

объединенный ИНСтитут ядерных исследований
 дубна

E2-92-506
A.A.Vladimirov*

A METHOD FOR OBTAINING QUANTUM DOUBLES FROM THE YANG-BAXTER R-MATRICES

Submitted to *Physics Letters B*
*E-mail address: alvladim@theor.jinrc.dubna.su

Владимиров A.A.

В работах [1] и [2| был предложен метод, позволивший сопоставить каждому регулярному обратимому решению уравнений Янга - Бакстера бсз спектрального параметра некоторую квазитреугольную алгебру Xonфа. Мы развиваем этот подход и показываем, что эта алгебра Хопфа есть на самом деле квантовый дубль.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединеиного института ядсрных исследований. Дубна 1992
Vladimirov A.A.
A Method for Obtaining Quantum Doubles
from the Yang-Baxter R-Matrices

We develop the approach of refs. [1] and [2 | that enables one to associate a quasitriangular Hopf algebra to every regular invertible constant solution of the quantum Yang-Baxter equations. We show that such a Hopf algebra is actually a quantum double.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. It is well known [1] that any invertible constant matrix solution R of the quantum Yang-Baxter equation (QYBE)

$$
\begin{equation*}
R_{12} R_{13} R_{23}=R_{23} R_{13} R_{12} \tag{1}
\end{equation*}
$$

naturally generates a bialgebra $A_{R}=\left\{1, t_{i j}\right\}$ defined by

$$
R_{12} T_{1} T_{2}=T_{2} T_{1} R_{12}, \quad \Delta\left(T_{1}\right)=T_{1} \otimes T_{1}, \quad \varepsilon(T)=1
$$

(generators $t_{i j}$ form a matrix T, Δ is a coproduct and ε a counit) and also another bialgebra $U_{R}=\left\{1, l_{i j}^{+}, l_{i j}^{-}\right\}$with

$$
\begin{gather*}
R_{12} L_{2}^{ \pm} L_{1}^{ \pm}=L_{1}^{ \pm} L_{2}^{ \pm} R_{12} \tag{2}\\
R_{12} L_{2}^{+} L_{1}^{-}=L_{1}^{-} L_{2}^{+} R_{12} \tag{3}\\
\Delta\left(L_{1}^{ \pm}\right)=L_{1}^{ \pm} \otimes L_{1}^{ \pm} \quad, \quad \varepsilon\left(L^{ \pm}\right)=1 \tag{4}
\end{gather*}
$$

which is paired to A_{R}. This pairing [1, 2] is established by the relations

$$
\left\langle T_{1}, L_{2}^{+}\right\rangle=R_{12}, \quad\left\langle T_{1}, L_{2}^{-}\right\rangle=R_{21}^{-1},
$$

obeys the duality conditions

$$
\langle\alpha \beta, a>=\langle\alpha \otimes \beta, \Delta(a)>, \quad<\Delta(\alpha), a \otimes b\rangle=\langle\alpha, a b\rangle
$$

and appears to be degenerate. With some additional effort (quotienting by appropriate null bi-ideals) these bialgebras can be made Hopf algebras \breve{A}_{R} and \breve{U}_{R}, dual to each other. Their antipodes are defined by

$$
\begin{aligned}
& \left\langle T_{1}, S\left(L_{2}^{+}\right)\right\rangle=\left\langle S\left(T_{1}\right), L_{2}^{+}\right\rangle=R_{12}^{-1}, \\
& \left\langle T_{1}, S\left(L_{2}^{-}\right)\right\rangle=\left\langle S\left(T_{1}\right), L_{2}^{-}\right\rangle=R_{21} .
\end{aligned}
$$

