangian (35) does not
depend on the coordinates z?, - - -, 2" ! explicitly. Therefore using the relation
0;TrF = Tr(D; F) and the condition (33) we obtain

.~ -1 ; 1 ;
O;L = =Tr(P'FP;P,F)+m*Tr(FP;F) - §Tr(R“°D,-R,-k) - 5(8jg"°)Tr(R,-1RL)
(41)
Now we employ the commutation relations [P, P;]F = —FR;; — TS-PL.F , the

Bianchi identity D;Rjt + DjRyi + DiR;i; = 0. and the metricity condition for
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the background connection
" . )
959" + Ajg™ + Ahg™ = 0.
Then, upon some computations we may write equation (41) in the form

6L

Wi — Wi o TR — 770 6L
ViW; = TWi+ TiWE = Tr(PF o) + Tr(Ryugr),

where

Wj =Tr(P'FPF) + Tr(R*Rj) + 6L
is the canonical gauge-invariant tensor of the energy-momentum of our system,
from which and from (37), (38) .we obtain the local energy conservation law

ViW; - TW} + TEwi = o.  (42)

If the background connection is the Levi-Civita connection, we can construct
a symmetric gauge-invariant tensor of the energy-momentum in a similar way.
Here we will present the final result

@ij — T7‘(Pi1*:'PjF) + T‘l‘(RikR{_) + _(]ijL+ Sikj;k + Sjki;k,
where

Im

Sk = gilsi g™ (8] )= 8 = %F(P:F) - %(P:F)F-

H
The energy-momentum tensor © oheys the equation ©% i = 0. However,
we cannot replace the metric energy-momentum tensor in the Einstein equa-
tion by the energy- momentun tensor ©7 as this contradicts the variational
principle.

S0, it is shown that there exists the local gauge-invariant energy conser-
vation law, and an interesting connection is found between the torsion tensor
and energy-momentum canonical tensor. We will st.udy this connection in
more details.

4.7 On the Physical -Meaning of the Torsion Tensor

_ As to the torsion tensor, we should first of all notice the following. If
I are components of an arbitrary affine connection T, then T?, = It —Ti
are components of a skew-symmetric tensor field of the type (1,2) cajll'ed the
torsion tensor of affine connection I'. The torsion tensor was introduced by

Cartan in 1922 and since then has been extensively studied by many scientists
(Hehl et al., 1976 ).
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' From definition it follows that the torsion tensor is a geometrical object

with respect to the dlffeomorphlsm group since according to (11) and defini-
tion B

Tiu(x) = Ton(£(2)91(f(2)) £](2) S ().
On the other hand, from formula (5) it follows that the torsion tensor is not
a geometrical object with respect to the gauge group. The tensor T;k defines
no representation of the gauge group. It may be said that the concept of the
torsion tensor is not gauge-covariant. This somewhat unexpected fact is of
basic importance as it is a reason unknown till now for which all attempts to
assign a physical meaning to the torsion tensor have not led to any heuristic
result. Therefore, the solution to this problem is to be looked for along another
direction to be shown below.
Consider the integral laws of energy conservation following from (42).

Components of a vector field X obey the equality

1 R
——0i(/JglV?
7ol (VlglV?)

that can easily be derived from the metricity condition of the integrable con-
nection. This equality results in the relationship

= (vl - T})V‘.s

1 ivii i i j i
ma,-(\/lglV’VVj) = (V:W} - W} +T’°WL)VJ+ (ViVI - TiVvhwi.

from which and from (42) it follows that the integral

= / (VIw})dsS

does not depend on the hypersurface chosen provided the components of the
vector field X obey the equation

viVi- TVt =0 (43)

Here we have take into account that the canonical tensor of energy-momentum
is generally not symmetric. For equations (43) being integrable we first de-
rive the condition VIVIT;',c = 0. Consequently, equations (43) are completely
integrable provided V,Tj, = 0. As it is known (Eisenhart, 1933) the affine
connection defines a simply transitive group of transformations if its Riemann
tensor equals zero and the torsion tensor obeys the equation V,T’ 0. If
the manifold M admits the simply transitive group, it is parallehzable and
hence is a spinor manifold (Geroch, 1968). As a result, we arrive at the fol-
lowing sequence: the torsion tensor, the canonical energy-momentum tensor,
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integral conservation laws, simply transitive group of transformations, spinor
structure. What is then the physical meaning of the torsion tensor?

Let not all structure constants of a simply transitive group be zero. Then
the torsion tensor defined by this group is also nonzero. Minkowski space-time
admits the simply transitive group with all the structure constants being zero;
this is the group of translations. So, to establish the physical meaning of the
torsion tensor implies to solve the problem of existence of physical space-time
admitting the non-Abelian simply transitive group of transformations. The
answer will be positive.

4.8 Energy Vector

Untill now we were based on the general assumption that space-time has
structure of a differentiable manifold. Now we have some indications at our
disposal that allow us to specify this general structure. In what follows,
space-time will be taken to be a differentiable manifold M admitting a simply
transitive group of transformations.

Let

E,=eé=—,a=0,1,---,n—-1 (44)

3
“drt
be vector fields on the ma.mfold being generators of a 81mply transmve group.
Then A
[Eﬂv Eb] = faBe, . (45)

where f&, are structure constants of the group. The vector fields (44) uniquely
define the system of covector fields w® = efdz’ such that
eie‘; = 6;'- , efel = 6.

The simply transitive group induces a natural integrable connection A on M
whose Christoffel symbols are

A}, = eldjef. : (46)

From the metricity condition of the connection (46) we have the natural metric
on M -

9ij = ﬂabe?eg, g7 = n¥elel, (47)
where 7, is a matrix whose elements are numbers. From (45) and (46) we
obtain for the torsion tensor

T, = —freielel , T; = Tp; = —fael. (48)
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By virtue of (45) and (47) we have
ehey = (Fo ~ mafien® = mafeen™)els (49)

where the semicolon means the covariant derivative with respect to the Levi-
Civita connection of the metric (47). Equation (43) allows determination of
generators H, of a mutual group.

In the Minkowski space-time Fy = ﬁa, and hence, the energy operator
H = —ihE,. For this reason, the vector field Ey = e}d; defined by (44) will
be called the energy vector. In this way, we also suggest that the physical
energy is, generally speaking, described not only by the well-known operator
H = ——ih‘-?%y. It can be understood that the problem of existence of a new
energy operator is inseparable from the physical meaning of the torsion. -

5  First-Order Equatiohs

5.1 Gauge Invariance

Earlier it was shown that for affinor fields of the bosonic type, no nontrivial
gauge-invariant equations of the first order exist. Let us now consider the
problem of existence of such equations for real affinor fields of the fermionic
type. _

Let C; = (C,) be components of a tensor field of the type (1,2). Consider

the equation . .
C'P.F = mF, (50)

where F is an affinor field of the gauge type (0,1),m is a scalar, F; is a gauge
derivative defined in subsect. (4.1), C* = g'/C;. According to (30) and (50),

C'BF =C{PF)S™' =mF.

Hence equation(50) is gauge invariant. If the field F is of the gauge type (1,0),

then the equation .
: (PF)C" = mF,

is also gauge invariant, which can easily be verified with the use of (29). Thus,
it is shown that there exist nontrivial gange-invariant tensor equations of the
first order for affinor fields of the fermionic type.

