


1. When extracting quantitative theoretical ﬁredictibnsfiom quantum chromody-
na.mi_c,}sv(Q.CD)‘ using a pérturbation expansion in the coupling constanst one often
faces not ‘only a problem of a choice of the renormalization scheme for parameters of
the coupling constant (and, consequently, for the coefficients in the expansion), but also
closely related topic - the problem of gé.uge dependence of the renormalized quantities
in momentum- subtraction (MOM) schemes [1-8]. e ' .

The new type of the Ward-Slavnov- Ta.ylor 1dent1tles (WI), extracted from a su-
pergauge transformations, has been adopted as a starting point for the resolution of
the problem Qf‘renorn;aliza.tion of the gauge-invariant.operators in the non-Abelian
Yang-Mills’s theories [9]. In Ref.9 on the basis of these identities, the va,riatioﬁs‘ of
the ordinary one-particle irreducible (1PI) Green’s functions with respect to the gauge
parameter have been related to the new 1PI- Green’s functions for which the amputed
legs represent the composite of opefators, which correspond fo the invariants of the
g;u'lge» transformations. These new 1PI- Green’s functions manifest explicitly the gauge
dependence and with the help of them one can study the gauge-dependent part of the
ordinary 1PI- Green’s functions.

In the present paper we are going to present ‘the regults of calculation of the ra-
diative corrections-to the Himentionally regularized 1PI--Green’s function (with the
inserted operators) in the two-loop approximation of the PT, both in the arbitrary
gauge and dimension space-time. That Green's function is-related to the variation of
the ordinary two-point Green’s function of the gluon field (gluon propagator) over the
gauge parameter in the case of the massless gauge Yang-Mills’s théory. On the basis
of the above-mentioned relation we derive the relation between the'defivative with re-
spect to the gauge parameter of the anomalous dimensibn of the gluon propagator ,
and anomalous dimeﬁsion of the calculated Green's function. The result of calculation .
of the latter also in two-loop approximation but in renormalization MOM-scheme is _

presented.
2. Let us coqéider the Lagrangian of the pure Yang-Mills theory , .

L=~ FF, — o (0,4 + CO,DIiCH )

4 wrt gy

DOBERENCMT MBCTRIYY
1 OnewsME HeCseaomannt
- BUBIMOTERA

-~y



F,

OuA, = 0, AL + g, fi* AL AF |
0uC* + go f*AICk

Diici

Here AL, , C¥are the gauge‘ and ghost fields respectively; a, and g, are the bare gauge pa-
rameter and’ coupllng constant, respectlvely, Fii* are the fully antlsymmetrlc structure

consta.nts of the underlying gauge group G.

Let us consider briefly the generalized Slavnov-Taylor identities, modified by takingv

into a.ccount the variation of the gauge parameter We refer the reader to Rel.9 for
details. »

~ In order to obtain the generating functional for the ordinary Green’s functions,
besides the source terms for the fields A;;, Ci, C' and the Lagrangian eq.(1), we also
take into account the source terms for the invariants of the BRS- ‘transformations of
the fields A:", C-;,' that is, respeCtively,_ the terms
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In order to take into account the effect of the variation of the gauge parameter in the

generatlng functional for the Green’s functions, we mtroduce one more term
L (C(2)8,A(z) + Ji(z)Al(2))

with the source L: Note, that the sources J,, K are nothing but the anticommuting
classical and z-dependent quantities, and L is the z-independent and anticommut-
ing one.The thus ‘obtained generating functional T (by taking into account first, the
Legendre transformation, and second, the transversality) for the 1PI- Green’s func-
tions leads us to the desired identities. Then one can write the modified generalized