With essential use of this duality Majid [2] showed that in fact, with a certain reservation, \breve{U}_{R} proves to be a quasitriangular Hopf algebra with the universal \mathcal{R} matrix given by implicit formulas originated from $\left\langle T_{1} \otimes T_{2}, \mathcal{R}\right\rangle=R_{12}$. By the way, Majid claims [2] that \check{U}_{R} is 'more or less' of the form of a quantum double. In the present note we argue that, modulo the same reservation, \breve{U}_{R} is actually a quantum double.
2. Recall t (i.e. the duality with opposite coproduct and inverse antipode) means $<e$

$$
\begin{align*}
& { }^{i}, e_{j}>=\delta_{j}^{i} \text { and } \\
& \langle\alpha \beta, a\rangle=\langle\alpha \otimes \beta, \Delta(a)\rangle,\langle\Delta(\alpha), a \otimes b\rangle=\langle\alpha, b a\rangle, \tag{5}\\
& \varepsilon(a)=\langle 1, a\rangle, \varepsilon(\alpha)=\langle\alpha, 1\rangle,\langle S(\alpha), a\rangle=\left\langle\alpha, S^{-1}(a)\right\rangle,
\end{align*}
$$

where $a, b \in A, \alpha, \beta \in A^{\circ}$, and $\left\{e_{j}\right\},\left\{e^{i}\right\}$ are the corresponding bases. To equip $A \otimes A^{\circ}$ with the Hopf algebra structure of the quantum double, one must define a very specific cross-multiplication recipe. If

$$
e_{i} e_{j}=c_{i j}^{k} e_{k}, \quad \Delta\left(e_{i}\right)=f_{i}^{j k}\left(e_{j} \otimes e_{k}\right), \quad S\left(e^{i}\right)=\sigma_{j}^{i} e^{j}
$$

it reads

$$
e^{i} e_{j}=\mathcal{O}_{j q}^{i p} e_{p} e^{q}, \quad \text { where } \mathcal{O}_{j q}^{i p}=c_{n q}^{t} c_{t s}^{i} \sigma_{r}^{s} f_{j}^{r l} f_{l}^{p n} .
$$

In invariant form this looks like

$$
\begin{equation*}
\alpha a=\sum \sum<S\left(\alpha_{(1)}\right), a_{(1)}><\alpha_{(3)}, a_{(3)}>a_{(2)} \alpha_{(2)} \tag{6}
\end{equation*}
$$

where

$$
\Delta^{2}(\alpha)=\sum \alpha_{(1)} \otimes \alpha_{(2)} \otimes \alpha_{(3)}, \quad \Delta^{2}(a)=\sum a_{(1)} \otimes a_{(2)} \otimes a_{(3)}
$$

Here the usual notation for coproducts (cf. $\Delta(a)=\sum a_{(1)} \otimes a_{(2)}$) is used. The resulting Hopf algebra proves to be quasitriangular with the universal \mathcal{R}-matrix

$$
\mathcal{R}=\sum_{i}\left(e_{i} \otimes 1\right) \otimes\left(1 \otimes e^{i}\right)
$$

One easily finds that $g l_{q}(2)$ and other simple examples of quantum universal enveloping algebras are both the \check{U}_{R}-type algebras and quantum doubles. Can it happen that \dot{U}_{R} would be a quantum double for any R ? Majid's approach based on the $\check{U}_{R} \leftrightarrow \check{A}_{R}$ duality does not readily answer this question. That is why we choose another way: not to use A_{R} at all. The key observation is that there exists an inherent antiduality between U_{R}^{+}and U_{R}^{-}which is precisely of the form required for the quantum-double construction.
3. Let us define bialgebras $U_{R}^{+}=\left\{1, l_{i j}^{+}\right\}$and $U_{R}^{-}=\left\{1, l_{i j}^{-}\right\}$by eqs. (2),(4). Note that the cross-multiplication relation (3) is not yet imposed, so U_{R}^{+}and U_{R}^{-}are considered to be independent so far. However, the very natural pairing between them can be introduced. It is generated by

$$
\begin{equation*}
\left\langle L_{1}^{-}, L_{2}^{+}\right\rangle=R_{12}^{-1}, \quad\left\langle L^{-}, 1\right\rangle=\left\langle 1, L^{+}\right\rangle=\langle 1,1\rangle=1 \tag{7}
\end{equation*}
$$