Unlike affinor fields of the bosonic type, the requirement of gauge invari-
ance does not here impose any constraints on the tensor field C', which allows
us to specialize it through its association with the problem of finding real ten-
sor representations of Clifford algebras. The so-called spinor representations
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of Clifford algebras are well known. The Dirac wave function is the carrier
space of a complex, faithful and irreducible representation of the Clifford al-
gebra (Cartan, 1966).

5.2 Clifford Tensor

The real tensor field C of the type (1,2) will be called the Clifford tensor
if its components C; = (C};) satisfy the equation '

E ~m k m k
CinCil + CinCi' = 295567,

or in the matrix notation, C;C; + C;C; = 2g;;E. We will demonstrate that
the class of Clifford tensors is not empty. At every point p of space-time
the Clifford tensor should define a real irreducible representation of a Clifford
algebra Cl{g). Then, based-on the theory of representations of Clifford al-
gebras (Chevalley, 1954 ) we conclude that the Clifford tensor can exist only
on a manifold A of even dimension, dimA{ = 2m, as all tensor indices run
over n values. Next we find that m should obey the equation 2m = 2™ that
has two solutions, m = 1,m = 2 . Consequently, the Clifford tensor can
exist only on manifolds of dimension n = 2 or n = 4. The case n = 2 will
be considered separately. Therefore, in what follows dimM = 4 throughout.
To satisfy the reality condition, it is necessary to require that the quadratic
form ¢(X, X) = gijViVj be of the signature (—,+,4+,+) or (—, —,+,+). We
will dwell upon the first of thein for the reason to be explained in the next
subsection.

The literature on physics deals mainly with the signature (4,—,—, =),
therefore, we will write the relation defining the Clifford tensor in the form

CiCj + CjC,' = —2_(]ijE- ) (51)

By definition, space-time admits a simply transitive group of transforma-
tions. Therefore, we set C}, = C’eleje? and substitute it into equation
(51). From (44), (47) and (51) it follows that components of the Clifford
tensor in the basis E; should obey the equation {Cy,, C3} = —21qE, where

fa = (+1,-1,-1,-1), C, = (C*,). We will solve this equation defining the
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components of the Clifford tensor in the basis E, explicitly:

00 0 -1 ' -1 0 00
00 -1 0 0 -100
G=lo10 0 "= 0o 010}
100 0) 0 001
00 01 0010
00 -10 0001
GC=lg 100l ©“={1000
10 00) 0100

Hence, the Clifford tensors are proved to exist on a 4-manifold admitting a
simply transitive group of transformations. The study of a general case of the
4-manifold with the metric of signature (4, —,~,—) is beyond the scope of
the present paper. According to (46) the constructed Clifford tensor obeys
the equation

ViCh=0 (52)

that will be useful in what follows.

5.3 Almost Complex Structure

Now let us explain the choice of the metric signature. Tensor fields of the
type (1,p+1),p=0,1,2,3,4,

= l(sfl"'frc. e,

Ey . . .
(Ci I) = Cnmr,, - p' iyeip 01 Jp?

1eeip

where 6,’1’,’:
basis that contains a unit affinor field E = (6¥),p = 0. For p = 2 we have

Cii1 = %(C,-"lm H Ci’;mC’}:’,) and so on. Let ejju be components of a
completely antisymmetric Levi-Civita tensor field with ego3 = £4/]g|, where
¢ is a chosen orientation of A, i.e. an even scalar is such that £ = 1 (de

Rham, 1955). We introduce the affinor field J with the equation

is the generalized Kronecker delta, will be called the Clifford

1 ...
J = 4_!e'J“C,-,-k,, (53)
where €' = gimgingkPglte,,,. . Then J* = —F ouly when the metric has the

signature (+, —, —, —). As it is known, the almost complex structure on a real
differentiable manifold M is an affinor field .J such that J? = —E ( Flaherty,
1976). Consequently, the affinor field we have introduced (53) is the almost
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complex structure in space-time. Thus, the choice of correct signature of the
metric is connected with a definite property of space-time. In what follows it
will be shown what are the laws predetermined by this property of space-time.
Here we will only consider the general characteristics of the almost complex
structure.

Let space-time be a real differentiable manifold A of dimension n = 4.
The system of complex local coordinates on M will be defined as a topological
mapping of an open region V of the manifold M onto an open region of
the number complex space C?. This mapping makes every point p from V
correspond. to two complex numbers z*¥ = z* + iy* k = 1,2. The manifold
is said to admit the complex analytic structure provided there exists a set of
systems of complex local coordinates V, satisfying the following conditions:
The union of all V; coincides with M,M = UV,; in the intersection of two
domains V, NV}, the complex local coordinates z¥ and zf, are holomorphic
functions of each other, zf = z¥(2f) and zf = zf(z¥) (i.e. z¥ are functions of
zf and not of their conjugates zV).

There is an important correspondence between the almost complex struc-
ture J on M and complex analytic structure (Flaherty, 1976). Let

Ni, = JioJi — J{oJi - Jio;Ji + J[0kJ]

be components of the Nijenhuis tensor of the almost complex structure J on
M. IfN jk = 0, then M admits the complex analytic structure, and vice versa,
every complex analytic structure on M induces the almost complex structure
J whose torsion tensor equals zero. So, intuitively it is clear that the almost
complex structure should have a direct relationship to the complex affinor
fields and electromagnetic interactions.

5.4 Variational Principle

Here we will study a Dirac-like equation
C'P,F = mF, (54)

where C is the Clifford tensor (51) and F' is a real affinor field of the gauge
type (0,1). As equation (54) is gauge-invariant, it remains to be seen how this
equation can be derived from the variational principle. To this end, we first
consider some properties of the Clifford basis following from its definition and
equations (51). We have the relations

pOiy-dp

1 o
CjCil,-.ip = Cjil"'iﬂ + I’;!‘(ngklclcr--k 6{51 k,,)’ (55)
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p=20,1,2,3,4. From'(51),(55) it followes that a affinor field may be repre-
sented as an expantion on Clifford basis

F= 24 . fir i, C,

p=1 17

where _ 1

plp+1)

fi1~~-i, = Z(—l) 2 TT(Cir"ipF)'

A completely skew-symmetric covariant tensor field of the type (0,p) is called
the p -vector, whereas the 0 -vector is simply a scalar field; and the 1 -
vector, a covector field. So, it may be said that components of p -vectors are
coordinates of the affinor field in the Clifford basis. Then it follows that in the
given case the affinor field can be made to correspond to an inhomogeneous

differential form w. The formal expression wp = 1}, fipeip Tt A <o A das s
called the differential form. of the degree p, then w = Eﬁ:o wp (Eguchi, Gilkey
and Hanson, 1980 ). Since in the general case w has 2" components and F
has n? components, we find that under the condition n? = 2" we get again
n=2andn = 4. We define the operation of conjugation so that the conjugate
affinor field F* obey the equation

. 41 oo
Tr(FF) = szo 5 Fiyei, f17.

