92-506

ОбЪЕДИНЕННЫЙ Институт ядерных исследований дубна

E2-92-506

A.A.Vladimirov*

A METHOD FOR OBTAINING QUANTUM DOUBLES FROM THE YANG-BAXTER R-MATRICES

Submitted to «Physics Letters B»

*E-mail address: alvladim@theor.jinrc.dubna.su

Владимиров А.А. Метод получения квантовых дублей из *R*-матриц Янга — Бакстера

В работах [1] и [2] был предложен метод, позволивший сопоставить каждому регулярному обратимому решению уравнений Янга — Бакстера без спектрального параметра некоторую квазитреугольную алгебру Хопфа. Мы развиваем этот подход и показываем, что эта алгебра Хопфа есть на самом деле квантовый дубль.

Работа выполнена в Лаборатории теоретической физики ОИЯИ.

Препринт Объединенного института ядерных исследований. Дубна 1992

E2-92-506

Vladimirov A.A. A Method for Obtaining Quantum Doubles from the Yang-Baxter *R*-Matrices

We develop the approach of refs. [1] and [2] that enables one to associate a quasitriangular Hopf algebra to every regular invertible constant solution of the quantum Yang-Baxter equations. We show that such a Hopf algebra is actually a quantum double.

The investigation has been performed at the Laboratory of Theoretical Physics, JINR.

1. It is well known [1] that any invertible constant matrix solution R of the quantum Yang-Baxter equation (QYBE)

$$R_{12}R_{13}R_{23} = R_{23}R_{13}R_{12} \tag{1}$$

naturally generates a bialgebra $A_R = \{1, t_{ij}\}$ defined by

$$R_{12}T_1T_2 = T_2T_1R_{12}, \quad \Delta(T_1) = T_1 \otimes T_1, \quad \varepsilon(T) = 1,$$

(generators t_{ij} form a matrix T, Δ is a coproduct and ε a counit) and also another bialgebra $U_R = \{1, l_{ij}^+, l_{ij}^-\}$ with

$$R_{12}L_2^{\pm}L_1^{\pm} = L_1^{\pm}L_2^{\pm}R_{12}, \qquad (2)$$

$$R_{12}L_2^+L_1^- = L_1^-L_2^+R_{12}, (3)$$

$$\Delta(L_1^{\pm}) = L_1^{\pm} \otimes L_1^{\pm} \quad , \quad \varepsilon(L^{\pm}) = 1, \tag{4}$$

which is paired to A_R . This pairing [1, 2] is established by the relations

 $< T_1, L_2^+ >= R_{12}, \quad < T_1, L_2^- >= R_{21}^{-1},$

obeys the duality conditions

$$< \alpha \beta, a > = < \alpha \otimes \beta, \Delta(a) >, < \Delta(\alpha), a \otimes b > = < \alpha, ab >,$$

and appears to be degenerate. With some additional effort (quotienting by appropriate null bi-ideals) these bialgebras can be made Hopf algebras \check{A}_R and \check{U}_R , dual to each other. Their antipodes are defined by

$$\langle T_1, S(L_2^+) \rangle = \langle S(T_1), L_2^+ \rangle = R_{12}^{-1},$$

 $\langle T_1, S(L_2^-) \rangle = \langle S(T_1), L_2^- \rangle = R_{21}.$

With essential use of this duality Majid [2] showed that in fact, with a certain reservation, \check{U}_R proves to be a quasitriangular Hopf algebra with the universal \mathcal{R} -matrix given by implicit formulas originated from $\langle T_1 \otimes T_2, \mathcal{R} \rangle = R_{12}$. By the way, Majid claims [2] that \check{U}_R is 'more or less' of the form of a quantum double. In the present note we argue that, modulo the same reservation, \check{U}_R is actually a quantum double.