and in the general case looks like

$$
\begin{equation*}
\left\langle L_{i_{1}}^{-} \ldots L_{i_{m}}^{-}, L_{j_{1}}^{+} \ldots L_{j_{n}}^{+}\right\rangle=R_{i_{1} j_{n}}^{-1} \ldots R_{i_{q} j_{p}}^{-1} \ldots R_{i_{m j_{1}}}^{-1}, \tag{8}
\end{equation*}
$$

where the r.h.s. is a product of $m n R^{-1}$-matrices corresponding to all pairs of indices $i_{q} j_{p}$ with j-indices ordered from right to left. The consistency of (8) and (5) with (4) is evident, while the proof of the consistency with (2) reduces to manipulations like

$$
\begin{aligned}
<L_{0}^{-}, R_{12} L_{2}^{+} L_{1}^{+}-L_{1}^{+} L_{2}^{+} R_{12}> & =<L_{0}^{-} \otimes L_{0}^{-}, R_{12}\left(L_{1}^{+} \otimes L_{2}^{+}\right)-\left(L_{2}^{+} \otimes L_{1}^{+}\right) R_{12}> \\
& =R_{12} R_{01}^{-1} R_{02}^{-1}-R_{02}^{-1} R_{01}^{-1} R_{12}=0
\end{aligned}
$$

and repeated use of QYBE (1).

For general R, this pairing is degenerate. To remove the degeneracy, i.e. to transform pairing into antiduality, one should factor out appropriate bi-ideals [2]. In simple cases this procedure is explicitly carried out and works well. For general R it is of course not under our control. The situation is quite similar to [2]: we are to rely on that the factorization procedure is "soft" in a sense that it does not destroy the whole construction.
4. Keeping this in mind, we observe that, being antidual, $U_{R}^{ \pm}$admit the Hopf algebra structure. Let us introduce an antipode S in U_{R}^{-}and an inverse antipode S^{-1} in U_{R}^{+}by the relations

$$
\left.<S\left(L^{-}\right), 1\right\rangle=<1, S^{-1}\left(L^{+}\right)>=1,<S\left(L_{1}^{-}\right), L_{2}^{+}>=<L_{1}^{-}, S^{-1}\left(L_{2}^{+}\right)>=R_{12},
$$

extending them on the whole of U_{R}^{+}(or U_{R}^{-}) as antihomomorphisms of algebras and coalgebras. The definition is correct due to

$$
\begin{gathered}
<m \circ(S \otimes i d) \circ \Delta\left(L_{1}^{-}\right), L_{2}^{+}>=<m \circ\left(S\left(L_{1}^{-}\right) \otimes L_{1}^{-}\right), L_{2}^{+}> \\
=<S\left(L_{1}^{-}\right) \otimes L_{1}^{-}, L_{2}^{+} \otimes L_{2}^{+}>=R_{12} R_{12}^{-1}=1=<\varepsilon\left(L_{1}^{-}\right), L_{2}^{+}>, \\
<S\left(L_{0}^{-}\right), R_{12} L_{2}^{+} L_{1}^{+}-L_{1}^{+} L_{2}^{+} R_{12}>=<\Delta \circ S\left(L_{0}^{-}\right), R_{12}\left(L_{1}^{+} \otimes L_{2}^{+}\right)-\left(L_{2}^{+} \otimes L_{1}^{+}\right) R_{12}> \\
=<S\left(L_{0}^{-}\right) \otimes S\left(L_{0}^{-}\right), R_{12}\left(L_{2}^{+} \otimes L_{1}^{+}\right)-\left(L_{1}^{+} \otimes L_{2}^{+}\right) R_{12}>=R_{12} R_{02} R_{01}-R_{01} R_{02} R_{12}=0, \\
<S\left(R_{12} L_{2}^{-} L_{1}^{-}-L_{1}^{-} L_{2}^{-} R_{12}\right), L_{0}^{+}>=<R_{12} S\left(L_{1}^{-}\right) S\left(L_{2}^{-}\right)-S\left(L_{2}^{-}\right) S\left(L_{1}^{-}\right) R_{12}, L_{0}^{+}> \\
=<R_{12}\left(S\left(L_{1}^{-}\right) \otimes S\left(L_{2}^{-}\right)\right)-\left(S\left(L_{2}^{-}\right) \otimes S\left(L_{1}^{-}\right)\right) R_{12}, L_{0}^{+} \otimes L_{0}^{+}>=R_{12} R_{10} R_{20}-R_{20} R_{10} R_{12}=0,
\end{gathered}
$$