Applying the operation of conjugation by means of g to the relation (51) we

find that € will be a Clifford tensor, if C is a Clifford tensor. Consequently,"

there exists an affinor field T' defined up to a scalar uniquely such that C; =
T~IC;T. Further, because J Ci+C;J = 0 then J™!C;J = —C; The operation of
cpnjugation we need is given by the equation F' = JTFT=1J-!, By definition,
Ci = —Ci, and hence, F = ¥4 1 (—l)ﬂ%tl‘)fil...;PC'i""iP We also note the

. p=0 pl
relations .
RF = FFR , TrF = T1(ﬁ), J = j, F‘ - F

The scalar product Tr(FF‘) is invariant under the gauge transformations
obeying the equation
SS =E. (56)

From the (56) it follows that the gauge field H; must satisfy the equation
CH;+H;=0. (57)
From the (54),(57) it followes that F obey the equation |

(ViF)C' + H,FC' = —mF,

- 28~

Equation (54) follows from the variational principle with the Lagrangian

Lp= %Tr(fC"'PiF) -

m_, =
—Tr(FF)

2

under the condition that the torsion covector of the ground connection is zero.
In the general case the Euler-Lagrange equation for L is as follows

CH(P, - %T;)F = mF, (58)

where T; = Tf.. The Lagrangian of interacting fields

~_. ~ 1 .

L= -;-Tr(FC‘P,-F) ~ STH(FF) + {Tr(RyRY) (59)

is invariant under the gauge'tra115f01'11iati01ls of type (56).. It is interesting
that the energy-momentum canonical tensor of the Lagrangian (59) is not

symmetric because
Wi= %TW‘(F‘CinF) + Tr(R'Rj) — L&
but it is gauge invariant.

5.5 Structure of the Gauge group

Equation (56) defines a subgroup G. of a principal gauge group. We
shall now describe its structure and then vary the Lagrangiau (59). Let an
infinitesimal transformation of the group G, be of the form S = F + A; then
from (56) we get A+ A = 0. Because of the equality C; + & = 0 we have
A= -é-e,-C' iy %eijC' i, where e; are components of a covector field, and ¢;; are
components of a 2 -vector. If B = {f;C'+ 1f;C¥, then D = [4, B] will also
obey the equation D+D = 0. Let D = IhiCi+10;;CY | then by = e;f] — fiel,
hij = eif; — e;fi + eir f}' - Cjk f,‘ . Thus, we can say that the gauge group G,
has the structure of conformal group.To canonical parameters of that group
there correspond p- vectors, p = 1,2, on the maunifold A.

Considering transformations of the gange group G, in the Clifford basis
we may deduce that external automorphisis of the group G, are only those
transformations of the diffeomorphisn group for which A(z) = 1 in eq. (40).
Hence it follows that the gauge group G, is invariant under isometric trans-
formations of the metric ds? = g;;dx’dai. Therefore, the group of isometric
transformations may generally be a synunctry group of the theory along with
the group G.. It is interesting to note that the isometry group of a given
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metric is a finite continuous Lie group of dimension r not Iarger than "("+”

Jir= 9-("2—“1 then g is a metrical tensor of the space of constant curvature
(Eisenhart, 1933). So we here meet with almost the same situation as in
the previous section when the second-order equation of fermionic type was
considered.

5.6 Equations of a Gauge Field

To derive equations for a gauge field from (59), we solve the equation of
constraints (57). If we set

(Hzl_;) =H;= %Ximcm + ‘i'),imlcm’a : (60)

where X;;,, are components of a covariant tensor field of the second rank and
Yirar are components of a covariant tensor field of the third rank that is skew-
symnetric in the last two indices, Y+ Yim = 0, we obtain a general solution
to equation (57). According to (52) and (60) for the Riemann tensor of the
connection I'; = A; + H; we have

1 1
R;; = ’2’Fijkck + ZHijleklv _ (61)
where
Fijt =ViXp+ XaY) — (i j) + T) X, (62)
Hiu = ViYiu + YaemV + XaeXjt = (i & §) + TP Y. (63)

So, Fij+ and Hiju are coordinates of the Riemann tensor of the connection
I' = A + H in the Clifford basis. From (60) and (61) it follows that the
Lagrangian (59) can be represented by a sum of three Lagrangians

1 ~ . ~
Lp = 5Tr(FC'V,F) - %’-Tr(FF)
1 S PR
Ly = =3 Fy 7" = cHijuHY

Ly=-X;J9 - %}-’,-,-k.ﬁf",

where

Ji = %Tr(CiFC"f‘), Tk = i—Tr(C"FC"kF') (64)

are tensor fields of currents.
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By a variational procedure, from the Lagrangian LH + L we obtain equa-
tions of the gauge fields X;; and Yj in the form

(Vi = TYF 4 VAR 4 Xy - SR = i, (65)
(Vi = T))HUM 4 Y giml 4 XEEl_ (] e 1) - 2:/;],,,}1’"‘“ J*. (66)

If F satisfies equation (58), the tensor currents J¥ and J* obey the equations

ViJ¥ 4 Xy J9* + ViI* = 0,

V.Jijk + )»'.jJI'“? +.Y3i.]ik _ (_] - k -0

which may be verified with the use of (58) and (64) The same equations
follow from (65), (66) and the identities

ijk 1 ijk ijk 1 ij
ViViF = —=TIVF | ViV HM = STV .

Hence, the system of equations (58),(64),(65),(66) is consistent.

Thus, the simplest laws describing the dynamics of a real affinor field
within the framework of gauge principle have been established and quite defi-
nite extra indications of the structure of space-time have been found. Now we
are ready to determine electromagnetic interactions and to derive the Dirac
equation.

6 Electromagnetic field and Almost
Complex Structure

6.1 Interactions of electromagnetic type

Almost complex structure being an essential property of a real space-time
manifold defines interactions of electromagnetic type. This notion is specified
by the following natural conditions:

i. The almost complex structure J is an element of the gauge group and
generates its two subgroups G(J) and U(1). The subgroup G(J) is composed
of the elements of the gauge group obeying the equation

SJS~t =,
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whereas the second sttbgroup U(1) consists of elements of the form @ =
exp(3aJ) = cos$ + Jsing , where « is a scalar. The reasons for half an-
gles will be clear from further consideration.

ii.The Lagrangian describing interactions of electromagnetic type should
be invariant under transformations of the gauge groups G(.J) and U(1).

iii. The Riemann tensor should also be invariant under transformations of
the gauge group U(1).

Consider interactions of the electromagnetic type in framework of the
gauge groups O,(p,q) and G.. Let J be an element of the first gauge group ,
then it has to satisfy the equations

JI=E,J*=-E.

When p = 1, ¢ = 3, i.e. for the gauge group O(1, 3) these equations have ,

no solution. A solution exists for p = 2m and ¢ = 0. Thus, second-order
equations of the fermionic type are the entity that does not admit interactions
of the electromagnetic type.