2. Recall t(i.e. the duality with opposite coproduct and inverse antipode) means < e

$$i, e_j >= \delta_j^i \text{ and}$$

$$< \alpha \beta, a >=< \alpha \otimes \beta, \Delta(a) >, < \Delta(\alpha), a \otimes b >=< \alpha, ba >, \quad (5)$$

$$\varepsilon(a) =< 1, a >, \quad \varepsilon(\alpha) =< \alpha, 1 >, \quad < S(\alpha), a >=< \alpha, S^{-1}(a) >,$$

$$0 \text{ b LEALSCONLER RECTRIVE ALL COMPACEDED IN THE COMPACED ALL COMP$$

where $a, b \in A$, $\alpha, \beta \in A^{\circ}$, and $\{e_i\}, \{e^i\}$ are the corresponding bases. To equip $A \otimes A^{\circ}$ with the Hopf algebra structure of the quantum double, one must define a very specific cross-multiplication recipe. If

$$e_i e_j = c_{ij}^k e_k, \quad \Delta(e_i) = f_i^{jk} (e_j \otimes e_k), \quad S(e^i) = \sigma_j^i e^j,$$

it reads

$$e^i e_j = \mathcal{O}^{ip}_{jq} e_p e^q$$
, where $\mathcal{O}^{ip}_{jq} = c^t_{nq} c^i_{ts} \sigma^s_r f^r_j f^l_l$

In invariant form this looks like

$$\alpha a = \sum \sum \langle S(\alpha_{(1)}), a_{(1)} \rangle \langle \alpha_{(3)}, a_{(3)} \rangle \langle a_{(2)} \alpha_{(2)},$$
(6)

171

...)

C

where

$$\Delta^{2}(\alpha) = \sum \alpha_{(1)} \otimes \alpha_{(2)} \otimes \alpha_{(3)}, \quad \Delta^{2}(a) = \sum a_{(1)} \otimes a_{(2)} \otimes a_{(3)}$$

Here the usual notation for coproducts (cf. $\Delta(a) = \sum a_{(1)} \otimes a_{(2)}$) is used. The resulting Hopf algebra proves to be quasitriangular with the universal \mathcal{R} -matrix

$$\mathcal{R} = \sum_{i} (e_i \otimes 1) \otimes (1 \otimes e^i).$$

One easily finds that $gl_q(2)$ and other simple examples of quantum universal enveloping algebras are both the \check{U}_R -type algebras and quantum doubles. Can it happen that \check{U}_R would be a quantum double for any R? Majid's approach based on the $\check{U}_R \leftrightarrow \check{A}_R$ duality does not readily answer this question. That is why we choose another way: not to use A_R at all. The key observation is that there exists an inherent antiduality between U_R^+ and U_R^- which is precisely of the form required for the quantum-double construction.

3. Let us define bialgebras $U_R^+ = \{1, l_{ij}^+\}$ and $U_R^- = \{1, l_{ij}^-\}$ by eqs. (2),(4). Note that the cross-multiplication relation (3) is not yet imposed, so U_R^+ and U_R^- are considered to be independent so far. However, the very natural pairing between them can be introduced. It is generated by

$$< L_1^-, L_2^+ >= R_{12}^{-1}, < L^-, 1 >= < 1, L^+ >= < 1, 1 >= 1$$
 (7)

and in the general case looks like

$$\langle L_{i_1}^- \dots L_{i_m}^-, L_{j_1}^+ \dots L_{j_n}^+ \rangle = R_{i_1 j_n}^{-1} \dots R_{i_q j_p}^{-1} \dots R_{i_m j_1}^{-1} ,$$
 (8)

where the r.h.s. is a product of $mn \ R^{-1}$ -matrices corresponding to all pairs of indices $i_q j_p$ with *j*-indices ordered from right to left. The consistency of (8) and (5) with (4) is evident, while the proof of the consistency with (2) reduces to manipulations like

$$< L_0^-, R_{12}L_2^+L_1^+ - L_1^+L_2^+R_{12} > = < L_0^- \otimes L_0^-, R_{12}(L_1^+ \otimes L_2^+) - (L_2^+ \otimes L_1^+)R_{12} > = R_{12}R_{01}^{-1}R_{02}^{-1} - R_{02}^{-1}R_{01}^{-1}R_{12} = 0$$

and repeated use of QYBE (1).

