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1. INTRODUCTION 

Contemporary theory of gravitation is the Einstein· General 

Relativity (GR). _This theory describes the. gravitation as a spa

ce-time metric gmn which satisfies the Einstein equations 

Gmn= KTmn' 
where G = R - ..!..R g is the .Einstein tensor. mn mn 2 mn 

These equations are.very difficult and nonlinear. For inves-

tigation of these equations it would be useful to find the acUon 

functional. 

Usually, the vacuum Einstein equations 

G = 0 mn 
are derived from the Hilbert action . . 

S =JAR d
4 x. H . 

(1) 

(2) 

These equations .are of the second order, and the Hilbert Lagran

gian 

L =AR 
H 

(3) 

contains the second - order derivatives too. This leads· to the 
, " -~' 

known difficulties [ 1]. To avoid them, Gibbons and Hawking have 

suggested the surface term [1], but due to this term local gravi

tational invariants such as energy-momentum density became 

quasilocal [2]. 

Another way consist in finding a suitable Lagrangian which 

will be local and contains only first-order derivatives. For a 

Lagrangian like that to exist, it is necessary to introduce the 

background 

that the 

object in· the theory [3-5]. It should be .mentioned 
-~ mn( a b well-known Einstein Lagrangian L == v-g g. r r 

E ·mb · ·an 
- ra rb) contains the background affine connection [6-8] whose ba mn 
coefficients ra are zero in a chosen coordinate map (see 

mn 
sect. 2). 

Introduction of the background connection permits us to ex

pand the GR by admitting a more general (nonflat)_ background con-



nection. By comparing such an ~xpanded theory with GR some inte

resting specific features of the Einstein equations can be found 

[7]. It would be interesting to find spherical-symmetric soluti

ons and compare them with the Schwarzschild metric. 

In the present paper; we shall investigate this solution of 

the gravitational equations on the background of the Riemannian 
' space whose spatial submanifold is the three-dimensional Lobache-

vsky space. We shall see that in this case there is no an analog 

of ·the Birkhoff theorem but the Schwarzschild-like peculiar! ty 

can be present. 

2. THE GRAVITATIONAL ACTION FUNCTIONAL 

AND EOUA TIONS OF MOTION 

Usually, equations (1) are derived from the Hilbert action 

(2) with the Hilbert.Lagrangian (3). As it has been remarked abo

ve, this Lagrangian leads to the known difficulties. 

Instead of (3) the noncovariant Einstein Lagrangian is often 

used 

L = v-g gmn(ra rb -ra rs), 
E mb an sa mn 

which differs from L by the divergence term 
H l 

L - L = 8 c,, 
H E I 

( 4) 

where 
l -~ ln...m mn l 

CJJ = v-g (g l - g r ). 
mn mn 

Now let us prove that noncovariance of L in fact means that 
E 

the background object is present in the theory [6-8]. It is the 

affine connection without torsion. We shall denote the backgro
vk 

und connection coefficients by r . 
mn 

The difference between the connection coefficients 
pk = fk _ rk 

mn mn mn 
is a tensor. It is named the affine - deformation tensor. 

Let us consider the Lagrangian 
[ =v-g gmn(Pa Pb 

mb an 
pa ps ) . 

sa mn 

., ··•;~·;:~ ,·2-'••:· ' .$" 

•i\~;fAf~~•'t1'' ~ ••--•••~. •>•f ;.-

_,,,f ,~ . t·,. ,<~! ·,•:•,.. \':.t 

... 

.Q 

f, 

For the action functional 
- - 4 S = J L d x 

the variational derivative 

imn = 2 
as 
~ mn 

has been calculated in [51 

where R 
Jk 

+ fP fs 
ls J k 

~mn -~ ma nb v v v lj w = v-g g g (R + R - R g g -

= RP, 
plk 

fP fs 
J s 1 k 

. ab ba JJ ab 

is the Ricci tensor; RP 
llk 

is the Riemann tensor for the 

nection. If R, l k) =O, then the equations 
imn = 0 

coincide with the Einstein equations (1), and 

2G ), (5) 
ab 

= a fP - a fP 
llk Jlk' 

background con-

( 6) 

L - [ = V F1 
( 7) 

H J ' 

where V is a covariant derivative with respect to the background 
J 

connection and 
F' = v-g (gmnpJ 

mn 

is the vector density of weight one. 
vJ If R = O, one can choose the 

klm 
vJ J J r = o. Then, P .turns into - r 

km km km 
and (7) is transformed into (4). 

