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1 Introduction 

The approach Dirac proposed for describing systems with constraints [1] 
attracted much attention again in view of the fundamental role of gauge 
theories in elementary particle physics because these theories belong to 
the class of degenerate theories. The Dirac hypothesis is under discus
sion for a long time according to which all the first-class constraints are 
generators of gauge transformations. In the existing literature there are 
many divergent opinions, some of them [2 and 3] totally reject this hy
pothesis and some of them completely accept it [4-7], which signifies that 
in the general case no method does yet exist for finding gauge transfor
mations in theories with constraints. Knowledge of the explicit form of 
gauge transformations is necessary in many cases, for instance, in BRST 
[8] and Sp(2) [9] quantization, for deriving improper conservation laws 
and for studying the connection between various gauges. 

Gauge transformations were constructed by two approaches (however, 
in the general case the problem was not solved). One of them [6] is based 
on a generalized Hamiltonian HE that is a sum of the canonical Hamil
tonian and all the first-class constraints with their Lagrange multipliers, 
there the phase space is formally extended by making the Lagrange mul
tipli~rs to be extra coordinates. This extension is required for removing 
the terms proportional to the Lagrange multipliers from the action vari
ation by ascribing the corresponding transformations to the multipliers. 
This approach differs from the Dirac approach and, moreover, the space 
thus extended has no symplectic structure of the phase space. The other 
approach [3, 10, 11] (without extending the phase space) also did not per
mit one to obtain gauge transformations in the general case. The reason 
is that the group structure of the generator of gauge transformations was 
given a priori: the number of arbitrary parameters was fixed beforehand 
(it was equal to the amount of primary first-class constraints), which did 
not, follow from the Dirac hypothesis. 

In our earlier papers [4 and 5], we have suggested a method of con
structing infinitesimal gauge transformations on the basis of the varia-



tional principle for the action. We proceeded in accordance with the 
Dirac hypothesis and on the algebra of constraints we imposed the re
striction consisting in that the Poisson brackets of primary constraints 
with all constraints are linear combinations of primary constraints. Then 
it is natural to ask to what extent this restriction reduces the class of 
theories for which gauge transformations can be constructed and wha.t · 
is the nature of degeneracy of Lagrangians because there are examples 
[11 and 12] when this restriction is broken up. Notes that the mention<;d 
restriction on the constraints applies also to the aforecited articles. More
over, these approaches do not embrace the cases when higher derivatives 
are present in the symmetry transformation law. The latter has also to 
do with the Lagrangian formalism [13]. 

In this paper, following the method applied in ref.[3] (i.e. requiring 
the tra:nsformed coordinates to be solutions of the Hamiltonian equations 
of motion) and the Dirac hypothesis, we derive infinitesimal gauge trans
formations in phase and configuration space for arbitrary degenerated 
Lagrangians. We also show that the difficulty due to restriction on the 
algebra of constraints can be removed by passing .to an equivalent set of 
constraints and that the degeneracy of Lagrangians stems from their be
ing gauge-invariant. (We will consider only the·first~class constraints as 
only these constraints are responsible for gauge degrees of freedom [1].) 
The method will be applied to an example not solved yet [11]. 

2 Definitions, Derivation of Infinitesimal Gauge 

Transformations, Algebra of Constraints . 

Subsequent considerations may be extended to the field theory, but 
here we restrict for simplicity ourselves to a system with a finite number 
of the degrees of freedom described by a degenerate Lagrangian L( q, q), 
where q = ( q1, • · · , qN) and q = * = ( q1, · · · , <J.N) are generalized coordi
nates and velocities, respectively. Degeneracy of the Lagrangian implies 
that 
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L II= R < N, rank O<J.iO<J.; i,j=l,•••,N. (1) 

To pass into the Hamiltonian formalism, we introduce the momentum 
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variables 

( .) oL 
Pi q,q = -

0
., 
Qi 

which are not all independent due to the condition (1). As a result, there 
appear N - R relationships in the phase space, 

<j);(Q,p) ~ 0, a= l,··•,N-R. (2) 

By the Dirac terminology, <P1 in (2) are primary constraints and~ means 
weak equality. 