For general R, this pairing is degenerate. To remove the degeneracy, i.e. to transform pairing into antiduality, one should factor out appropriate bi-ideals [2]. In simple cases this procedure is explicitly carried out and works well. For general R it is of course not under our control. The situation is quite similar to [2]: we are to rely on that the factorization procedure is "soft" in a sense that it does not destroy the whole construction.

4. Keeping this in mind, we observe that, being antidual, U_R^{\pm} admit the Hopf algebra structure. Let us introduce an antipode S in U_R^{-} and an inverse antipode S^{-1} in U_R^{+} by the relations

 $\langle S(L^{-}), 1 \rangle = \langle 1, S^{-1}(L^{+}) \rangle = 1, \ \langle S(L_{1}^{-}), L_{2}^{+} \rangle = \langle L_{1}^{-}, S^{-1}(L_{2}^{+}) \rangle = R_{12},$ (9)

extending them on the whole of U_R^+ (or U_R^-) as antihomomorphisms of algebras and coalgebras. The definition is correct due to

$$< m \circ (S \otimes id) \circ \Delta(L_{1}^{-}), L_{2}^{+} > = < m \circ (S(L_{1}^{-}) \otimes L_{1}^{-}), L_{2}^{+} >$$

= $< S(L_{1}^{-}) \otimes L_{1}^{-}, L_{2}^{+} \otimes L_{2}^{+} > = R_{12}R_{12}^{-1} = 1 = < \varepsilon(L_{1}^{-}), L_{2}^{+} >,$

 $< S(L_0^-), R_{12}L_2^+L_1^+ - L_1^+L_2^+R_{12} > = < \Delta \circ S(L_0^-), R_{12}(L_1^+ \otimes L_2^+) - (L_2^+ \otimes L_1^+)R_{12} > \\ = < S(L_0^-) \otimes S(L_0^-), R_{12}(L_2^+ \otimes L_1^+) - (L_1^+ \otimes L_2^+)R_{12} > = R_{12}R_{02}R_{01} - R_{01}R_{02}R_{12} = 0, \\ < S(R_{12}L_2^-L_1^- - L_1^-L_2^-R_{12}), L_0^+ > = < R_{12}S(L_1^-)S(L_2^-) - S(L_2^-)S(L_1^-)R_{12}, L_0^+ > \\ = < R_{12}(S(L_1^-) \otimes S(L_2^-)) - (S(L_2^-) \otimes S(L_1^-))R_{12}, L_0^+ \otimes L_0^+ > = R_{12}R_{10}R_{20} - R_{20}R_{10}R_{12} = 0, \\ \text{but there is no such a formula for } S(L^+) \text{ or } S^{-1}(L^-). \text{ Once again the factorization is hoped to be soft enough to allow the antipodes to be invertible. }$

If so, our bialgebras U_R^{\pm} become the mutually antidual Hopf algebras \tilde{U}_R^{\pm} , and it is possible to define the multiplicative structure of the quantum double upon $\tilde{U}_R^{\pm} \otimes \tilde{U}_R^{-}$. The cross-multiplication rule is deduced from (6):

$$L_1^- L_2^+ R_{12} = \langle S(L_1^-), L_2^+ \rangle L_2^+ L_1^- \langle L_1^-, L_2^+ \rangle R_{12}$$

= $R_{12} L_2^+ L_1^- R_{12}^{-1} R_{12} = R_{12} L_2^+ L_1^-.$ (10)

Thus we regain eq.(3) as the quantum-double cross-multiplication condition!

Our conclusion is that *R*-matrices obeying QYBE generate the algebraic structures of quantum double in quite a natural way.