$$
\text { but there is no such a formula for } S\left(L^{+}\right) \text {or } S^{-1}\left(L^{-}\right) \text {. Once again the factorization is }
$$ hoped to be soft enough to allow the antipodes to be invertible.

If so, our bialgebras $U_{R}^{ \pm}$become the mutually antidual Hopf algebras $\check{U}_{R}^{ \pm}$, and it is possible to define the multiplicative structure of the quantum double upon $\check{U}_{R}^{+} \otimes \check{U}_{R}^{-}$. The cross-multiplication rule is deduced from (6):

$$
\begin{align*}
L_{1}^{-} L_{2}^{+} R_{12} & =<S\left(L_{1}^{-}\right), L_{2}^{+}>L_{2}^{+} L_{1}^{-}<L_{1}^{-}, L_{2}^{+}>R_{12} \\
& =R_{12} L_{2}^{+} L_{1}^{-} R_{12}^{-1} R_{12}=R_{12} L_{2}^{+} L_{1}^{-} . \tag{10}
\end{align*}
$$

Thus we regain eq.(3) as the quantum-double cross-multiplication condition!
Our conclusion is that R-matrices obeying QYBE generate the algebraic structures of quantum double in quite a natural way.
5. To illustrate the proposed scheme, consider the $s l_{q}(2) R$-matrix

$$
R_{q}=q^{-1 / 2}\left(\begin{array}{cccc}
q & 0 & 0 & 0 \\
0 & 1 & q-q^{-1} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & q
\end{array}\right), \quad R_{q}^{-1}=R_{q^{-1}}
$$

Here the bialgebras $U_{R_{q}}^{ \pm}$have 8 generators $l_{i j}^{ \pm}$. The bi-ideals to be factored out are generated by the relations

$$
l_{21}^{-}=0, \quad l_{12}^{+}=0, \quad l_{11}^{-} l_{22}^{-}=l_{22}^{-} l_{11}^{-}=1, \quad l_{11}^{+} l_{22}^{+}=l_{22}^{+} l_{11}^{+}=1 .
$$

After factorization the number of independent generators is reduced to 4 . We denote them $X^{ \pm}, H, H^{\prime}$ (note that $H^{\prime} \neq H$ so far):

$$
L^{+}=\left(\begin{array}{cc}
q^{H / 2} & 0 \\
\left(q^{1 / 2}-q^{-3 / 2}\right) X^{+} & q^{-H / 2}
\end{array}\right), \quad L^{-}=\left(\begin{array}{cc}
q^{-H^{\prime} / 2} & \left(q^{-1 / 2}-q^{3 / 2}\right) X^{-} \\
0 & q^{H^{\prime} / 2}
\end{array}\right)
$$

The multiplication rules (inside each algebra), coproducts and antipodes are:

$$
\begin{aligned}
& {\left[H, X^{+}\right]=2 X^{+},\left[H^{+}, X^{-}\right]=-2 X^{-},} \\
& \Delta(H)=H \otimes 1+1 \otimes H, \quad \Delta\left(H^{\prime}\right)=H^{\prime} \otimes 1+1 \otimes H^{\prime}, \\
& \Delta\left(X^{+}\right)=X^{+} \otimes q^{H / 2}+q^{-H / 2} \otimes X^{+}, \Delta\left(X^{-}\right)=X^{-} \otimes q^{H^{\prime} / 2}+q^{-H^{\prime} / 2} \otimes X^{-} \\
& S\left(X^{ \pm}\right)=-q^{ \pm 1} X^{ \pm} \quad, \quad S(H)=-H, S\left(H^{\prime}\right)=-H^{\prime} .
\end{aligned}
$$