The almost complex structure for the group G, will be denoted by J.
From equations JoJy = E and J? = —E it follows that Jo = ViC; , where
V? are components of the vector field X satisfying the equation g(X, X) = 1.
It is interesting that such a nonzero continuous vector field exists owing to
the normal hyperbolic type of metric ds® = g;;da‘da’ (Lichnerowicz, 1955).
According to the results of subsect. (5.6), this vector field is to be identified
with the energy vector Ey = eid;, so that V! = ei. It is not difficult to
construct infinitesimal transformations of the gauge group G(J) induced in
G. by the almost complex structure Jy. Let S = E + A be an infinitesimal
transformation of the group G, then it can be shown that [Jy, A—JyAJg] = 0.
As a result, with the requirement of gauge invariance in mind, we obtain that
the affine connection associated with the almost complex structure Jy can be
written in the form I'; = A; + H;, where

Hi = Sk 4 (YO, (67)
Here w; are components of a covector field, and Y;;n are components of a
covariant tensor field of the type (0,4) skew-symmetric in the last three in-
dices. As VJy = 0,then under the gauge transformations S = exp(%aJo) we
have H; = }{(w; + 0;a)Jo + 3(YijuV")C*. Computing the Riemann tensor
components we get :

1 1 '
- Ry = jg‘quo + ZHijle |, (68)
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where w;; = Jw; — Ojw; ,
Hip = ViZjsi + ZumZj) — (i & §) + Ti Zmia (69)
Zijk = YiuV'. (70)

From (68) and (69) it follows that the Lagrangian (59) can be written in the
form

- ~ 1 | y ;1 "
L= il-Tr(FC'ViF) - Brn(FF) - cwijw — cHguH* — T = 5235 2,
2 2 4 8 2
(71)
where ) ) 1~ ’ . ‘
Ji= ZTr(FC"FJo ), JH = I(Fc'Fcﬂ).

The Lagrangian (71) describes interactious of the electromagnetic type in
framework of the gauge group G.. ~ ‘ '

Consider the vector current J' = Y(FC'FJ;). As Jo = V;C', then J' =
Vi J*, where JU = ;i-Tr(f C'FCJ). An interesting result Lolds true giving
evidence for the theory being sclf-consistent: if the metric ds? = g;;dz’'dz’ has
signature (4, —, —, —), then the component 00 of tensor fei dJ ” is nonneg-
ative, J% > 0, and J% = 0 if F = 0. This result can be proved by expressing
the components J¥ through the coordinates of the affinor field F in the Clif-
ford basis. The time component of the cwrrent J* may be considered to be
the probability density.

Now let us ascertain the physical meaning of complex affinor fields of
the fermionic type, ¥ = ¥, + i¥,. Introducing the projection operators
P1 = %(E— iJQ), P2 = %(E-{- 'iJ(]). Pl + Pz = E,Plz = P],PQ.Z = Pz, we
can represent U as a superposition of two pure states, ¥ = ¥, +¥_, where
¥, = UP, and ¥_ = ¥P,. It is not difficult to write the gauge invariant
Lagrangian for ¥, by setting

* =
\II+ = \I/+‘

where the bar means complex conjugation, and taking scalar product in the

form Tr(\il+ T, ). The equation for ¥, will contain the vector potential w;
in the form iw;. The equation for ¥_ will include the vector potential w;
in the form —iw;. Thus, it is clearly seen haw the almost complex structure
is connected with the notion of a particle-antiparticle, ¥4 < ¥_. Doubling
of the number of degrees of freedom of the field acquires a clear physical
meaning: If we restrict ourselves to the real affinor fields, the states of particle~
antiparticle cannot be introduced because J§ = —E though interactions of the
electromagnetic type do exist.
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6.2 Connection with Dirac Theory

Recall that the correct signature of the metric was found on the basis of
the almost complex structure (44). Tlierefore, it seems of interest to find the
corresponding interactions of the electromagnetic type. From (44) it follows
that J is not an element of the gauge group G.. As JJo+ JoJ =0, J=J,
then JJyJ = Jo. Hence, we conclude that J is an element of the gauge group
given by the equation

SJoS = Jo. (72)
From equation (72) and [J, S] = 0 it follows that the gauge field H; should be

subjected to the constraints H;Jy + JoH; = 0 and H;J — JH; = 0, We will
write the general solution of these equations as follows

H; = %AIJ + 4l()"ijklvl)cjk» (73)

where A; is the 4-vector potential and Y are components of the tensor
field of the same type as in equation (67). Now we shall construct a gauge
invariant Lagrangian of interacting fields. The scalar Tr(F JoH ) is invariant
under gauge transformations satisfying equation (72). As Tr (F ) = Tr(F)
and Jo = —Jy, then Tr(FJoH) = ~Tr(HJyF). From this it followes that
Tr(FJoF) = 0. So, in the case of real affinor fields the Lagrangian will be
massless. Owing to this interesting property we should immediately go over
to complex affinor fields ¥ = ¥, + i¥5. Setting, as above, ¥y = U(E —iJ)

and V_ = llII(E + zJ), let us now consider an expression ¢ = Tr(¥,Jy \Il+)

where ¥ = ¥, —i¥; and \II+— \IJ+. Performing complex conjugation we obtain

@ = —p. Consequently, the invariant iTr (U, J ¥, ) is a real scalar.
As a result, we arrive at a gauge invariant Lagrangian of the form

L= %Tr(C‘I’;lII+J0 Ty) — “7”T7~(\11+.10 U,) +ce + %Tr(Rin"j), (74)

where R;; are components of the Riemann tensor of the connection I'; = A;+H;
and A is the integrable connection. From (73) it follows that the Lagrangian
(74) can be rewritten as

P o1 ., 1 .
L =Ly~ AJ = 3F3F7 = 525 J% — SHigu ™, (75)
where Z;;+ obeys equation (70); and Hjju equation (69), and
Fyj = 8;A; — 94,
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Ly = -;-T1'(C‘V,~\II+J0 0y) - -;—T1~(\I'+J0V,~ Ty C) — imTr(Ty Jo Ty),
i1 i * it _ 1 i Koy X
J = ETT(C \Il_’.:]() \I’+), J = :Z‘TT(C \I’+C JQ \IJ+).

The proof that the 00-component of the field J¥ = 1Tr(C'¥,C7 T,)
being positive definite proceeds in the same way as for J% = }Tr(C°FCOF).
The variational principle produces for ¥, the following equatlon

Ci(Vi - %  — iA) T, — UL H,; = mT,, (76)
where T; is the torsion covector of the background connection A,and

1 "
H;= Z(YUHV')C".
For reasons to be expounded in detail in the next section, we set Yiu in
(76) to be zero and study the equation

Ci(V; — -;— i — iA;) P, = mTy (77)

Consider the affinor fields Q, = eC;,a = 0,1,2,3. From (47) and (51) we get
Q.Qs + QuQ. = —2n4E. Since JQ, + Q,J = 0 and, according to (46), (52),
ViQ. =0, the operator £ = iQQ; commutes with J and acts in the space of
solutions to equation (77). Let us now solve the equation ¥, ¥ = ¥, . The
affinor field ¥, in the Clifford basis can be written in the form

Uy = $E + $:C" + 50,7 + (esud )M ~ ig ] (8)

provided that the bivector components satisfy the equation ¢;; = %e;jkzqﬁ“.
Setting ¢; = zqef,and ¢ij = zapefel, we find that the equation ¥, 5 = U, is
satisfied if zg = z3,21 = —i29 and