5. To illustrate the proposed scheme, consider the $sl_q(2)$ R-matrix

$$R_q = q^{-1/2} \begin{pmatrix} q & 0 & 0 & 0 \\ 0 & 1 & q - q^{-1} & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & q \end{pmatrix}, \quad R_q^{-1} = R_{q^{-1}}.$$

Here the bialgebras $U_{R_q}^{\pm}$ have 8 generators l_{ij}^{\pm} . The bi-ideals to be factored out are generated by the relations

$$l_{21}^- = 0, \ l_{12}^+ = 0, \ l_{11}^- l_{22}^- = l_{22}^- l_{11}^- = 1, \ l_{11}^+ l_{22}^+ = l_{22}^+ l_{11}^+ = 1.$$

3

2

After factorization the number of independent generators is reduced to 4. We denote them X^{\pm}, H, H' (note that $H' \neq H$ so far):

$$L^{+} = \begin{pmatrix} q^{H/2} & 0\\ (q^{1/2} - q^{-3/2})X^{+} & q^{-H/2} \end{pmatrix}, \quad L^{-} = \begin{pmatrix} q^{-H'/2} & (q^{-1/2} - q^{3/2})X^{-}\\ 0 & q^{H'/2} \end{pmatrix}$$

The multiplication rules (inside each algebra), coproducts and antipodes are:

$$\begin{split} [H, X^+] &= 2X^+ \quad , \quad [H', X^-] = -2X^-, \\ \Delta(H) &= H \otimes 1 + 1 \otimes H \quad , \quad \Delta(H') = H' \otimes 1 + 1 \otimes H', \\ \Delta(X^+) &= X^+ \otimes q^{H/2} + q^{-H/2} \otimes X^+ \quad , \quad \Delta(X^-) = X^- \otimes q^{H'/2} + q^{-H'/2} \otimes X^-, \\ S(X^\pm) &= -q^{\pm 1} X^\pm \quad , \quad S(H) = -H, \quad S(H') = -H'. \end{split}$$

The quantum-double cross-multiplication rules (6) take the form

$$\begin{array}{ll} [H',X^+]=2X^+ &, & [H,X^-]=-2X^-, & [H,H']=0, \\ & & [X^+,X^-] &= & \left(q^{(H+H')/2}-q^{-(H+H')/2}\right)/(q-q^{-1}) \end{array}$$

The identification $H' \equiv H$ leads to the ordinary $sl_q(2)$.

6. To give one more illustration, let us consider a bialgebra introduced in [5]. In a slightly simplified form it has generators $\{1, t_j^i, u_j^i, E_j, F^i\}$ which obey the following relations (here we prefer to display all the indices):

$$R_{mn}^{ij} t_p^m t_q^n = R_{pq}^{mn} t_n^j t_m^i \quad , \quad E_p t_q^j = R_{pq}^{mn} t_n^j E_m, \tag{11}$$

$$\Delta(t_j^i) = t_k^i \otimes t_j^k, \quad \varepsilon(t_j^i) = \delta_j^i \quad , \quad \Delta(E_j) = E_i \otimes t_j^i + 1 \otimes E_j, \quad \varepsilon(E_j) = 0, \quad (12)$$

$$R_{mn}^{ij} u_p^m u_q^n = R_{pq}^{mn} u_n^j u_m^{i} , \quad F^i u_p^j = R_{mn}^{ji} u_p^m F^n, \quad (13)$$

$$\Delta(u_j^i) = u_k^i \otimes u_j^k, \quad \varepsilon(u_j^i) = \delta_j^i \quad , \quad \Delta(F^i) = F^i \otimes 1 + u_j^i \otimes F^j, \quad \varepsilon(F^i) = 0, \quad (14)$$

$$R_{mn}^{ij} u_p^m t_q^n = R_{pq}^{mn} t_j^n u_m^i , \quad E_j F^i - F^i E_j = t_j^i - u_j^i, \quad (15)$$
$$u_p^i E_q = R_{pq}^{mn} E_n u_m^i , \quad t_p^i F^j = R_{mn}^{ji} F^m t_p^n, \quad (16)$$

with R obeying QYBE (1). This is not a bialgebra of the form (2)-(4). Rather it is of the 'inhomogeneous quantum group' type [6]. Let us make sure that it is a quantum double as well.