The Hamiltonian equations of motion arc written in terms of the stan
dard Poisson brackets as follows [1]: 

<Ji = {Qi' HT}' Pi= {p;,Hr}, 

</>~(Q,p) ~ 0, 

where the total Hamiltonian HT is 

HT = Ile+ Uc,q>~. 

(3) 

(4) 

In (4) He is the canonical Hamiltonian and Ucr are the arbitrary functions 
of time. 

For the system of equations (3) being self-consistent, the primary con
straints should be conserved in time. As a result, there arise secondary 
constraints ef>~(Q,11) ~ 0 that should also be conserved in time and lead to 
constraints of the next stage. This process is to be continued up to triv
ial fulfillment of the conditions of stationarity to be occurred at a certain 
stage Mer. Following Dirac, we denote the whole set of constraints, both 
primary and secondary if aJl stages, as follows 

,1..mo, 

'/' Cf ' 
a= l,··•,N - R, rn,, = 1,2,···,M.,. (5) 

We assume that the system (5) is a complete set of independent func
tions[l]. 

In accordance with the Dirac hypothesis, we look for infinitesimal 
gauge transformations in the form 

q; =Qi+ bQi, 
I i: Pi= Pi+ upi, 

bQi = { qi, G}, 

bpi= {Pi, G}, 

where the generating function G is given by 

G = C:::"' </>';·•' a= 1,··•,N-R, 1ncr = 1, ... , JH<, 
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(6) 

(7) 



with c:"' being arbitrary functions of time. 
Like in ref.[3], we will require the transformed quantities qt and p~ 

defined by (6) to be solutions of the Hamiltonian equations of motion, 

8HTI , 
q; = 8pi q+5q,p+6P 

8HTI , 
p~ = - 8qi q+5q,p+.5p 

(8) 

</>~(q + 6q,p + 6p) ~ 0. 

Expanding the first of eqs. (8) in a series in 6qi and 6pi and taking account 
of (6) we obtain 

. d 8HT { } 
qi + dt {Qi, G} = api + {qi, HT}, G . (9) 

Using the definition of the total derivative with respect to time and the 
Jacobi identity for Qi, G and HT we find from (9) 

8G 
{ qi, at+ {G,HT}} = 0 (10) 

and analogously for Pi 

{Pi,~+ {G,HT}} = 0. (11) 

From equations (10) and (11) it follows that 

[88G + {G,HT}] = 0. 
t ¢!~0 

(12) 

We recall that we consider only the first-class constraints, which implies 
the following relations 

{ ,1..ma. ,1..mp} = Jm"'mpm-y,1..m-y 
'Pa >'Pp a P "f 'I-'-, > 

{ ,l..mv H } = gmvmr ,1..mr 'Pu , c u r 'Pr , 

(13) 

(14) 

a,/3,;,u, T = 1, · · · ,N-R; ma,p,-,,u = 1, · · ·, Ma;p,-,,u; mr = 1, · · ·, mu+L 

(here and in what follows, summation runs over repeated upper and lower 
indices). Using these relations and the function G defined by (7) we 
rewrite equation (12) in the form 

[( •ma.+ mpma. mp),1..m,. + c •l + mp 1 mp _ fl mp 1 mp),1..l 
Ca 9p a cp 'Pa €a 913 a cp u-, -, f3 a cp 'Pa 

+u-,Jp\1 
:" c;;-6 </>;:"' L~:=:,O = O, ma ~ 2, mp ~ ma - 1. (15) 
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Owing to the constraints being independent, the equality (15) can be 
satisfied if the coefficients of secondary constraints of all stages vanish, 
i.e. 

( •ma. mpm.. mp) /m/J 1 m.. mp 0 > 2 (16) ca + 9p a cp + U-, p 'Y a cp = , tna _ . 

This equality cannot be satisfied by any selection of functions c:"' because 
the Lagrange multipliers u-,(t) are arbitrary. However, when 

we obtain [4] 

! mp 1 ma= 0 
p "f a 

·ma + m/Jmo mp _ 0 
ca 9p a cp - ' 

for ma~ 2, 

mp~ ma -1. 