203 = ¢, 201 = —i2p2, 212 = —1203, 223 = —iZp1, 231 = —12p2.
Therefore, putting ‘
= ;i Fhami, & = u, dij = a(ling — Lyni— mar; +myig) + a(lim; — ljmy),
(79)

where

0 _ .3 o ol o2 = Ll 2
L=e'+ed,ni=el —el,mi=e} +ief,m;=e; — i€
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and 1y, 19, 13, ¥4 arearbitrary complex functions, we derive a general solution
of the equation ¥, X = ¥,. It is worth-while to notice that the known basis
l;,n;,m;,m; (Newman and Penrose, 1965) arises here in algebraic context
naturally. Inserting (79) into (78) and (78) into (77) we derive for ¥y, ¥3, 3,94
the following system of equations

(=Dy — D3)i3 + (D1 + iDa)ps = mipy,
(=Dy + iDa)hs + (Do — D3)ha = mapy,
(Do — D3)hy + (—=D1 — iDg)yrp = ms,
(Dy = iDa)hy + (—=Do — D3)ipy = maps,

where ] 1
D, = el (8; - -2-:/} ~iA)=E, - §Ta —iA,,a=0,1,2,3.
If we introduce the matrices
000 -10 00 01
o0 0 01 oo -10
Y110 oo " lo-100]"
0 -1 00 10 00
0 0 0 i 0 0 -1 0
s [0 0 o0 s | 0 0 0 -1
Y=l 0 =i00]” 7T -1 0 0 o
- 0 00 0 -1 0 O

then the system of equations for 1, ¥, ¥3, 14 can be rewritten in a symmetric
matrix form
Y Dotp = map, . (80)

where 1 is a matrix column. The matrices 4® obey the standard relations
'}’a')’b + ,Yb,ya — _2nab.

Thus, equation (80) is nothing else than the Dirac equation. The Dirac La-

grangian follows from the Lagrangian (74) with the use of the above described

substitutions. Introducing the projection operator P = ;(E —iJ)(E +iQ1Q2)

we can write the affinor field equivalent to the Dirac wave function ¢ in the

form

Up=UP= %\I!(E —iJ)(E +iQ:1Q2). (81)

So, on a formal level, the connection with the Dirac theory may be considered
to be established. However, it must sheds new light upon the Dirac theory.
Consequently, it is necessary to analyze this problem more thoroughly.
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6.3 The Yang-Mills Field

First we will demonstrate that the tensor gange field Y;;u V' we have ne-
glected in deriving the Dirac equation is the Yang-Mills field. The reasons
are as follows: The group of gauge symmetry of the Lagrangian (71) is de-
fined by the equations S = E,[Jy,S] = 0 from which it follows that this
group has the structure of the group SU(2) x U(1). In similar fashion, from
the equations $Ju8 = Jo, [4,S] = 0 we find that the group of gauge symme-
try of the Lagrangian (74) is the group SU(2) x U(1). Because of this fact
we should look for the correspondence between the tensor gauge field Y V!
and vector gauge Yang-Mills field or, which is the same, between the La-
grangian Ly = %TT(R,’;‘RU. ) given by the Riemann tensor of affine connection
Li=A; 4+ %(Y},-HV HCs* and the original Yang- Mills Lagrangian (1954)..

In the Minkowski space-time the torsion tensor is zero. In the Cartesian
coordinates A = 0 and components of the vector field Ey = eid; = V9; can
be taken in the form Vi = ). Thus, Y;;uV' = Yijre. Since Yiju = ~Yaj =
—Yiji, then nonzero are only the components Yiiz, Y230, Yizio. From this
and (69), (70) it follows that the strength tensor has nonzero components
Hum,Huza,Hnn . If we set B} = —Ypgy. B} = —Yi30.B} = —VYi, and

1espect1vely, F,J = ,-,-23,F2 = ,,n.Fr‘ = Hjj19. then from (69) we obtain
= §;B} — 9;B} + B!B} - B!B} and a siuiilar equatlons for F3 F. With
thls 1dent1ﬁcamon the Lagnngmn Lr= ~T; ; ,R" )= ——— i H ikt commdes

with the original Yang-Mills Lablan{,mn ,
So we conclude that geometrically the Yang-Mills field is the Yang-Mills
affine connection. In principle it is also lmportant to emphasize that the
so-called isotopic index has masked not only the tensor nature of the gauge
Yang-Mills field but also thie energy vector Ey = (’63,’ = Vi9;. Let us show
that this fact along with the requirement of relativistic invariance allow us to
understand why the Yang-Mills ficld is not so usual as the ele(:t,romagnetic

field.

6.4 Relativistic Invariance

Up till now we have mainly considered the gauge symmetry. Now let
us examine the Lagrangian in the light of space-time syminetry. As is seen
from (73) and (74), the Lagrangian (74), besides the quantities describing
the state of the system, contains the Minkowski metric and energy vector
Ey = 'V"é); = %. Therefore, this Lagrangian will be invariant under those
space-time transformations which leave unchanged not only the metric tensor
but also the vector field Fy. This group of space-time transformations will
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not be the Poincare group because it will not include boosts (pure Lorentz
transformations). Thus, the requirement of relativistic invariance does not
hold valid. Here we have only the relativistic covariance. Consider what
happens if we switch off interactions with the Yang-Mills field. As in this case
Jo = VC;, the Lagrangian will nevertheless contain the vector field Ej, but
equation (77) will be relativistic-invariant. And which is more, it will also
be invariant under gauge transformations of the type ¥, = ¥_S under the
condition that [S, J} = 0,V,;S = 0. Just the latter was used in deriving the
Dirac equation. Let us now show how we can achieve the relativistic invariance
of the Lagrangian (74) by combining space-time and gauge transformations.
Let P, = 6i9; and M, = (z46) — 246%)0;, where x, = nauz’, are vector fields
that are generators of the Poincare group and Q, = 8iC; are affinor fields
utilized in deriving the Dirac equation. We have the following commutation
relations between F,, My and Q,

[Pa’ Qb] =0, [Qa’ ]Mbt‘] = NabQc — NacQs> (82)

that can be most easily computed in the Clifford basis. I we set Qq =
%(Q‘,Qb — Q1Q.), it is not difficult to verify that [Qa, Qbc] = —7u@c + 72cQs-
From this relation and (82) it follows that the operators Lo = Mg + Qu
commute with Qq, [Qq,Li] = 0. Since .J; = Qq, the Lagrangian (74) will
be invariant under transformations induced by the generators P,, L. which,
like P,, M., satisfy the structure relations of the Lie algebra of the Poincare
group. If we consider the action of operators L in space ¥y, v, 3,104, We
obtain standard generators of the Lorentz group in the Dirac theory. So, the
relativistic invariance of the Lagrangian (74) and the Dirac theory is achieved
at the expense of gauge transformations. It is, however, still unclear why the
Yang-Mills field is sacrificed to this, so to say, hybrid relativistic invariance.
In this direction, certain studies are to be made because it -is interesting
to deal with unusual properties of seemingly well-known objects. Here we
note the following. As it may be deduced from the shape of the electron
Dirac wave function defined by equation (81), electrons are splitted into two
classes differing in the quantum number with values £1. We denote the
states with quantum numbers +1 and —1 by [+ +4 > and |4 — > respectively.
Superposition of these states | + ¢ >= cosp| + + > +sinp| + — > should
possess interesting properties dependent on the angle . If this new state is
realizable as-an unstable particle, then interaction of this object (mnay be u or
7) with the Yang -Mills field is possible. Of special interest is that the isotropy
of space-time should break in this case and this violation will obviously be
maximal at ¢ = .
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Let us imagine the space-tiniec in which the group of space-time transfor-
mations preserving the metric (47) coincides with the group of space-time
transformations conserving the energy vector Ey. In this space-time there is
no necessity to remove the Yang-Mills field aud it should "work” to the full
strength. In what follows we will show that space-tiie of that kind does ex-
ist. It is quite possible that it is of fundamental importance not less than the
Minkowski space-time.