Consider T, E-bialgebra (11),(12) and U, F-bialgebra (13),(14) firstly as being independent and fix nonzero pairings on the generators by

$$\langle u_j^i, t_q^p \rangle = R_{jq}^{ip}, \quad \langle u_j^i, 1 \rangle = \langle 1, t_j^i \rangle = \langle F^i, E_j \rangle = \delta_j^i,$$
 (17)

extending them to the whole bialgebras with the help of (5). The definition is correct due to

$$< F^{i}, E_{p} t_{q}^{j} - R_{pq}^{mn} t_{n}^{j} E_{m} > = < F^{i} \otimes 1 + u_{k}^{i} \otimes F^{k} , t_{q}^{j} \otimes E_{p} - R_{pq}^{mn} (E_{m} \otimes t_{n}^{j}) >$$

$$= R_{kq}^{ij} \delta_{p}^{k} - \delta_{m}^{i} R_{pq}^{mn} \delta_{n}^{j} = 0,$$

$$< F^{i} u_{p}^{j} - R_{mn}^{ji} u_{p}^{m} F^{n}, E_{q} > = < F^{i} \otimes u_{p}^{j} - R_{mn}^{ji} (u_{p}^{m} \otimes F^{n}) , E_{k} \otimes t_{q}^{k} + 1 \otimes E_{q} >$$

$$= \delta_{k}^{i} R_{pq}^{jk} - R_{mn}^{ji} \delta_{p}^{m} \delta_{q}^{n} = 0.$$

After factoring out the corresponding null bi-ideals, we may define antipodes on the generators as follows:

$$< S(u_j^i), t_q^p > = < u_j^i, S^{-1}(t_q^p) > = (R^{-1})_{jq}^{ip},$$

$$< S(u_j^i), 1 > = < 1, S^{-1}(t_j^i) > = \delta_j^i, \quad S(F^i) = -S(u_j^i)F^j, \quad S(E_j) = -E_iS(t_j^i).$$

The proof of correctness is in complete analogy with the \check{U}_R -case.

Now a direct application of the recipe (6) exactly reproduces the cross-multiplication relations (15),(16). For example,

$$\begin{aligned} F^{i}E_{j} &= \langle S(F^{i}), E_{m} \rangle \langle 1, t_{j}^{n} \rangle t_{n}^{m} + \langle S(u_{n}^{i}), 1 \rangle \langle 1, t_{j}^{m} \rangle E_{m}F^{n} \\ &+ \langle S(u_{n}^{i}), 1 \rangle \langle F^{m}, E_{j} \rangle u_{m}^{n} = -t_{j}^{i} + E_{j}F^{i} + u_{j}^{i}, \end{aligned}$$

because of

$$< S(F^i), E_m > = - < S(u^i_k) \otimes F^k \ , \ E_n \otimes t^n_m + 1 \otimes E_m > = -\delta^i_m.$$

Therefore, bialgebras of the type (11)-(14) are also transformed into the quantum double using our method.

7. Consider at last a bialgebra [7] that is known to be related [8] to bicovariant differential calculus on quantum groups. Its coalgebra structure is given by (12), whereas the multiplication relations (11) are to be supplemented by

$$t_{p}^{i} E_{q} + f_{nm}^{i} t_{p}^{n} t_{q}^{m} = R_{pq}^{nm} E_{m} t_{n}^{i} + f_{pq}^{n} t_{n}^{i}, \qquad (18)$$

$$E_i E_j - R_{ij}^{mn} E_n E_m = f_{ij}^m E_m, \qquad (19)$$

 f_{jk}^i being new structure constants. This bialgebra, unlike its ancestor (11),(12), exhibits the *R*-matrix-type representation

$$\mathbf{R}_{12}\mathbf{T}_1\mathbf{T}_2 = \mathbf{T}_2\mathbf{T}_1\mathbf{R}_{12}, \quad \Delta(\mathbf{T}) = \mathbf{T}\otimes\mathbf{T}, \tag{20}$$

where, in terms of multi-indices like $I = \{0, i\},\$

 $\mathbf{T}_{J}^{I} = \begin{pmatrix} 1 & E_{j} \\ 0 & t_{j}^{i} \end{pmatrix}, \quad \mathbf{R}_{MN}^{IJ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \delta_{n}^{j} & 0 & 0 \\ 0 & 0 & \delta_{m}^{i} & f_{mn}^{i} \\ 0 & 0 & 0 & R_{mn}^{ij} \end{pmatrix}.$