_ g' npm ) 
mn 

coordinate map in which all 
~ J l L turns into L ,F into c,, ·E .. 

Since L is noncovariant, converting L into L can be pos-
E · H E 

sible only after. fixation of the coordinate map. Converting L8 

into L by formula (4) is in fact converting L into [ with the 
E H · · 

fixation of the background connection whose coefficients in this' 

map are assumed to be zero. Hence, it follows that in this theory 

it is necessary to use the Lagrangian[. 

3. DEGENERATION OF EQUATIONS AND THE HARMONICITY CONDITIONS. 

It is well-known that the Einstein equations (1) are degene

rated in the sense that for ten unknown components of the metric 

tensor there are only six independent equations due to the Blan-
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chi identities. This results from the invariance of (1) under the 

group of diffeomorphisms Diff(H) of the four-dimensional mani

fold H. 

Degeneration of the equations leads to the existence of the 

functional arbitrariness in their solutions. To avoid this arbi

trariness the suitable noncovariant co,nditions are used: Very po

pular are 'the ''harmonici ty, conditions" a ( A g' J) = 0. Since we 
i 

have, separated ,the generally coordinate transformations 'and 

Diff(H)~ they can be written in the covariant form 

Vg11 =o. (8) 
I 

Here 911= A g11 is the contravariant metric density. It is (8) 

that we will call the harmonicity conditions. 

As it is clear from (5), the conditions R1 = 0 are stron
klm 

ger than the necessary conditions for deriving the Einstein equa-

tions. If we put 

1\ IJ)= 0 (9) 

it would be enough. Al though we cannot choose a coordinate map 

with nonzero f' , the latter ls not contained in the gravitatio
km 

nal equations (6) that coincide with the Einstein ones. 

If R * 0, then the gravitational equations , differ from 
(Ik) 

the Einstein ones and in the general case degeneration is absent. 

But for some special background connections, degeneration can be 

present. It can be shown [7] that for equations to have these 

properties it is necessary that R should have such a null ve-< mn) 

ctor ( 

(
1R = o 

(IJ) 

that the Lie derivative of R should vanish 
(lj) 

CR = 0. 
( (I J) 

If the background connection satisfies (9), then equations 

(6) coincide with the Einstein one. The harmonicity conditions 

I 
\ 
~ 

., . 

\ l, 
l 
! 

! 

n 

are not connected with :the equations and must be postulated as f 
i 

4 

external conditions. But if-the background space is' curved, then 

in ,the general case the gravitational equations differ from the 

Einstein one. If these equations, a~e not degenerated,. then_ (8) 

must be either consequences of (6) or incqnsistent with them. 

I.t can be shown (7] that the harmonicity,conditions }8)fol

low from equations (6) only if the background space is the Eins

tein space. More exactly, the following statements are true: 

1. For (8) to be consequences of (6), 

a) it is necessary that the symmetric part of the Ricci 

tensor should satisfy the condition V R = 0; , J (ik) 

b) it is necessary and sufficient that Vil' =Oand 
J (lk) 

det(R ) * 0. In this case, (8) are equivalent to the conditi-
< I k) -

ons 
'ii imn ,= 0. 

m 
(10) 

2. If V R = 0 and det(R ) = 0, then (8) is compatible 
J (Ik) (Ik) 

with (6), but (6) without (8) remains degenerated. It means that 

- the functional arbi trarlness remains in the soluti-

ons; 
- (8) can be postulated as external, but they are not 

consequences of (6). 
The contents of 1 b) is equivalent to the statement that the 

background connection can be compatible with,a certain metric of 

the Einstein space. In other words, R =Ag where A~ 0 and 
(lj) IJ ' 

y 

glj 
is a metric tensor with an arbitrary signature. 