Note that the condition (1 ~) is equivalent to the relation 

{ ,1..l ,1..m,.,} = fl m1 l,1..l 
'Pp, '1-'"f P "f a 'Pa• 

(17) 

(18) 

(19) 

In our previous papers [4 and 5], on the basis of variational principle, we 
have derived the relation (18) between the parameters c;,a for systems 
with constraints obeying the condition (19). 

The system of equations (18) is not complete; the number of unknown 
functions exceeds the number of equations by the number of primary 
constraints. Therefore, introducing arbitrary functions ca in the amount 
equal to that of primary constraints and applying the iteration procedure 
to eqs.(18), we can express all c:" in terms of the introduced functions 
and 9p,;"' and their derivatives [5] 

cm"' = Bm .. mp (M .. -mp) 
a a p C/3 I mp= ma,··•,Ma (20) 

(here summation runs also over mp), where 

· · dM .. -mp 
/M,.-mp) = . c (t) 
. p - dtMa.-mp /3 , ep(t) = /:, 

and B;,"pP are, generally speaking, functions of q and p and their deriva
tives up to the order Ma - ma - 1. Then the generating function of gauge 
transformations G assume the form 

G = Bm"'mp ,1..m .. (M,.-mp) 
a P 'Pa €/J I mp= ma,··· ,Ma. (21) 

Owing to the derivatives of q and p with respect to time being present 
in B;,"1;', the Poisson brackets are not determined in the transformations 
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(6). However, this problem was solved in our previous paper [5] where 
it was shown that gauge transformations generated by the generating 
function G (21) are canonical in the extended phase space. The action is 
invariant under these transformations and the corresponding gauge trans
formations in the configuration space (see Appendix A). 2 The amoun~ 
of arbitrary functions, the function G is dependent on, equals to the 
number of primary constraints. As can be seen from formula (21), the 
transformation law may include both arbitrary functions t:a(t) and their 
derivatives up to and including the order Ma - 1; the highest derivatives 
t:~M.,-l) should be always present. 

Note that derivation of formula (21) presents no extra difficulties and 
does not require further assumptions, as compared with the Dirac ap-

• proach. 
Als~ we mention that since the first-class constraints compose a pseu

doalgebra [14], the condition (19) means that primary constraints repre
sent the ideal of that pseudoalgebra. Below, we will show that for arbi
trary Lagrangians (even when the condition (19) does not hold) we can 
always to pass to an equivalent set ,of constraints for which the condition 
(19) will be valid. 

3 Gauge Transformations for an Arbitrary Dege-
nerate Lagrangian 

To generali,ze the method of construction of gauge transformations to an 
arbitrary degenerate Lagrangian, it is necessary to analyze the situation 
when the condition (19) is not fulfilled. To this end, let us, recall the 
inherent arbitrariness of the Dirac Hamiltonian formalis'm. When there is 
a complete set of constraints defined by the Dirac procedure ( ,f>":"', a = 
1, · · · , N - R; ma = 1, · · · , Ma) and functionally independent, we can 

2The corresponding gauge transformations, in the configuration space 
are defined as follows: 

Cqi(t) = {qi(t),G}I ' 
p=f 

tiq(t) = !q(t). 
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always pass to an equivalent set of constraints by the transformation 

:J.mp - cmpma,1..m,. 
'Yf3 - f3 a '+'a , (22) 

where 

det llc;P;" IIE f: o, (23) 

i.e. this determinant is not zero on the surface ~ given by the complete 
set of constraints. 

Now consider a particular case of the transformation (22) when pri
mary constraints remain unchanged, i.e. 

C l m,, = {j{J 
/j tr Cl' 

for any ma. 

It is not di111cult to sec that taking account of (13) and (14) we obtain 

{,1..l ;J,,mp} = [{,1..l Cmpm~·} + fl m5m~Cmpm5] ,1..m~ + fl m5 1Cmpm5 ,1..l (24.) '+'a•'+'fJ '+'a• f3 1' a Ii 1' f3 Ii '+'1 a Ii 1' /3 5 '+'f3, 

Tn[j, 1ni1, m 1 ~ 2. 