From (81) and (82) it may be concluded that in the space of Dlrac wave
functions not only the hybrid operators L, act, but also an operator of the
proper Lorentz group, Mjs, that defines rotations about the = axis. In this way,
the Dirac wave function retains onc “genuine” rotational degree of freedom.
It can freely rotate about the = axis. Such is quantum-mechanical picture
of a "rotating electron”; it shows that along with phenomena of interference
and diffraction, the proper nmg,uctl( mowment of the electron demonstrates its
wave properties.

And finally, note that if we go over from the Lagrangian (74) to the Dirac
Lagrangian, the almost complex structure Jy transforms into the matrix 79
that camouflages the energy vector Ey. :

6.5 On Gravitational Interactions of Electrons

Once the connection with the Dirac theory is established, we turn again
to the question about the universal character of the gravitational interactions

‘in direct relation to concrete stable physical objects, electrons. In Wigner's

opinion {1964), it is conceivable that the special role of the gravitational inter-
action may dissolve in higher harmony. Now there is no question that higher
harmony predicted by Wigner is the gauge syvimmetry. As has been shown in
subsect. (4.4}, reduction of the principal gauge group leads to reduction of the
diffeomorphism group, the group of symmetry of gravitational interactions.
We see that without reduction of the gauge group it is impossible to derive the
Dirac equation. Therefore, the problew of gravitational interactions of elec-
trons assumes a fundamental importance. In this connection let us discuss
the measurements of gravitational acceleration of electrons (Wittenborn aud
Fairbank, 1967} and similar planned experinients with positrons (Fairbank
and Wittenborn, 1988).

The experiment has shown that even if electrons suffer from the gravity
force, this is not observed experimentally. This result has been interpreted
in context of the work by Schiff and Barnhill (1966), from which it follows
that positrons in similar experiments should fall with the acccleration a = 2g,
where g is the gravity acceleration. Another explanation we propose here con-
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sists in that electrons and positrons do not interact with the gravity field at
all and thus the same results of experiments should also follow for positrons,
i.e. positrons like electrons should fall with a zero acccleration in the gravi-
tational field of the earth. We can say that electrons and positrons represent
such a form of energy which does not gravitate. In any case, the experiment
with positrons will be of great importance for understanding the nature of
gravity forces. Unfortunately, the measurement of gravitational acceleration
of positrons in the group of Fairbank is open to question (Nieto and Goldman,
1991), therefore it remains to believe that such experiments will be undertaken
in other groups of experimentalists. Results of these measurements may have
the same effect as the measurement of the proton magnetic moment.

7 Hyperbolic Space-Time

7.1 Definition And Some Properties

As mentioned above, the Minkowski space-time permits the Abelian simply
transitive group of transformations. Here the definition will be given for
the hyperbolic space-time which permits the non-Abelian simply transitive
group of transformations and differs from the Minkowski space-time both in
geometric and in topological properties. In the next subsections there will
be brought the arguments indicating that the hyperbolic space-time together
with the Minkowski space-time is interesting from the physical point of view.

Let the indices marked by capital letters run over five labels 0,1, 2, 3,4. In
the five-dimentional Minkowski space-time M}, with Cartesian coordinates
z4 and metric '

ds? = papdztdz® = (dz)? - (dz')? — (da?)? — (da®)? - (dz)? (83)
let us consider the one sheet hyperboloid H*
napa’a® = (') = (@) = (2*) - (%) - (a)! = =, (84)

where a is a positive constant,radius of H 1,

If we equip H* with the metric, induced by the quadratic differential form
(83), then H* will transform into the Riemann manifold called the de Sitter
space-time in physical literature . For escaping the confusion let us emphasize
that here we won’t use the de Sitter metric as the one-sheet hyperboloid
(84) permits the simply transitive group of transformations and thus it is the
parallelized manifold. Let us prove this.
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We will use the scalar product (X,Y) = n4pVAUP for any vector fields
X =V49,,Y = U439, on .Mfw The vector fields

- Py = 6580, Map = (2465 — £p65)8c,

w.here Ty = napx?, are the generators of the Poincare group of the five-
dimensional Minkowski space-time. All the vector fields Mp are orthogonal
to the radius vector R = 2€8¢ at each point 1’\115'4, (R, M4p) = 0, whereas it
is not so for the vector fields Pjy.

The expansion Py = P4+ %(R, P4)R~ %(R, Pa)R forms the vector fields

1
Ma=aPy+ -(;(R, PR = (055 + %-’L'Axc)ac

wh.ich are tangent to H* because from (85) it follows that (R, M4) = 0 at each
point of H%. The vector fields A4, M4p form the Lie algebra of the group of
the conformal transformations H? because '

[M4, Mp] = —Map, [My, Mpc] = napMc — nacMs. (85)

Let us introduce the vector fields Ey = Ay, Ey = Myy+ Myz \Fy = Moy + My,
E3 = Msq + My, and write out their components

1 1 1 1 1

—_ .2 . | 3
Ey = (a + =a§, ~wxoa', —wpa?, ~xpa®, ~aoat)
a a a a a

Ey =(0, -2y, —23, 29, 11)
Ey = (0,23, —24, —y, 29)
E3 = (0, —xg,xy, —q, 3)
It is easy to see that the vector fields Ey, E}. E», E3 don’t become zero at any

point of H* and they are obviously contimtous. Because of (E,, E;) = 0 for
a#b,a,b=0,1,2,3 and

(Eo, Ey) = —(E\, Ey) = —(Es Ey) = ~(E3, E3) = a® 4

the vector fields E;,a = 0,1,2,3 are lincarly independent at each point HY,
which was to be proved.

. Thus it is shown that hyperquadric (84) is the parallelized manifold. Ow-
ing to this we equip H* with the metric such as (47) which differs from the de
Sitter metric and thus we transform H? into the hyperbolic space—t.ilr;e Hi,.
From (85) it follows that "

[E(),Ei] = O, [E,',Ej] = 2"ijkEk " Ij k= 1. 2,3.
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where e;j; is the Levi-Civita completely antisymmetric symbol with ejo3 = 1.
Thus among the structure constants of the found simply transitive group of
transformations of the space-time H{; only

fz}3=f321 =f?-2=2 (86)

are not equal zero. From (49), (86) it follows that the vector field Ey is

absolutely parallel relatively to the Levi-Civita connection on H{; which is

formed by the vector fields E,,a = 0, 1,2, 3. For comparison let us notice that -

the de Sitter metric does not permit obviously the absolutely parallel vector
fields.

The vector fields Fy = My, F} = Myy—Mys, Fy = Mog— Mz, F3 = May—Mys
also form the global basis on H f,;;, mutual to the basis of E,. The matrix of the
transition T = (E;, Fj) as easy to check coincides with the matrix of rotations
in three dimensional vector space. From (85) it follows that the vector fields
F, satisfy the following structure relations

[FO’-FZ'] = 0, [-Fn-FJ] = _Qeiijkv ’L,],k = 19 2’31 [Em Fb] =0.