In [9] it has been shown that if the background space has a 

constant curvature, then (10) coincides with (8). In (10] it has 

been found that the coincidence of (10) with (8) takes place if 

v
1 

R(IkJ= 0 and det(R(lkJ) * 0. The general case has been inves

tigated in [7]. 

,5 



4.THE EXACT SPHERICAL-SYMMETRIC SOLUTION 

Let us consider the background connection which ls the Chri

stoffel connection derived from the background metric 
v2 V ' J 2 2 a: ,/3 ds = g

11
dx dx =c dt - hcx/3dx d . 

Latin indices run from Oto 3, Greek indices denote spatial com-

ponents 1, 2, 3. Let hcx/3 be 

Tanks to (11) there is 

static: 
ahcx/3 
~ = 0. 

a Killing vector 
a 

~=at 
and, consequently, ~ forms the Ricci collineation: 

In the component form 

£ R = o. 
~ I) 

~'= {1, 0, 0, 0}. 

The background Ricci tensor is diagonal and 

R = o. 
00 

(11) 

I V Hence, ~ R
11

= 0 and according to sect.3 equations (6) are dege-

nerated. The solutions of equations (6) must be invariant under 

the transformations 

g (x) -) g (x) 
mn mn 

(12) 

generated by the diffeomorphism 

x1= x1 (x) (13) 

where 
a: -a: 0 -, 

X = X; X = f(X ). 
- -, 

Here f(x) is an arbitrary function of the coordinates x which 
-o . 

satisfy f = x outside of the compact area. 

Let us find these transformations. From the general tensor 

transformation law we have 

- - axa axb -
g (x) = - - g (x(x)) (14) 

mn -m -n ab ax ax 
a 

where derivatives ax are determined from ( 13). To obtain ( 12) 
-m ax 

6 

.. , 

,. 

" 

}1 

we must replace x by x in the }eft-hand side of (14). 

Now let us find hcx/3 such that never new degenerations would 

appear. 

It is clear that- det(Rcx/3).must be nonzero. Consequently, a 

suitable choice is the Einstein space. Since hc#3 is a three

dimensional metric, ttiis spac~ i_s a_ space of constant curvature. 

A very simple space· like that is the Lo~achevsky _space. That is 

why we consider the background metric 
•2 2 2 · -2 2 2 r · 2 2 2 ds = c dt - dr - k sinh k (d8 + sin 8 d~) (15) 

where k is a constant,' and will search for spherically symmetric 

static metric 

ds2 = V2dt 2
- F2dr2

- H2 (d82 + sin
2

8 d~
2

) (16) 

satisfying equations (6) which now can be written in the form 

R i:: R 
I J ·t J 

. ( 17) 

In (16) V, F, and Hare the functions of r. We assume 
0 · 1 2 3 

X = t, X = r, X = 8, X = ~-
The metric (15) has been considered in (11]. 

In our case, the alternative 2) from sect.3 takes place.,But 

when we claim the metric be ( 16), the single "free" harmonici ty . 
V 10 condition V g = 0 is satisfied automatically and the functional 

I 
arbitrariness is absent. Indeed, from (14) we have the diagonal 

co.mponents 

For these components be 

axa axb 
g = 

pp ax.P ax.P 
independent of 

0 -o -x =Ax+ f(r) 

gab 

tit is necessary that 

where A is a constant. But the nondiagonal term appears 

ax0 ax0 
--=i -=a goo· 
ax ax 

(18) 

go1= g10= 

This term contradicts ( 16). For it to vanish, we should have 

ax0 

- = 0 and (18) should take the form 
-1 ax 

0 -o x =Ax+ B (19) 

7 



where 8 is a constant. Thus, the functional arbitrariness disap

pears and only a trivial linear (19) remains. 