From the expression (24) it is clear that if we could choose C?~~ so that 
the coefficients of secondary constraints vanish 

{,1..l Cmpm~} + fl m5m~Cmpmo = 0 
'+'u, /3 ;- ,:, 5 1' /J b ' (25) 

the condition ( 19) will be valid for the new set of constraints J';P. Thus, 
fr;r c,;•p~~ we ha.vb derived the system of linear inhomogeneous equations 
in the first-order partial derivatives (25). This system can be shown to 
be fully integrable. The condition of integrability for systems of the type 
(25) looks as follows [15] 

{,1..l {,1..l Cmpm1 }} _ {-+-1 {,1..l Cmpm~}} = Q 
'+',;, 'l'c,, /3 "I 'l'c,, "'"' /3 1' • (26) 

Hsing eq.(25), properties of the Poisson brackets and making some trans
formations we rewrite the relation (26) in the form 

[{ ,1..l J,l m5my} _ fl m6m,J,l m,m1 _ {"'t fl m5m~} 
'+'a, " 5 1' et 5 r <! ,,. 1' '+'er• <> 5 1' 

+fl m5m,f.l m,my] Cmpm6 = 0 (27) 
<!OT ar;- fib ' 

mp, m~, tnr ~ 2. 

Utilizing the .Jacobi identity 

{</>~,{</>~,4>pp}} + {<l>;',{<l>~,4>~}} +{</>~,{{/>pp,</>;}}= 0, rn,, ~ 2 
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and relation. (13) we,obtain 

[{,1..l /.1 m&my} _ /.1 msmr /.1 mrmy _ {,1..l /.1 rrismy} 
'f'a, o- Ii_ -y a Ii T o- T 'Y 'f'o-, a Ii 'Y 

+1: r;·r::rt~ ~~]<t>;y = {{<fa,<t>~h<t>6·}, (28) 

mp~ 2, m..,, m5, mr ~ 1. 

Note the Poisson brackets between primary constraints may, without loss 
of generality, be considered to be strictly zero in the whole phase space. 
As every primary constraint contains at least one momentum variable, 
there always exist canonical transformations transforming the primary 
constraints into new momentum variables (see below). Therefore, the 
expressions in square brackets in front. of. the constraints <t>';y on the 
left-hand side of the identity (28) being coefficients of the functionally 
independent quantities disappear each separately. As the condition (27) 
contains the same coeffici_ents of c';,;•, it is satisfied identically, which 
proves the system of equations (25) to be fully integrable. Therefore, 
there always exists a set of constraints equivalent to the initial set for 
which the condition (19) holds valid. 

Now we shall describe the way of passing to, at least, one separated set 
of equivalent constraints <fl/:"'· when all the primary constraints are mo
mentum variables. This can be done by the iteration procedure provided 
that we take-into account the property of primary constraints 

{ <t>~, <t>H = t:x 1 ;<t>~ 

that follows from the stationarity condition for </>1 and from the fact that 
we are dealing only with the first-class constraints. There always exist 
canonical transformations of the form [16 and 17] 

- 1 - - - -Pi= <P1(q,p), {Q1,Pi} = 1, {Qa-,Pr} = 80-r, 
{A,i\} = {Q1,Pr} = {.Pi,Qr} = {Qi,Qr} = 0, (29) 

u,r = 2,· •· ,N. 

(The bar over a letter means the first stage of the iteration procedure.) 
All the remaining primary constraints assume the form 

IP~(Q,P) = </>~(q(Q,P),p(Q,P))I- ' 
P1=0 

a=2,··•,N-R. 
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In view of the transformation being canonical, we can write 

{ - I } 81P~ el 1 1 1 
Pi,'Pa = - oQl = f1 a -,4>-y, a,,~ 2, 

with 4>1 having the structure [17] 

ipl = JY 1 ~1 
a a 1 1' dettt: =/:- 0 (30) 

and obeying the conditions 

a~1 a~1 
_.,;J_= __;r= o, 
8Q1 8P1 

'Y ~ 2. 