Slavnov-Taylor identities as
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W we had not introduced the term proportional -to L, the resultant expressions

would have been the drdinary generallaed Slavnov-Ta.ylor identities [9,10}.
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By differentiating eq. (2) with respect to both Al and A, and putting alt the sources
to be equal to zero; and, on the other hand, pa.ra.metrrzmg the Green S functlons whlch
enter the resultant relatxons, we obtain two-point 1PI-, Green’s functlon which sa.tlsfy

the equation
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where I and X, are the invariants,i.e. the form-factors which stand before the tensor
structures of the following 1PIL- Green s functlons respectlvely (the graphlcal represen-

tatlon correspondlng to it):
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Here eq.(5) represents the transversal pa.rt of the gluon propagator Thus the eq.(3)
expresses the variation of the two-pomt 1PI- Green’s function, gluon propa.gator, with
respect to the change of the gauge pa.ra.meter Accordlng to the ordinary generalized
Slavnov Ta.ylor identities (therefore, to the transversahty of the gluon ‘propagator) in
this equation appear only the form-factors / and Xi,which are superﬁcnally divergent
and (1 - X;) = O(g?). The form-factor X; (p*) = 1+ O (¢?) (see‘ the proof in ‘the
Appendix). ' R ' ’

We note that in same way we can derive from the eq.(2). the three-point 1PI-
Green’s lunction’of the gluon field (the vertex).For the other Green’s functions with
the other external fields (the ghost and the matter ﬁelds) one must, also mtroduce some

modlﬁcatnons in the generatmg functlonal as we shall demonstrate in our future paper.

3. We now present the results of the calcula.tlons of the form- factors X, and X,

for the 1Pl— Green’s function ~ eq.(5) both in the one- and two-loop a.pprox1mat10n of



.
expansion theory for the massless non-Abelian gauge theory in the general covariant
gauge. All the results of calculations of Feynman diagrams have béen obtained with
the help of the computer package [11], elaborated by us on the basis of the algebraic
computer system - FORM [12] by using the algorithm [13] for the analytical calculation
of Feynman integrals. The calculations have been performed in the gauge-invariant
dimentional regularization [1} in n = 4 - 2¢ space-time dimension, which makes it
possible to express the results in arbitrary dimension , n.

So, our results in terms of the bare quantities for X; and X, are, respectively,

(without counterterms)
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The one-loop results correspond to a sum of contributions of the two diagramms;

n—4

the two-loop ones - to a sum of 35 ones. Here B= (—%)TEILE“{ By G,(1,1),

4y

I, =1,(1,1,1,1) and I, = I(1,1,1,1) we represent the one- and two- loop ”standard”
Feynman integrals, defined _thr(.)ugh the Euler I'— function (see Appendix).

In terms of ¢ = 33 we have (taking.into account the counterterms), respectively
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flere Cy is the SU(N) Casimir operator in the adjoint representation (for SU(3) :

+’(4gr4V{ [(
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+ O(( lnzl

Cp=3and T =T(R) = %); Ny is the flavour number.We note that as consequence

of the used invariant reguhrization of the Feynman integrals in our results the Euler

constant 7 and Riemann function {(2) do not occur. -



Now integrating t‘h.e eq.(4) over the gauge parameter - a,, we get the following

equation : V

1 (c,ao,gz) =17 (e,a;,gz) exp{—-/fg dr [% (1= Xi(e, r,gz))] } R (1
where a; is the fixed gauge parameter equal e.g. either 0 (Landau gauge) or 1 (Feynman
gauge). I~ is the gluon propagator in the given gauge.

Using the expression (9) for X; ,performing the integration and further expanding
the exponential, and I~ over the coupling constant , we readily arrive at the expres-
sion for the dimensionally regularized gldon propagator in the arbitrary gauge for the
massless gauge theory. The gauge-dependent part is given‘ by ‘the X; and by the 1-
loop expression for I*. When we performe the expansion of the I* in the one-loop

approximation we must to take into account the expansion over ¢ up to O(e?).

4. We recall that according to the ordinary generalized Slavnov-Taylor identi-
ties [9,10] only the form-factor X, is superficially (‘iivergent‘and consequently‘ multi-
plicétiyely renormalizable. We' consider the renormalized quantities in momentum-
subtraction scheme given in {2]. That is, we define our renormalized quantities I" and
Xt at the point p* = —M? (where the scale M > 0 characterize’ the congifura.tion of

external momenta) so that ,e.g.:

. —p2 M2 mom —p2
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kThen referring to eq.(9) we get
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Therefore,the corresponding renormalization constant (counterterm) is expressed as

(by assuming that X,(—M?) =1):
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We analyse now our results in the framework of the renormalization group in the
given scheiie. Differentiating the eq.(4) with respect to p?, we get the following renorm-

group equations :
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or setting —p? = y? (M2 = A‘,,) we obtain the differential relation for the anomalous

dimension of the gluon field
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Integrating the Eq.(15) we give the anomalous dimension of the gluon propagator

il

-+

which can used for the analysis of the UV-behaviour.