B = q? the vector

Let us notice that on the two-sheet hyperboloid napziz
fields , similar to E, and F, become zero at the points z° = +a,2! = 2% =

P =21=0.

7.2 The pointlike particle and rigid body

Now let us directly prove that the hyperbolic space-time Hig, like the
Minkowski spacetime, is a physical space-time. As the section of the hyper-
surface (84) by the hyperplane 2° = const is a three-dimensional sphere $3
we will first of all discuss a movement of material point (particle) along a
trajectory on the three dimensional sphere

(@)’ + (@) + (@°) + (2*) = o’ (87)

in the four-dimensional Euclidean space R'.

Let E* is a four-dimensional vector Euclidean space with the orthonor-
malized basis ey, 2, €3, €4, (€1,€;) = &;j, i, = 1,2,3,4. If the vector A € E*,
then A = Y, A%e;, (4,B) = i, A'B'. Vectors from E* orthogonal to a
certain vector A of unit length form a tliree-dimensional vector space, E3(A).
The vector spaces E3(A) and E*(B) are isomorphic; isomorphism is given by
the the mapping o

Q=0P=(B,P)A—(B,A)P+[B x Ax P),
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where P € E3(A),Q € E*(B) and
[A x B x C); = e;uA’ B¥C!,

where e;ji is the Levi-Civita completely antysymmetric symbol with ejo34 = 1.
The mapping o conserves the length (P, P) = (Q, Q) and is obviously linear.
The inverse mapping is given by .

P=0"'Q=(4,Q)B-(4,B)Q+[Ax B xQ]

If R = Z;-‘zla:"e,- is a radius-vector of points on the three—dimensiona_]
sphere(87), then (R, R) = a?, and consequently, the velocity vector V = R
belongs to E3(N) ,where N = 1R. The Newton equation describing the
dynamics of a particle in the space of a constant positive curvature (88) can
be written in the four-dimensional form as follows '

m(R +51§V2R) =F, (88)

where V? = (V, V) = (R, R), (R, F) = 0. The physical space can be considered
to be a hyperplane (A4, R) = 0 in R!. Hence it follows that the Euler equation
for the spherical top can be written in the four-dimensional form:

IN=M, (89)

where M is the moment of external forces, 2 is the vector of angular velocity,
I is the moment of inertia of the top. By condition, the vectors 2 and M are
orthogonal to the constant normalized vector A giving R3, (Q, 4) = (M, A) =
0, (A, A) = 1. For simplicity, the vector A can be takeu in the form A4 = es.
As the vector Q belongs to E3(A) and V € E3(N), we can establish a one-
to-one correspondence between 2 and V = R by using the above-described
mapping o ) ) '
' a®Q = (A,R)R— (A,R)R+[Ax Rx R], (90)
R=(R,QA-(RAN+[RxAxQ. (91)
From (90) and (91) it follows that when R obeys equation (88), then Q will
obey equation (89) and vice versa, where aF = (N, M)A — (N,A)M + [N x

A x M] and :
I = ma®. - (92)

Thus, we may say that an intuitive image of a material point of the space of
constant positive curvature is a rigid body; and from the above consideration
it follows that the concept of a rigid body can be reduced to the concept
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of a material point. ,In some sense the rotation is the movement in fourth
dimention. Then, a four-dimensional observer will perceive that, we perceive
as rotation of a spherical top, as motion of a material point in four-dimensional
space with an imposed holonomic constraint (R, R) = a?.

7.3 The Dirac and Maxwell Equations in the
Hyperbolic Space-Time

The consideration in subsect (7.2) was made within the framework of clas-
sical mechanics. We will complement it with the quantum-mechanical charac-
teristic of the hyperbolic space-time. To this end we will make a comparative
analysis of the Minkowski space-time and hyperbolic space-time in terms of
the Dirac and Maxwell equations. It is convenient to begin this analysis in
a general form without specifying the structure constants f2 of simply tran-
sitive groups of transformations M{; and H{4. In accordance with (80) and

" (48) we will write the Dirac equation in the form

Y Doty = pyp, (93)

where D, = E, + %2 A, — fa, fa = f£,. Since [Ey, Ey] = f&,E. then [D,, Dy] =
fayDe + %2 Fyy, where .

a

Fou=E Ay — By A, — fS A, (94)

are components of the electromagnetic field tensor in the basis E,. The Jacobi
identity {Dq, [Dy, Dc])+ [Ds, [D, D4)] +[D., [Dq, Ds]] = 0 leads to the first four
Maxwell equations

Eanc+ fngcd"" Echa + f(flcFad + EcFab + fc(ibud = 0.

Setting F'ab = LlesbedF,y, where e are components of the completely skew-
symmetric unit Levi-Civita tensor with €2 = 1, it is not difficult to verify
that these equations can be written as follows

- y 1., -
E,F° 4 f B 4 5 fEd =0, (95)
Hence, other Maxwell equations are of the form

1 4
EaFab + fa,Fab + fjfcl:dFad — _Z_‘Z’_jb* (96)
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where j° are components of the current vector in the basis E;. In the
Minkowski space-time all structure constants are zero and therefore the Max-
well equations assume the form

- 47 .
E,Fe =0, E,F = T”]".

This form simplifies rather complicated constructions in passing to curvilinear
coordinates.

Now, we will proceed to the hyperbolic space-time where not all the struc-
ture functions equal zero and therefore we come to three-dimensional vector
notation.Putting

. ' . 1
JP=1(cp,3), Aa={(p.—-A4), Fp; = ¢;, §€ijkf}'k = h;,
we obtain in vector notatidn,
E=-0,A— grad . H = 1ot 4,

where 8y = Ey, V; = E;. Considering that div A= E?=l V;A;, the Maxwell
equations (95) and (96) assume a familiar form,

—Boﬁ = rot E, divH =0, rot H= 8OE + #] div E = d7ap,
where a is the radius H ‘1113. Using the commutation relations
[Vi, Vil = 2€;# Vi, 4. j. k=123
we can prove the validity of the known identities
div rot =0, rot grad =0.

Besides, we have
div grad = A.

where A is the Laplacian on a three-dimensional sphere. Noncommutativity
of the basis vector fields E, can be scen not only in the definition of the
operator rot but also in the identity

rot rot = —A+ pgrad div —2rot .

In this connection it is important to derive the spectrum of the operator
rot . We introduce Hermitian operators Af; = E; + S; and N; = ;Fi where,



as usual, (S;f-l.),- = ——z’e;,-,,Ab Also there hold valid the following relations
M? = 1A — 1ot ,N? = —}A and [M;, rot | = [NV, rot | = 0, [M;, Mj] =
z’e,-jkMk, [N;,Nj] = ie,-j,,Nk. Thus,

AM?* 4+ N = -A -2 rot

and

M? - N? = — rot .
Hence it follows that the spectrum of the operator rot is discrete and runs
over the values p = £2,43,+4,- . The spectrum does not start from zero as
from the equations div A=0 and rot A = 0 it follows that A = 0 because
the Betti number b;(S%) = 0. .