All nondiagonal components of both R and R are zero, 
I J I J 

2 y V 2 
R = R sin 8 and R = R sin 8, and we are only left with three 

33 22 33 22 

equations for. three unknown functions V, F and H: 

Here 

R = vv· ( ( + 2H' - Y.') + ~ ( vv') = o, 
oo F2 F H V dr F2 

R = 
11 

II II , , , 

y _ 2H + t:_ ( y + 2H ) =· 
V H F V H 

2 

k 
2' 

R = 1 
22 

') 2 !.. ~ (v HH = - 2 sinh (r/k). 
VF dr F 

d 
, means dr" 

V 11 
Now the harmonicity condition V 9 = 0 

I 

(20) 

(21) 

(22) 

d (VH2
) , dr -;:- = VF k sinh(2r/k) (23) 

is a consequence of all equations (20)-(22). We use (23) and the 

combination 

! H (R + r\ ) = H,(VF), - H
11

• 

2 11 V2 oo VF 

Instead of (20)-(22) we obtain 

Let us denote 

H
11

- H/k2 = H,(VF)' 
VF ' 

d (VH2

) dr -;:- = VF k sinh(2r/k), 

~r (v ~-)=VF cosh(2r/k). 

HH, H2 H' 
2 = ex, 2 = /3, - = 0 ' 
F F H 

(VF) = w. 
VF 

Using (27) we write down (24)-(26) in the form 

8 

(24) 

(25) 

(26) 

(27) 

1 

J 
·1 

• 2 2 a+ a - aW = 1/k, 

13'+ {3w = k sinh(2r/k), 

ex'+ cxw = cosh(2r/k), 

ex = /37. 

(28) 

(29) 

(30) 

(31) 

are 

But 

Let w be considered as a parameter. Equations !29) and (30) 

the linear equations, and therefore, can be easily solved. 

equation (28) is the Riccati equation. We can't find its ge-

neral solution. If we substitute ex and /3 into (31) and then sub

stitute O in terms of w into (28), we obtain a nonlinear integro

differential equation. This equation cannot be solved too. 

But we are able to find a particular solution of our system 

which correspond tow= 0. Indeed, if w = 0, then (28) becomes 

the equation with separated variables. From (29), (30) we have 

ex= (k/2)(sinh(2r/k) + a/2), 

f3 = (k2/2)(cosh(2r/k) + b/2), 

where a and bare_ the constants of integration. By separating va

riables in (28) we get 
da = dr. 

1/k2- '12 
By integrating (32) we obtain 

(k/2) lnli: ~~I= r + r0 

where r is the constant of integration. 
0 

Let us denote 

D = exp(r
0
/k). 

From (33) we have two branches. The first is 

~7k_+-'-l = D2exp(2r/k)· 
7k - 1 ' 

and the second is 

a< -(1/k); 7 > (1/k) 

1 + ,k = D2exp(2r/k)· 
1 - 7k ' 

-(1/k) <a< 1/k. 

In terms of hyperbolic functions we have from (34) 

,
1
= (1/k) tanh- 1 (Cr + r

0
)/k) 

9 

(32) 

(33) 

(34) 

(35) 

(36) 

(37) 



and from (36) 

'1 = (1/k) tanh((r + r )/k). (38) 
2 0 

As. we can see, (35) and (37) are satisfied. But we must satisfy 

(31). Substituting '1, «and~ into (31) we obtain 

« = (k/2) (sinh(2r/k) - sinh(2r /k) __ ), 
1 · o· 

~1= ·ck2/2J(cosh(2r/k) - cosh(2ro/k)); 

'1
1

:" (i/k) tan~~t (C~· + r
0

)/k) . 

for the first branch, and 

« = ( k/2) ( sinh( 2r /k) + sinh( 2r /k) )', 
2 . • 0 

~ = (k2/2) (cosh(2r/k) + cosh(2r /k)), 
2 · 0 

'1 = (1/k) tanh((r + r )/k) 
2 . . 0 

for the second. Using definitions ·(27) we can obfain· 
r + r 

r + r 
0 

H1= P sinh k 

r + r 
0 H = p cosh k 

2 

2 p2 
F = 1 -2 

k 

2· 2 
F=~ 

2 2 
k. 