‘5. Conclusions. Iirst,as we have mentioned above the differential equation (3)
derived on the basis of the modified Slavﬁov-Taylor identities give us explicitfy the
gauge dependence. Therefore, using it together with the analogous diﬂ'efential equa-
tions for the other two-poiht functions (of the ghost or of the fermion fields) and

three-point functions (vertices) one can derive the differential equation with respect to

‘the gauge parameter for the invariant charge (coupling .constant) or for the renorm-

group ﬂ Sfunction. On the basis of the resulting relation one can study first ,the
gauge dependence.of these quantities and second,the condition(s) over which the gauge
invariance of the §— functzon is given in the different renormalization MOM- schemes.
This program may be also be realized on the basig of the differential relations for the

anomalous dimensions,like to Eq.(15).



[]
Second we want to attract attention to the obtained result for the quantlty X2(p%).
That qauntity is related with the longltudxnal part of the gluon propagator and there-

fore, in our view, we can to use it in the formalism proposed in [6] to "stop” the gauge.

We would like to thank Prof. D.V. Shirkov and Dr. D.I Kazakov for valuable

remarks.

eAppendix
1. PROOF of the equation X, = 1+ X1 +... ( where X, =0(g%) ), i.e., the relation
‘ . : ) . s
N T = —611 v + O 2 16
AL "9 (") (16)

Let us construct a generating functional Z for the Green’s functions

1)

Z (n),¢,8,J,,K', L) ) / [dlezp [i < CHniAl+EC 4+ C'e + Jivkee

-+

1 5 =) . ,
EgoK' (c x.c) +L(C'AL+ JLAL) > (2 )],
and the generating functional W for the connected ones,

W(.) = iln ()

Here £ = eq.(1) without the matter fields; 1, €€ are the anticommuting classical

.and x- dependent sources; gL K ! and L are glven above We use the followmg notation
ld = dAdCdC >= fd“ ( ) and V =Dy,
Varymg W( 2 with 1espect to 7, and expandmg the exponentlal ezp[z <. >] in

2 power series in the factor i up to O(z) we obtaln the followxng relatxon

. _6_W___A' = Z/[J]A’ x)[1+<nA>+<LJA>+<LCBA>+ .

577,,
+ <JVC>+ Jezplic.>)l. - ¢ - (17)

» Here Al = A‘ [17 £, E J K, L] is the functlonal we omlt the mdlces for the 51mpllclty
- Performmg in eq. (20) the contractlon (paxrmg) of the gluon ﬁelds and deﬁmng the
functlonal np(z’) = np[A G, C, J K L]

)= [P (e = ) e A = (L), ) - (RO - VRO,

where Df,‘,,( x — ') is the two-point connected gluon Green’s function.Now variating the
1)1, with respect to Ji(y) and to L we have
bny(a’)

§L8J(y)

Now we shall introduce a ge;lerat.ipg functional T for the 1PI Green’s functions :

=~ 8'g,,. . (18)

l‘(A,C-'.C_T,J.,‘I\’,L) “W(.)=[< (nA+ CE +£C) >] )

next we vary it with respect to A;"(w) . Ji(y) and L. Then we get to the foll;iving

relation : ) ‘
&T %, (2)
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And lastly substituting here tlie r.h.s. by the eq.(21) we obtain the desired relation.

2.]1}‘1‘(‘ we give the formulas of the Feynman integrals.

2.1. onc-loop integration formula

. d"q _ i(—7)% ,
PP g el )
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2.2,  two-loop integration formulas

G,(a,8) =
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I'I(“? Ty, T) =
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P(l1+z)=exp —71+Z "

n=2

where «y is the Euler constant and the Riemann ¢-function.
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