As all the constraints ~~ do not depend upon Q1 and A, we perform 
an analogous procedure for the constraint ~~ in the 2N - 2-dimensional 
subspace ( Qo-, Pa-)( u = 2, • • •, N), i.e. without affecting Qi and A. Then 

the constraints i: ( a = 3, • • • , N - R) arising _in ~ formula analogous to 
formula (30) are independent of Q1, A and Q2, P2, Next, making this 
procedure step by step N - R - 2 times we finally obtain the primary 
constraints to be momenta, and therefore they commute with each other 
(final momenta and coordinates will be denoted by Qa and Pa, respec
tively, a = 1, • • •, N - R). All secondary constraints will then assume the 
form · 

IP:"'(Q, P) = <t>:"' (q(Q, P),p(Q,P))IP,,,=O' 

a=l,• .. ,N-R, ma=2,··•,Ma, 

As the transformations are canonical, we can write 

84>mp 
{ P. 'Pm"}=-~= /.1 mpmyipmy 

a, fl 8Qa a fl 1 1 

with IP:"' having the structure [17] 

ipma = A m,,,mp cf>mp 
a a/J p, detAIE =/:- 0 

and obeying the conditions 

aima aima __ a ____ a _ _ 0 
8Qp - 8Pp - ' a, /3 = 1, · · · , N - R, 

9 

ma~ 2. 

(31) 



The set of constraints thus constructed (primary constraints being mo
menta and secondary ~:"') satisfies the condition (19) with vanishing 
right-hand side, i.e. we have derived the searched set of constraints. 
Note that (A-1};;

0
;" in (31) is a solution to the system of equations (25). 

So, we may conclude that the difficulty associated with the condition 
(19) being not valid for a certain degenerate Lagrangian can be overcome 
by passing to an equivalent set of constraints. Therefore, the 111ethod 
we proposed earlier for constructing gauge transformations [4 and 5] is 
applicable in the general case. 

4 Example 

Consider the Lagrangian [11] 

L = ]:_y · (x + /Jy), (32) 
- a 

where a and /3 are scalar coordinates; x and y are n- dimensional vectors. 
In the Hamiltonian formalism there are the following primary con

straints 
<Pi= Pa~ 0, 

and the total Hamiltonian 

</>1 = PiJ ~ 0 

Jf 7' = apz 'Py - f]y' Pa:+ 1t1]Ju + U2pp.l 

From the condition of self-consistency of the theory we obtain two sec
ondary and one tertiary constraint: 

fi = -pz • Py ~ 0, q>~ = y. p; ~ 0, ip~ = -f3p; ~ 0. 

It may he verified direct.ly that all these constraints arc of the first class 
and they do not obey the condition (HJ) 

{ 
1 3} 1 3 </>2, <P1 = -7i<P1 • 

As the primary constraints in the example are momentum variable, we 
can turn into an equivalent set of constraints by formula (31): 

,11 _ ,;.1 _ p 
't'l - 't'l - a, 
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-1 · l 

</>2 = </>2 = P/3, 

-2 2 
'P1 = </>1 = -pz · Py, 

-2 2 
'P2 = 'P2 = Y · Pz, 

1 ,13 _ ,;.3 _ p2 
o/1 - -7i'f'1- z, 

which do satisfy the cmidition (19) 

-1 -3} { 'P2, <P1 = 0. 

All ?Jp";"' in formula (14) for the Poisson brackets of these constraints 
with the canonical Hamiltonian vanish except for 

-1 2 -1 2 1 
91 1 = 92 2 = ' -2 3 r-, 

91 1 = -JJ, 
-2 3 
92 1 = a. 

Then the system of equations (18) takes the form 

•3 {J 2 2 O 
€1 - €1 + Q'.€2 = , 
·2 1 0 

E:2 + E:2 = ' 
,.:2 + '"1 _ 0 
c.1 c.1 - • 

With the·redifinition ef = t:1 and i:~ = t:2 we obtain 

2 1 (. ) e1 = 7i e1 + at:2 , 
1 • t:2 = -e2, t:1 = _!!:._(1:\ +ae2). 

