





1. It is well known [1] that any invertible constant matrix solution R of the quantum
Yang-Baxter equation (QYBE)

Ry3Ry3Ry3 = RyaRia Ry ’ (1)
naturally generates a bialgebra Ag = {1,1;;} defined by
Ry, = TRy, AN)=T®T, ¢&T)=1,

(generators t;; form a matrix T, A is a coproduct and € a counit) and also another
bialgebra Ug = {1,1%,1;;} with

ij) |_7

RIZL:Z*:L:I*: = L:I!:L;th i (2)
RIZL-{LI— = L;L-{Rlz, o (3)
ALY =LE@LE , el*)=1, (4)

which is paired to Ag. This pairing [1, 2] is established by the relations
< Ty, L} >=Ry, <Ti,L; >=R;},
obeys the duality conditions
<af,a>=<a®f,Aa)>, <A(a),a ®‘b >=< a,ab>,
and appears to be degenerate. With some additional effort (quotlentmg by appropriate

null bi-ideals) these bialgebras can be made Hopf algebras A and Ug, dual to each
other. Their antipodes are defined by

<T,S(L¥) >
<T,S(L7) >

< S(Tl)’L-{ >= Rl_zla
< S(T]),Lz- >= Rj.

il

With essential use of this duality Majid [2] showed that in fact, with a certain
reservation, U proves to be a quasitriangular Hopf algebra with the universal R-
matrix given by implicit formulas originated from < T} ® T3, R >= Ry;. By the way,
Majid claims [2] that Ug is ‘more or less’ of the form of a quantum double. In the

present note we argue that, modulo the same reservation, Ug is actually a quantum
double.

2. Recall t(i.e. the duality with opposite coproduct and inverse
antipode) means < e »

‘,e; >= 6 and
<af,a>=<a®p,Aa) >, <A(a),a®b>=<a,ba>, (5)

g(a) =< 1,a >, ¢(a) =<a,1>, <S(a),a .>=< a,5a) >,
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where a,b € A, a,8 € A°, and {e;}, {e'} are the corresponding bases. To equip A® A°
with the Hopf algebra structure of the quantum double, one must define a very specific
cross-multiplication recipe. If

" ) .
eiej = clier, Alei) = fi'(e; @ er), S(e') = aie,
it reads
O'p epe?,  where 0"’ = 0l I .

Iﬁ invariant form this looks like

aa = Z Z < S(a(l)),a(l) >< Q(3), G(3) > a(2)Qx(2), (6)

where o ‘ k
A¥a) = Z a) @ aq) @ ag), A*a) = Z a(1) ® a(2) ® a(3).

Here the usual notation for coproducts (cf. A(a) =3 a1)®ayy) ) is used. The resulting
Hopf algebra proves to be quasitriangular with the universal R-matrix

R=) (®1)®(1®¢)

One easily finds that g/,(2) and other simple examples of quantum universal en-
veloping algebras are both the Up-type algebras and quantum doubles. Can it hap-
pen that Up would be a quantum double for any R? Majid’s approach based on the
Ur & Ap duality does not readily answer this question. That is why we choose another
way: not to use Ap at all. The key observation is that there exists an inherent antidual-
ity between U and Uy, which is precisely of the form requlred for the quantum-double
construction.

3. Let us define bialgebras U} = {1, u} and Up = {1,1;} by egs. (2),(4). Note
that the cross-multiplication relation (3) is not yet imposed, so U} and Up are con-
sidered to be independent so far. However, the very natural pairing between them can
be introduced. It is generated by

<Ly, Lf>=Ry, <L ,1>=<1,Lt>=<1,1>=1 (7
and in the general case looks like

(Li...Li,LE...LEYy=R7 .. .R7} ...R] (8)

im? 51 11dn iqdp tm.u ?

where the r.h.s. is a product of mn R~!-matrices corresponding to all pairs of indices
i4Jp with j-indices ordered from right to left. The consistency of (8) and (5) with (4)
is evident, while the proof of the consistency with (2) reduces to manipulations like

< Lg,RuliL} —L¥Li{Rn> = <Lj®Ly,Rn(l}@LY)— (L @ L} )R >
= RuR5 Rg) — Rgy Ry Riz = 0
and repeated use of QYBE (1).