The quantum-double cross-multiplication rules (6) take the form

$$
\begin{aligned}
{\left[H^{\prime}, X^{+}\right]=2 X^{+} } & ,\left[H, X^{-}\right]=-2 X^{-},\left[H, H^{\prime}\right]=0 \\
{\left[X^{+}, X^{-}\right] } & =\left(q^{\left(H+H^{\prime}\right) / 2}-q^{-\left(H+H^{\prime}\right) / 2}\right) /\left(q-q^{-1}\right) .
\end{aligned}
$$

The identification $H^{\prime} \equiv H$ leads to the ordinary $s l_{q}(2)$.
6. To give one more illustration, let us consider a bialgebra introduced in [5]. In a slightly simplified form it has generators $\left\{1, t_{j}^{i}, u_{j}^{i}, E_{j}, F^{i}\right\}$ which obey the following relations (here we prefer to display all the indices):

$$
\begin{array}{cl}
R_{m n}^{i j} t_{p}^{m} t_{q}^{n}=R_{p q}^{m n} t_{n}^{j} t_{m}^{i}, & E_{p} t_{q}^{j}=R_{p q}^{m n} t_{n}^{j} E_{m}, \\
\Delta\left(t_{j}^{i}\right)=t_{k}^{i} \otimes t_{j}^{k}, \varepsilon\left(t_{j}^{i}\right)=\delta_{j}^{i}, & \Delta\left(E_{j}\right)=E_{i} \otimes t_{j}^{i}+1 \otimes E_{j}, \varepsilon\left(E_{j}\right)=0, \\
R_{m n}^{i j} u_{p}^{m} u_{q}^{n}=R_{p q}^{m n} u_{n}^{j} u_{m}^{i}, F^{i} u_{p}^{j}=R_{m n}^{j i} u_{p}^{m} F^{n}, \\
\Delta\left(u_{j}^{i}\right)=u_{k}^{i} \otimes u_{j}^{k}, \varepsilon\left(u_{j}^{i}\right)=\delta_{j}^{i}, & \Delta\left(F^{i}\right)=F^{i} \otimes 1+u_{j}^{i} \otimes F^{j}, \varepsilon\left(F^{i}\right)=0, \\
R_{m n}^{i j} u_{p}^{m} t_{q}^{n}=R_{p q}^{m n} t_{n}^{j} u_{m}^{i}, & , E_{j} F^{i}-F^{i} E_{j}=t_{j}^{i}-u_{j}^{i}, \\
u_{p}^{i} E_{q}=R_{p q}^{m n} E_{n} u_{m}^{i}, t_{p}^{i} F^{j}=R_{m n}^{j i} F^{m} t_{p}^{n}, \tag{16}
\end{array}
$$

with R obeying QYBE (1). This is not a bialgebra of the form (2)-(4). Rather it is of the 'inhomogeneous quantum group' type [6]. Let us make sure that it is a quantum double as well.

Consider T, E-bialgebra (11),(12) and U, F-bialgebra (13),(14) firstly as being independent and fix nonzero pairings on the generators by

$$
\begin{equation*}
\left.\left\langle u_{j}^{i}, t_{q}^{p}\right\rangle=R_{j q}^{i p}, \quad<u_{j}^{i}, 1\right\rangle=\left\langle 1, t_{j}^{i}\right\rangle=\left\langle F^{i}, E_{j}\right\rangle=\delta_{j}^{i}, \tag{17}
\end{equation*}
$$

extending them to the whole bialgebras with the help of (5). The definition is correct due to