Of course, **R** must satisfy the QYBE (1) which now involves the structure constants f_{mn}^{i} as well as R_{mn}^{ij} . Note that, due to (18),(19), the bialgebra (11),(12) is not restored from (20) by mere setting $f_{mn}^{i} \equiv 0$.

Now let us try to develop a quantum double from the bialgebra (20). However, it seems to be quite uneasy task. A natural Ansatz for the candidate antidual bialgebra is

$$\mathbf{U}_{J}^{I}=\left(egin{array}{cc} 1 & 0 \ F^{i} & u_{j}^{i} \end{array}
ight),$$

5

which causes the corresponding R-matrix to be

$$\mathbf{\widetilde{R}}_{MN}^{IJ} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \delta_n^j & 0 & 0 \\ 0 & 0 & \delta_m^i & 0 \\ 0 & \bar{f}_n^{ij} & 0 & R_{mn}^{ij} \end{pmatrix}$$

with different structure constants \overline{f} and another QYBE system involving R and \overline{f} . Now, attempting to fix a pairing in the form

$$< U_1, T_2 >= Q_{12}$$
 (21)

with a certain numerical matrix \mathbf{Q} , we immediately arrive at the following general statement:

Let **R** and $\overline{\mathbf{R}}$ be invertible solutions of QYBE. If there exists an invertible solution **Q** of the equations

$$\begin{array}{rcl} {\bf Q}_{12} {\bf Q}_{13} {\bf R}_{23} &=& {\bf R}_{23} {\bf Q}_{13} {\bf Q}_{12}, \\ \overline{\bf R}_{12} {\bf Q}_{13} {\bf Q}_{23} &=& {\bf Q}_{23} {\bf Q}_{13} \overline{\bf R}_{12}, \end{array}$$

then (21) is a correct pairing between the T- and U-bialgebras generated by \mathbf{R} and $\overline{\mathbf{R}}$, respectively, and, assuming a proper quotienting procedure to be performed, the antipodes can be defined by the relations

$$< S(\mathbf{U}_1), \mathbf{T}_2 > = < \mathbf{U}_1, S^{-1}(\mathbf{T}_2) > = \mathbf{Q}_{12}^{-1}$$

and the quantum-double structure can be established on the tensor product of these bialgebras by the cross-multiplication formula

$$\mathbf{Q}_{12}\mathbf{U}_1\mathbf{T}_2=\mathbf{T}_2\mathbf{U}_1\mathbf{Q}_{12}.$$

Whether such a program can really be carried through in interesting cases (e.g. for \mathbf{R} and $\overline{\mathbf{R}}$ given above) is the subject of further investigation.

I wish to thank A.Isaev, R.Kashaev, A.Kempf and P.Pyatov for stimulating discussions.

References

 L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Algebra i Analiz 1 (1989) 178 (in Russian); English transl. in: Leningrad Math. J. 1 (1990) 193.

[2] S. Majid, Int. J. Mod. Phys. A 5 (1990) 1.

[3] V.G. Drinfeld, Quantum groups, in: ICM Berkeley-86 Proceedings, vol. 1, p. 798.

[4] T. Tjin, Int. J. Mod. Phys. A 7 (1992) 6175.

[5] M. Lüdde, preprint BONN-HE-92-9.

[6] M. Schlieker, W. Weich and R. Weixler, Z. Phys. C 53 (1992) 79.

[7] D. Bernard, Phys. Lett. B 260 (1991) 389.

[8] P. Aschieri and L. Castellani, preprint CERN-TH 6565/92, DFTT-22/92.

Section Contractor

Received by Publishing Department on December 7, 1992.

7

6