O

For general R, this pairing is degenerate. To remove the degeneracy, i.e. to trans-
form pairing into antiduality, one should factor out appropriate bi-ideals [2]. In simple
cases this procedure is explicitly carried out and works well. For general R it is of
course not under our control. The situation is quite similar to {2]: we are to rely on
that the factorization procedure is “soft” in a sense that it does not destroy the whole
construction.

4. Keeping this in mind, we observe that, being antidual, Uf admit the Hopf
algebra structure. Let us introduce an antipode S in U7 and an inverse antipode S!
in U by the relations

< S(L7)1>=<1,8Y (L) >=1, < S(L]),L} >=< L7,S"Y(Lf) >= Ria, (9)
extending them on the whole of U} (or Ug) as antihomomorphisms of algebras and
coalgebras. The definition is correct due to

<mo(S®id)oA(LT),LT > = <mo(S(L7)®LT),L¥ >
=<S(L7)® L, LT ® LY > = RuRy =1=<e(L]),Lf >,
< S(L),RiaLF LY — LTLI Ria >=< Ao S(Lg), Ria( LY @ L) — (LT ® L})R1z >
=< S(L5) @ S(Lg), Riz(Lf @ LY) — (LT ® L¥)R12 >= RizRo2Ror — R Rz Ryz = 0,
< S(RiaLj Ly — LT L7 Rya), L >=< R12S(L7)S(L7) — S(L7)S(L7 )Ra2, L >
=< Ri2(S(LT)®S(L7 )~ (S(L7)®S(LT)) Riay LEQLE >= RizRioRao— RaoRioRiz = 0,

but there is no such a formula for S(L*) or $~!(L~). Once again the factorization is
hoped to be soft enough to allow the antipodes to be invertible.

If so, our bialgebras Ui become the mutually antidual Hopf algebras UR, and it is
possible to define the multiplicative structure of the quantum double upon U% @ Up.
The cross-multiplication rule is deduced from (6):

LiL{Ry = <S(L7),Lf> LfLy <Li,Lf > Ry
‘= Ry LL7R;}Ri; = RiLi LS. , (10)

il

Thus we regain eq.(3) as the quantum-double cross-multiplication condition!
Our conclusion is that R-matrices obeying QYBE generate the algebraic structures
of quantum double in quite a natural way.

5. To illustrate the proposed scheme, consider the s{,(2) R-matrix

qg 0 0 0
_ 01 g—q¢' 0 -
= g\2 1
Bo=q 00 1 0] = By
00 0 ¢

Here the bialgebras U have 8 generators li The bi-ideals to be factored out are
generated by the relations

I =0, lrz =0, Lin=15h=1, li']liz = 1;2114-1 =1



After factorization the number of independent generators is reduced to 4. We denote
them X* H H' (note that H' # H so far): ‘

e g 0 o (7~ X
(q1/2 _ q—3/2)X+ q—H/z y b= 0 g H'/2 .
’The multiplication rules (1ns1de each algebra) coproducts and antlpodes are:
B [H, Xt =2X* [H', X" =-2X",
, AH)=H®1+10H , AH)Y=H'Ql+10H',
AXN =Xt g o Xt AXT)=X"8¢" P+ R X,
- S(X*)=—g¥'X* |, S(H)=-H, S(H')=-H
" The quantum- double cross- multxphcatlon rules (6) take the form
[H,X*]= 2X+ ,o [H, X ]=-2X", [H,H]=0,
XX = (g ) jg — got).
* The identification H' = H leads to the ordinary s/,(2).

6. To give one more illustration, let us consider a bialgebra introduced in [5]. In
a slightly simplified form it has generators {1,t},u}, E;, F'} which obey the following

LI b
relations (here we prefer to display all the indlces)

RY tmth = Ry i), t‘ , Ept) = Ryt B, (11)
(t’)_tk®t, e(t-) & , AE)=E@ti+1®E;, ¢E;)=0, (12
RE wlul =Rt wiul, , Flul= R Wl P, (13)

A(u)-—uk®u1, E(u)=6 , A(FY=F'@l+u,®@F/, ¢F)=0, (14)

RS ultt=Ry"tiul, , E;F -~ FEj=t—u}, (15)

u\ E, = R Eq v, , . F/'= R F™t7, (16)

with R obeying QYBE (1). This is not a bialgebra of the form (2)-(4). Rather it is of
the ‘inhomogeneous quantum group’ type [6]. Let us make sure that it is a quantum
double as well.