$$
\begin{aligned}
<F^{i}, E_{p} t_{q}^{j}-R_{p q}^{m n} t_{n}^{j} E_{m}> & =<F^{i} \otimes i+u_{k}^{i} \otimes F^{k}, t_{q}^{j} \otimes E_{p}-R_{p q}^{m n}\left(E_{m} \otimes t_{n}^{j}\right)> \\
& =R_{k q}^{i j} \delta_{p}^{k}-\delta_{m}^{i} R_{p q}^{m n} \delta_{n}^{j}=0, \\
<F^{i} u_{p}^{j}-R_{m n}^{i j} u_{p}^{m} F^{n}, E_{q}> & =<F^{i} \otimes u_{p}^{j}-R_{m n}^{j i}\left(u_{p}^{m} \otimes F^{n}\right), E_{k} \otimes t_{q}^{k}+1 \otimes E_{q}> \\
& =\delta_{k}^{i} R_{p q}^{j k}-R_{m n}^{j i} \delta_{p}^{m} \delta_{q}^{n}=0 .
\end{aligned}
$$

After factoring out the corresponding null bi-ideals, we may define antipodes on the generators as follows:

$$
\begin{gathered}
<S\left(u_{j}^{i}\right), t_{q}^{p}>=<u_{j}^{i}, S^{-1}\left(t_{q}^{p}\right)>=\left(R^{-1}\right)_{j q}^{i p} \\
<S\left(u_{j}^{i}\right), 1>=<1, S^{-1}\left(t_{j}^{i}\right)>=\delta_{j}^{i}, \quad S\left(F^{i}\right)=-S\left(u_{j}^{i}\right) F^{j}, \quad S\left(E_{j}\right)=-E_{i} S\left(t_{j}^{i}\right) .
\end{gathered}
$$

The proof of correctness is in complete analogy with the \check{U}_{R}-case.
Now a direct application of the recipe (6) exactly reproduces the cross-multiplication relations (15),(16). For example,

$$
\begin{aligned}
F^{i} E_{j}= & <S\left(F^{i}\right), E_{m}><1, t_{j}^{n}>t_{n}^{m}+<S\left(u_{n}^{i}\right), 1><1, t_{j}^{m}>E_{m} F^{n} \\
& +<S\left(u_{n}^{i}\right), 1><F^{m}, E_{j}>u_{m}^{n}=-t_{j}^{i}+E_{j} F^{i}+u_{j}^{i} ;
\end{aligned}
$$

because of

$$
<S\left(F^{i}\right), E_{m}>=-<S\left(u_{k}^{i}\right) \otimes F^{k}, E_{n} \otimes t_{m}^{n}+1 \otimes E_{m}>=-\delta_{m}^{i} .
$$

Therefore, bialgebras of the type (11)-(14) are also transformed into the quantum double using our method.
7. Consider at last a bialgebra [7] that is known to be related [8] to bicovariant differential calculus on quantum groups. Its coalgebra structure is given by (12), whereas the multiplication relations (11) are to be supplemented by

$$
\begin{align*}
t_{p}^{i} E_{q}+f_{n m}^{i} t_{p}^{n} t_{q}^{m} & =R_{p q}^{n m} E_{m} t_{n}^{i}+f_{p q}^{n} t_{n}^{i} \tag{18}\\
E_{i} E_{j}-R_{i j}^{m n} E_{n} E_{m} & =f_{i j}^{m} E_{m} \tag{19}
\end{align*}
$$

$f_{j k}^{i}$ being new structure constants. This bialgebra, unlike its ancestor (11),(12), exhibits the R-matrix-type representation

$$
\begin{equation*}
\mathbf{R}_{12} \mathbf{T}_{1} \mathbf{T}_{2}=\mathbf{T}_{2} \mathbf{T}_{1} \mathbf{R}_{12}, \quad \Delta(\mathbf{T})=\mathbf{T} \otimes \mathbf{T} \tag{20}
\end{equation*}
$$

where, in terms of multi-indices like $I=\{0, i\}$,

$$
\mathbf{T}_{J}^{J}=\left(\begin{array}{cc}
1 & E_{j} \\
0 & t_{j}^{i}
\end{array}\right), \quad \mathbf{R}_{M N}^{I J}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \delta_{n}^{j} & 0 & 0 \\
0 & 0 & \delta_{m}^{i} & f_{m n}^{i} \\
0 & 0 & 0 & R_{m n}^{i j}
\end{array}\right)
$$

Of course, \mathbf{R} must satisfy the QYBE (1) which now involves the structure constants $f_{m n}^{i}$ as well as $R_{m n}^{i j}$. Note that, due to (18),(19), the bialgebra (11),(12) is not restored from (20) by mere setting $f_{m n}^{i} \equiv 0$.