),l~ere P and Q are the constants of 

two branches of the solution are 

r - r r + r 
0 

sinh 

k 2 
-- V2= g_ 

,r - r 1 2' 
0 F 

k - -1 

sinh 
·o 

r + r 
cosh 0 2 

k V2= g_ 
r - r 2 F2 

cosh 
0 

k 2 

integration. Therefore, 

0 r + r 

the 

k2sinh P2sinh . 2 k Q2dt2_ k. 
dr2- P2k2sinh2 o d02, ds = r + r . 1 r - r 

P2sinh 0 2 . 0 k 
k k s i nh --:ic 

r - r r + r 
k2cosh 0 P2 cosh 

0 

k k 
r + r 

ds2= Q2dt2- dr2- P2k2cosh2 o d02, 
2 r + r r - r k 

P2 cosh 0 2 0 

k k cosh--ic 

10 

2 2 2 2 where dQ = d0 + sin 0 d~. By demanding the metric g to have 
mn 

v 2 2 2 2 
the same asymptotics as g , we get P = k exp(-2r /k), Q = c. If mn 0 

we denote 
r - r

0 
sinh~ 

I\= exp(2r /k) r + r
0 

1 0 

sinh--ic' 

r - r
0 

cosh~ 
I\= exp(2r /k) r + r

0 
2 0 

cosh--ic 

two solutions of (24)-(26) can be written 
r + r 

2 2 2 -1 2 2 2 0 2 ds =Ac dt -A dr - exp(-2r /k) k sinh dQ, (39) 
t t t o. k 

r + r 
2 2 2 -1 2 2 2 0 2 (40) ds =Ac dt -A dr - exp(-2r /k) k cosh dQ. 2 2 2 o . k 

The metric (39) has at first been found in [11). 

For determining r
0 

we postulate that the asymptotic behavior 

of gmn must lead to the Newton gravitational law in the Lobachev

sky space [12). It leads to 
2r

0 
_ 

sinh -k-- -
20M 

kc2 

Here O is the Newton constant, Mis the mass of the central sour-

ce. If r
0

<< k, then 
r ~ aM 

0 2 
C 

is the ordinary Schwarzschild radius. 

The metric (39) is similar to the Fock metric 

r - r r + r 
ds2= 0 c 2dt 2

-
0 dr2

- (r + r ) 2ctn2 (41) r+r r-r o 
0 0 

and turns into (41) when k~ oo. As (41), (39) is singular when 

r = r . 
0 

But the second solution (40) doesn't have the Einstein limit 

if k~ oo. The solution (38) corresponding to (40) has the limit 

11 



llm 0 = 0 which is inconslstent'wlth (24). On the other hand, 
2 

k~IXI 
it is (40) that violates the analogy of the Blrkhoff theorem. 

Notice that if r ~ 0, then (39) ls turns into (15), but 
' 0 

(40) remains 
2 2 2 2 . 2 2··· ·: : 2 

· ds = c dt - dr - k cosh ( r /k) dr2 (42) 

as a solution of (17) in an absolutely empty space. 

Radial movement of a photon may be determined from (16) by 

dS = dr2 = 0. For the radial photon velocity v we obtain 
dr V 

V = 'dt = ±y. (43) 

Then, we can get the law r = r(t) by integrating (43). The time 

of radial motion ,: from the lnl tial radl us R to r < R is 
lnlt lnlt 

determined by the expression 
,: r 

J t dt = - J £. dr 
V ,: R . 

lnlt lnll 

where -r ls the time corresponding the photon position with 
lnlt 

r = R 
lnlt 
According to these formulas we have for (39): 

The radial photon velocity 
r - r 

sinh ----ic" 
0 

v = dr/dt = ±c exp(2r /k) 
1 0 r + r 

slnh----ic 
0 

the time of radial motion from R tor< R 
Intl lnll 

exp(2R /k) - exp(2r /k) R - r 
,: = A ln 

l nl t 0 + B lnlt 

1 exp(2r /k) - exp(2r /k) C 
' 0 

where B = exp(- 4r /k), A= k(l - B)/(2c). For (40) 
' 0 

values are: 

The radial photon velocity 

v = dr/dt = ±c exp(2r /k) 
2 0 

12 

r - r 
cosh o 

k 
r + 

cosh--~. 