Consider T, F-bialgebra (11), (12) and U, F-bialgebra (13),(14) firstly as being in-
dependent and fix nonzero pairings on the generators by

igp i»
< uJ,tq R,qv

<ub, 1 >=<1,ti >=< F'E; >=§}, (17)
extending them to the whole bialgebras with the help of (5). The definition is correct
due to
<F Bt —R"HE,> = <F'®l+ui®F", t:®E, ~ R (En ® 1)) >
= Ry 65— 8L, R" 63 =0,
< Fuj — R up P By > = <F'@ul— R} (u”‘®F") , Be@ti+ 10 E; >
= S RIF— R 6=

mn “p

After factoring out the corresponding null bi-ideals, we may define antipodes on
the generators as follows:

< §(ul), 1 >=< ul, 57} (#2) >= (R™)?

g
S(F') = —S(u})F?, S(E;)=-E:S(t}).
The proof of correctness is in complete analogy with the Ugr-case.

Now a direct application of the recipe ( 6) exactly reproduces the cross- multrphcatlon
relations (15),(16). For example,

< S(uj),1 >=<1,87(tf) >= 6},

FE; =< S(F), B >< L, 7> t™4 < S(u}),1 >< 1,1 > E, F"
+ < S(uh),1 >< F™ E; > u, = —-tg- + E;Ft +uj~,
because of

< S(F'),Ep>= < S(ul) @ F* , B, ®1t" +1® Ep >= —6..

Therefore, bialgebras of the type-(11)-(14) are also transformed into the quantum
double using our method.

7. Consider at last a bialgebra [7] that is known to be related [8] to bicovariant dif-
ferential calculus on quantum groups. Its coalgebra structure is given by (12), whereas
the multiplication relations (11) are to be supplemented by

RM E i+ f2 8 (18)

t;Eq+f;mt;t;n = pg “n?
E;~R"EE, = fEn, (19)

i being new structure constants. This bialgebra, unlike its ancestor (11), (12), exhibits
the R-matrix-type representation

R;T\T; = T.T Rz, A(T)=T®T, (20)

where, in terms of multi-indices like I = {0,:},

- 100 0
e 06 0 0
TJ—<0 § ) ° 0 % R%?"

Of course, R must satisfy the QYBE (1) which now involves the structure constants
! . as well as Ri . Note that, due to (18),(19), the bialgebra (11) (12) is not restored
from (20) by mere setting f5_ = 0.
Now let us try to develop a quantum double from the bialgebra (20). However, it
seems to be quite uneasy task. A natural Ansatz for the candidate antidual bialgebra

is
1 0
o= (p )



‘

which causes the corresponding R-matrix to be

1 0 0 0
o~y 0 & 0 0
Ruv=19 0 & o
0 f9 0 RY

with different structure constants f and another QYBE system involving R and f.
Now, attempting to fix a pairing in the form . .

< Uy, Ty >= Qi ) (21)

with a certain numerical matrix Q, we immediately arrive at the following general
statement: )

Let R and R be invertible solutions of QYBE. If there exists an invertible solution
Q of the equations

Q12QuzR23 = R23Q1aQua;,
R12Q13Q2 = Q23QuaRay,

then (21) is a correct pairing between the T- and U-bialgebras generated by R and
R, respectively, and, assuming a proper quotienting procedure to be performed, the
antipodes can be defined by the relations

< S(Ul),Tz >=< Uy, §7HT2) >= Q77

and the quantum-double structure can be established on the tensor product of these
bialgebras by the cross-multiplication formula

Q12U T3 = T2U1Qua.

Whether such a program can really be carried through in interesting cases (e.g. for
R and R given above) is the subject of further investigation.

I wish to thank A.Isaev, R.Kashaev, A.Kempf and P.Pyatov for stimulating discus-
sions.
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