I dt f3 

(33) 

As the parameters in the generating function depend on a and iJ, we 
can derive the "well-defined" Poisson brackets by applying the procedure 
of extending the phase space described in our previous paper [5]. It is 
sufficient to make the following extension of the phase space: Introduce 
the coordinates 

{ 

a, 

QI i = :•, 
Yi, 

i = 1, 
i = 2, 

i = 3,·· • ,n + 2, 
i = n + 3, • • · , 2n + 2, 

Q2 i = <i1 i, (34) 

whereas momenta follow from the definition of momentum variables in 
the theories with higher derivatives [17-19](see formula (36) in Appendix 
A: in our case, K = 2, r = 1, 2, i = 1, • • •, 2n + 2). Note that by this 
definition, apart from the existing primary constraints <p~ = Pt 1 = Pa 
and </>~ = Pt 2 = pp, there appear extra momenta 4>} = p2 i = 0. Then, in 
the extended phase space we have 

He= Hc(Q1 i,Pt i), RT = HT + Vi P2 i, 

II 



where Vi are the Lagrange multipliers and He does not contain q2 i and 
P2 i• As the extra coordinates and momenta which extend the phase space 
enter into HT as separate terms, the structure of algebra of constraints 
and the system of equations (33) are not changed. Due to the definition 
(34) we can rewrite the generating function G (7) in the form 

.G = [ 
" q2 2 • • (q2 2 ) ] Pl 1 • -E:1 + - E:1 - qi 1 E:2 + - - q2 1 E:2 - - E:2 Pl 2 

~2 ~2 ~2 
(35) 

n+2 [ 1 ] + L -(i1 + qi l e2)P1 m Pl m+n - e1(P1 m)2 - E:2 qi m+n Pl m , 
m=3 q1 2 

from which it is clear that the corresponding transformations are canon
ical in the expanded phase space. 

Using the explicit form of coordinate transformations in the configu
ration space (see footnote 2 on page 6), we can write 

r: __ :!:_(i1 + ac:2). , r:/3 __ . 
ua - , u - E:2 1 

dt /3 

8x = - 1
(3(:ic + f3y)(i1 + aE:2) + 2!e1 + YE:2, . 8y = - y"(i1 + aE:2), 

a . a ~ 

and it is not difficult to obtain that 

8L·= ![-0t1/i+/3y)(i1 +m:2)+ (~)\1], 
i.e. the action is invariant under the gauge transformations we have 
derived. 

The transformation law (35) in this example is consistent with the 
requirements we have discussed above, i.e. it is a two- parameter trans
formation as there are only two primary constraints, and it contains f 1 

and i 2 , i.e. M 1 = 3 and M2 = 2. Note that the Noether transformations 
derived for the Lagrangian (32) in paper [11] are a particular case of our 
transformations (they are one- parameter transformations). 

5 Conclusion 

We have suggested the method of constructing gauge transformations for 
arbitrary degenerate Lagrangians (without restrictions on the algebra of 
constraints) in the generalized Hamiltonian formalism; and they can be 
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obtained explicitly on the basis of a specific form of the Lagrangian. The 
generating function given by (21) is derived from the requirement that . 
the transformed quantities qt and Pi (6) be solutions of the same system 
of equations (3) as the initial quantities qi and Pi do. As to deriving gauge 
transformations, this requirement is equivalent to the invariance of the 
action under these transformations. 

In our previous papers [4 and 5] we have constructed gauge trans
formations for Lagrangians with the only restriction on the algebra of 
constraints (formula (19)) that is satisfied by a wide class of theories. 
In this paper we have proved that there always exist equivalent sets of 
constraints for which the condition (19) holds valid. We have shown the 
way of transition to one of these sets when all the primary constraints 
are momentum variables .. 

The generating function (21) in form corresponds to the Dirac hy
pothesis in the sense that all the first-class constraints generate gauge 
transformations. The amount of arbitrary functions (important parame
ters) which the function G depends on is equal to the number of primary 
constraints. Note an essential peculiarity: the transformation law con
tains essential parameters and their derivatives, but the leading derivative 
is always present and is of an order by one smaller than the number of 
stages in deriving secondary constraints by the Dirac procedure. 