+ ,: 
lnlt 

the same 

the time of radial motion from R tor< R 
lnlt lnlt 

exp(2R /k) + exp(2r /k) R - r 
,: = A ln lnlt , O + B lnlt + ,: 

2 exp(2r /k) + exp(2r
0
/k) lnlt 

C 

If R - r >> r, both,: and,: give the ordinary express!-
lnlt O 1 2 

on 

,:-,: - R - + B 
R - r 
lnlt 

R - r 
lnlt 

lnlt- (1 - 8) lnlt r 
C C ·c 

As we can see, to arrive at r = r the photon in (39) needs lnflo 
nite time, but in (40) this time ls finite. If r ~ r

0 
then 

v
1 
~ 0, but from (40) we have monotonous increasing from 

llm v = c to v = c exp(2r /k) if r = 0. 
2 2 0 

r~ 
The physical time tr which is at the point with the radial 

coordinate r is determined by the relations 

[ r - r r exp(-r /k) 
sinh o 

k 

dt =~ ~ 
0 r + r dt 

sinh o 

r C dt = 
k 

[ r - r r exp(-r /k) 
cosh o 

k 
0 r + r dt 

cosh o 
k 

for (39), 

for (40). 

If r~ oo we have 

dt = dt 
r 

for both the metrics, but if r ~ r then the physical time in 
0 

(39) stops. 

The physical speed of light ls 

dx 1-g 
_r = + ~ 

0

11 dr = + 
dt - l ) -C r/-g

00
' / c dt 

for both the metro.ics. 

On the contrary, we can assume that the gravitation is an 

optical · medium with the refraction coefficient different from 1 

13 



and the physical time interval dp is 
r 

Ao 
dp = -- dt = dt 

r C 

in the.spirit of the bimetric theories. 

Notice that such an interpretation is possible only if we 

consider the background metric. But as has been shown, both equa-. . ' 

tions and the Lagrangian contain only the background connection. 

That is why the last interpretation may contain certain arbitra-
vJ 

riness. Just in our case the constant c is not contained in r , Jk 
vJ 

a.nd for different c we get the same r . The result Q = c was ob-
. . ', Jk 

tained only due to demands of the asymptotic behavior of g The mn 

information about the background metric, contained in the back-

grou~d connection, is not complete and, hence, the background me

tric in our case is not observable. 

5. CONCLUDING REMARKS 

Although there was a number of .investigations of the non -

Einstein equations (6), their spherical-symmetric solutions as a 

rule were explored only as approximate ones. Apparently, integra

bility of the Einstein equations is closely connected with their 

degenerating. It seems to be probable that we have succeeded i~ 

finding the solution only due to degeneration of the equations. 

In [13) N.Rosen has considered the case when the bac~ground 

space has a constant curvature. This theory was developed t.o re

move the singularities existing in GR. Rosen succeeded in showing 

that in his case the gravitational field differs from the Schwar

zschild field only.very close to, and inside, the Schwarzschild 

sphere. The interior of this sphere is unphysical and impenetra

ble. It was suggested that the elementary particles may have the 

similar structure. 
We have considered the solution which also· may be interes-

14 

ting from the point of view of the elementary particle theory. In 

spite of the presence of the "classical" Schwarzschild peculiari

ty, the existence of two branches of the solution may be useful 

for constructing the models explaining some properties of the be

havior of elementary particles. 

There is the very strange solution (42) whose physical pro

perties should be unusual. Since the asymptotics of (42) is th~ 

same as of (15), for a remote observer the metric (42) would seem 

to be the same as the metric ( 15), but close .to· r = 0 the metric 

(42) essentially differs from (15). 
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