Now let us try to develop a quantum double from the bialgebra (20). However, it seems to be quite uneasy task. A natural Ansatz for the candidate antidual bialgebra is

$$
\mathbf{U}_{J}^{I}=\left(\begin{array}{cc}
1 & 0 \\
F^{i} & u_{j}^{i}
\end{array}\right)
$$

which causes the corresponding R-matrix to be

$$
\overline{\mathbf{R}}_{M N}^{I J}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \delta_{n}^{j} & 0 & 0 \\
0 & 0 & \delta_{m}^{i} & 0 \\
0 & f_{n}^{i j} & 0 & R_{m n}^{i j}
\end{array}\right)
$$

with different structure constants \bar{f} and another QYBE system involving R and \bar{f}. Now, attempting to fix a pairing in the form

$$
\begin{equation*}
\left.<\mathrm{U}_{1}, \mathrm{~T}_{2}\right\rangle=\mathrm{Q}_{12} \tag{21}
\end{equation*}
$$

with a certain numerical matrix \mathbf{Q}, we immediately arrive at the following general statement:

Let \mathbf{R} and $\overline{\mathbf{R}}$ be invertible solutions of QYBE. If there exists an invertible solution \mathbf{Q} of the equations

$$
\begin{aligned}
\mathbf{Q}_{12} \mathbf{Q}_{13} \mathbf{R}_{23} & =\mathbf{R}_{23} \mathbf{Q}_{13} \mathbf{Q}_{12} \\
\overline{\mathbf{R}}_{12} \mathbf{Q}_{13} \mathbf{Q}_{23} & =\mathbf{Q}_{23} \mathbf{Q}_{13} \overline{\mathbf{R}}_{12}
\end{aligned}
$$

then (21) is a correct pairing between the T- and \mathbf{U}-bialgebras generated by \mathbf{R} and $\overline{\mathbf{R}}$, respectively, and, assuming a proper quotienting procedure to be performed, the antipodes can be defined by the relations

$$
\left\langle S\left(\mathrm{U}_{1}\right), \mathbf{T}_{2}>=<\mathrm{U}_{1}, S^{-1}\left(\mathbf{T}_{2}\right)>=\mathbf{Q}_{12}^{-1}\right.
$$

and the quantum-double structure can be established on the tensor product of these bialgebras by the cross-multiplication formula

$$
\mathbf{Q}_{12} \mathrm{U}_{1} \mathrm{~T}_{2}=\mathrm{T}_{2} \mathrm{U}_{1} \mathrm{Q}_{12}
$$

Whether such a program can really be carried through in interesting cases (e.g. for \mathbf{R} and $\overline{\mathbf{R}}$ given above) is the subject of further investigation.

I wish to thank A.Isaev, R.Kashaev, A.Kempf and P.Pyatov for stimulating discussions.

References

[1] L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra i Analiz 1 (1989) 178 (in Russian); English transl. in: Leningrad Math. J. 1 . (1990) 193.
[2] S. Majid, Int. J. Mod. Phys. A 5 (1990) 1.
[3] V.G. Drinfeld, Quantum groups, in: ICM Berkeley-86 Proceedings, vol. 1, p. 798.
[4] T. Tjin, Int. J. Mod. Phys. A. 7 (1992) 6175.

- [5] M.Lüdde, preprint BONN-HE-92-9.
[6] M. Schlieker, W. Weich and R. Weixler, Z. Phys. C 53 (1992) 79.
[7] D. Bernard, Phys. Lett. B 260 (1991) 389.
[8] P. Aschieri and L. Castellani, preprint CERN-TH 6565/92, DFTT-22/92.