By formulae in the footnote 2 on page 6, we have obtained the Noether 
transformations (i.e. with respect to which the action is invariant) in 
the configuration space. The mechanism of appearance of higher-order 
derivatives with respect to coordinates established earlier [5] in the class 
of theories with restriction on the algebra of constraints is now applicable 
in the general case. 

As it is known, gauge-invariant theories belong to the class of degener
ate theories. In this paper we have shown that the degeneracy of theories 
with the first-class constraints is due to their invariance under gauge 
transformations we have here constructed. 

The authors are grateful to A.B.Govorkov, A.N.Kvinikhidze, V.V.Ne 
sterenko and A.M.Khvedelidze for useful discussions. 

Appendix A 

We will now show invariance of the action under the gauge transfor
mations( 6) and (21) in the phase space expanded by the method of ref. 
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[5]. The coordinates are defined as follows: 

q1 i = qi, 
ds-1 

q,i= dts-lqi, s=2, ... ,J(, i= 1,··•,N 

(K equals the highest order of derivatives of q and p) and the conjugate 
momenta defined by the formula [17 and 19] 

K dl-r 8L 
Pr i = I)-1)1-rdtl-r-;----- . 

l=r uqr+l , 
(36) 

are 
Pl i = Pi, Psi= 0 for s = 2, · · ·, K . 

. The generalized momenta for ,'> ~ 2 a.re extra. primary constraints. 
The tot.al Hamiltonian is of the form 

Hr= HT(q1 i,Pl i) + As i Ps i, s ~ 2, (37) 

where HT is given by (4) and As i are arbitrary functions oftime. From 
(37) we may conclude that there do not appear additional secondary 
constraints corresponding to Ps i for s ~ 2. 

The set of constraints (5) in the initial phase space remains the same 
in the extended phase space, obeys the same algebra (13), (14), and does 
not depend on the new coordinates and momenta. The action is of the 
form 

1
t2 

S = · dt [Pr i qr+l i + PK i (JK i - Hr], 
t, 

r = 1, ... ,K - l. 

and the generating function in the extended phase space is [5] 

G B m,.mp( )"'m"( ) (M,.-mp)( ) = a /3 q1 ;,q2 i,"·,qx i;P1 i 'l'a qi i,Pi i f:13 t. 

(38) 

The coordinates and momenta are then transformed in ~he following way 

a(Bm,.mp ,...m,,,) 
f: a f3 'l'a (Mo,-mp) 
uq1 i = !'I f:/3 , 

up1; 
flqs i = O, 

>l{Bm.,mp ,...m,.) ) 
u\ a /3 '+'a (M,.-mp 

f: - __:_---=.:-'----f:,, ' up1 i - - 8q1 i ,, 

8Bm,,,mp 
bps i = - a f3 <pm"'e<M,.-mf!) 

8qs j a f3 • 
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Using this equation and the equality 

dG 

dt 

we obtain 

aa [a(B;:"''}l/!<I>':") a(B;:"';,<I>':"). 
-8t + 8 q2 i + 8 . P1 j 

q1 i Pl i 

a f3 a f3 ·• r,;, (M,.-mp) (aB
m,.mp 8Bm"mp ) l 

+ 8q, i qs+I i + oqi( i qK i </>a"' l:.p , 

[ aa ]t2 J.t2 [aa _ ] 
68 = Pt i8- - G + dt a+ {G,Hr} . 

Pi , t
1 

t1 t 
(39) 

The first term in (39) vanishes clue to the boundary conditions on 1:. 0 and 
their derivatives. The second term of (39), in view of (12), can be written 
in the form 

1.'2 1 
di Va</>a· 

I 

(40) 

and, therefore, 

681 = 0. 
,nr::,o 

As a result of (36), ( 40) and¢~ ( q, p( q, q)) = 0 we obtain from (39) 6S = 0 
in the configuration space. 
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