Now we will continue the analysis of the Dirac equation. For the Dirac
equation in M}, we only mention the known fact that the description of. spinor
functions of a point in terms of curvilinear coordinates does not require any
extra conceptions if we take into account parallelizability of the Minkowski
space-time. Therefore, we will shortly characterize the Dirac eguation in His,

where mea

h
Squaring (93) with the use of (86) we obtain

p=

—-D,D%) + Py + —F bS@ = e,

where 1
= 7(r*1" =19}, P = 1Dy + ToDp + La Ds

and &; = %eijk’)’j’)‘k. The operator P has properties similar to those of rot .
Indeed, because

2 2 - —(5 CU‘ _JL,
P? = —-A — 2P at A, = 0. Introducing Hermitian operators M; = % - 55
and N; = —-2F,, we obtain
1, 1 3. .4 1
L - =), N‘=-=A
M =—-—<-A+ 2(P+ 2) N, 1

As a result,

3 3
2AM* + N) = -A+ (P+ 5),2(M2 - N)=P+ 3
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The above relations allow us to derive the following formula for energy levels
when there is no electromagnetic field:
ch?

E?=m?t + n2—2—
a

with integer n. If we rewrite this formula in the form

2A2

E’=m'(1+n yo

where A = h mec is the Compton wavelength, then it follows from it that in
the limit of large a, when a > ), ’

h2
E =mc® + n?
o+ 2ma?

or )
L

E=mcd+=

*ar

where L = nh is the angular momentum and I = ma? is the moment of

inertia. The last relation is consistent with the classical formula

L2
| “Ta
for the energy of a top.

Therefore, there are definite quantum-mechanical arguments for the hyper- .
bolic space-time being a physical space-time. In this connection, we stress once
more that here we are not talking about the replacement of the Minkowski
space-time by the hyperbolic space-time for description of the same physical
reality. On the contrary, we conclude that the hyperbolic space-time deter-
mines the laws of behavior of a new physical entity, the rotating particle or a
top. The rotating particles have additional property, the moment of inertia,
I, which is connected with their mass by the relation I = ma?, where a is
an "absolute length”, that is ”the trace of the rigid body”. The notion of a
rotating particle characterized not only by the mass, spin and charge but also
the moment of inertia is very important because from the physical point of
view the notion of a rigid body is not less fundamental than the concept of
a material point. Here we must remark that the idea of a rotating particle is
not new; the complete classification of particles with rigid internal structure
was given by Finkelstein (1955).
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74 Yang-Mills field and hyperbolic space-time

The seven-parameter group of transformations G; with generators
E07E1?E27E39 F17 F12» F3

defined above is the group of space-time symmetry of hyperbolic space-time.
As the energy vector Ey commutes with all generators of the group Gy, then
it remains unchanged under all the transformations of that group. Hence, it
follows that the Lagrangian (74) in H{; will be invariant under the trans-
formations of group G even if we do not switch off the interaction with the
Yang-Mills field. From this result and those derived in subsects. (6.2), (6.3)
and (6.4) it follows that the Yang-Mills field in the hyperbolic space-time
should be of no less importance than the electromagnetic field. It is just this
circumnstance that allows us to understand the nature of strong interactions
between rotating particles. Thus, the construction of quantum field theory in
the hyperbolic space-time on the basis of the Lagrangian (74) is of fundamen-
tal importance for understanding the physical nature of the Yang-Mllls field
and hadron structure.
Note also that owing to the existence of two energy opcrators

0 _ 9 20,0
H = —ih— and H = —ih 2¢
Bz0 " H (520 T 2% 30
we can question about the physical meaning of time, i.e. how time is connected
with the nature of physical phenomena. Having just one energy operator
H = —ih% at our disposal, we could use the time conjugated to it only for
describing the evolution of material objects as this time could be compared
to nothing. ' :
Let the proton be a top. Then we have

[ :
5 = Jw= mpazw,
where w is the angular velocity of the proton. Since aw = ¢, where c is the
light velocity, then for the diameter of gyration d = 2a we have

mpc

If a—oo ,then w—0. So, we may to say that electron dosn’t rotate.. That is
why there is no separation between the Minkowski space-time and such entity
as electron.
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7.5 Coulomb law in the hyperbolic space-time

Our goal here is to find the form of the Coulomb law in the H{,. For a
constant electric field we have

— = 1
div E = 4map, E = —= grad ¢
a
and consequently ¢ obeys the ecuation
Ao = —4malp.

An invariant of rotations on a three-dimensional sphere is either the arc length
or angle between the radii

1
cosG—a( _/+1y+z_/+L_/).

Setting p = 0, p = p(f) we get the equation

d?p ds,?

d02+2 ot0 =0

for p(@) .The general solution of this equation has the form
©(8) = ¢ cot 8 + ¢,

where ¢; and ¢, are constants.

Let us consider the stereographic projection of a three-dimensional sphere
(@) + (21)? + (2%)% + (2*)? = a? onto the Liyperplane 2* = 0 from the point
(0,0,0,a). Let z,y, 2 are Cartesian coordinate of the space which we identify
with the hyperplane z* = 0. In this case we have

1 2a? 2o 2a®
=g —s, A = y5—
T r? + a?
2a2 r2 - g2
S 1

S5 =,
r2 4+ a2 2 + a?
where r? = a? 4 y? + 22, If the charged rotating particle is at the point
(0,0,0,—a) then we have ‘
otf = — L
(" T e— e ——
2r  2a’

When r 2> a we should have the usual Coulomb potential
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In order to have v continuous,it is then necessary to set c; = —2. Hence, for
7 < a, @ has the form
(8% ar (8%
o(r) = (‘"1—_ + '&;‘);’3 0
where 8 is a dimensionless constant. Thus, we have found the Coulomb
potential for a charged rotating particle.

We see that the notions of hyperbolic space-time and a rotating particle
leads to the change of the laws of electrodynamics at short distances and
gives the exact form of these laws. In this connection it must be noted that
the Cornel potential(Eichten et al., 1980) lias a more profound meaning than
usually suggested. It is quite possible that evidences for the existence of tops
were already obtained in the Krisch experiment with polarized protons. So
the continuation of this experiment is very important and has the principal
meaning. This experiment must show whether the proton is a single rotating
particle or it consists of rotating particles with the laws of interactions deter-
mined above. It is very interesting that the angular velocity of the proton may
vary without changing the spin and this should have important consequences.

7.6 Concluding remarks

The theory of fundamental interactions presented here is based on the as-
sumption of an intimate relation between the properties of space-time and
phenomena in reality. The theory has obviously two aspects. One of them is
mathematical and has an absolute character. The other aspect is the develop-
ment of consequences from the mathematical formalism and their comparison
with experiment. In view of the latter, it is of fundamental importance to
establish the physical meaning both of the principal gauge field and of the
Yang-Mills gauge field. The latter is localized in a region of rotation beyond

which the strength of that field is zero. However, the connection (or a gauge °

potential) of the Yang-Mills field beyond that region should not be zero. So,
" we may assume that the physics of mesons (pions,rhos,omegas,etc.) is deter-
mined by the Yang-Mills gauge potential having zero strength.

It must be noted that the rotating particles do not need confinement be-
cause confinement simply means that it rotates. We would like to note also
that the concept of the string has a nonstandard interpretation in the frame-
work of the developed theory but this question cannot be treated in this

paper.
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