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I. Introduction 

The vector spherical harmonics (VSH) and elementary vector po
tentials (EVP) /i, 2/ closely related to them are the powerful tools 
for the solving of radiation /l/ and scattering /J/ problems occur
ing ~n optical 141 , particle, nuclear / 5/ and atomic physics. EVP -,. 
are the vector solutions of the Helmholtz equation(Ll+\-<1..).{1 =0. 
Mu2,.h lens is known about the vector solutions of the Laplace Eq. 
A$l =O . At first, it seems to be strange, In fact, as the Helm
holtz Eq, in the long-wavelengths limit (k - 0) transforms into 
the Laplace Eq., one may expect the same for their vector solutions. 
It turns out, however, that contributions of EVP corresponding to 
electric (E) and longitudinal (L) m~ltipoles diverge in the k--;. 0 
limit. This has given .rise to numero_us fallacies and controversies 
in physical literature, Part of them was discussed in the review 
article 161 , It is the aim of the present consideration to find the 
correct limiting procedure to the static case. 

For the static case, there are known configurations of ·,charges 
and currents which being enclosed to the finite region of space S 
generate electric and magnetic fields vanishing ·outside S, The typi
cal representatives are the electric capacitors and magnetio sole-
noids, Is the same situation possible for the charge and current 
densities periodically varying with time? Particular examples of 
that kind were given in refs, 17 /. In the present consideration, 
we find conditions which satisfy nonradiating charge and particle 
densities. 

An arbitrary distribution of the magnetic field enclosed into 
the finite space region Smay be characterized by the number of topo
logical invariants which are not changed under an arbitrary continu
ous deformation of S /a/, The simplest one is the magnetic flux. The 
next (in complexity) imrariant is helicity. We construct TS with non
zero helicity and investigate how it affects on the charge particle 
scattering, 

The plan of our exposition is as follows. The main facts concer
ning VSH and EVP are given in 9 2. The orthonormal vector solutions 
of the Laplace Eq, are obtained in § J, Their properties are discus
sed, The simplest physical applications of these vector solutions are 
treated inf 4, The conditions under which the periodical charge and 



current densities do not radiate are formulated_ in§ 5. The electro
magnetic properties of TS with non-zero helicity and the influence 
of the latter on the Aharonov-Bohm scattering are investigated in§ 6. 

2. Main facts concerning vector spherical harmonics 

The usual method to solve the Helmholtz equation 
➔ -;t 

( t:. + K2.).f} :: - 'f J (2.1) 

is to present its solution in terms of VSH /l, 2/ 
-'I . . 

-t . • I VM t-111-'\ Si::: ·t 4ti1.1~ C2.(K1.\ IAO. (0,~) . ~AQ,,. (2.2) 

➔ M 

The VSH YA~ are defined-as vectorially coupled quantities of usual 
s·calar spherical harmo.nics '-<:' and unit spherical vectors 

h}-\ \no-=-ni, n-J:..,;+ln~±in~)/.fi.) 
➔ ~ \ I' \/ r\+_µ _,. 
Y"12. = L ~ 0,-}A, e., ~+ f ~A~) l fl · \'\_.,u 

l-\1\,\ f • V~* ." . . Irr (I) 

Furt~er t,) ,H. : ~ J l lK't) \ AQ. • J rA V ) hQ l ~o::: ~ ¥-x. H h-½_ l~) 
and I bt)= f1f 1-\ 1 (~C.J are the spherical Hankel and Bessel 

c\ll ~ ~ ~h+.__ . 
funotions. It is implicitly assumed in (2.2) that the vector poten-

(2.J) 

tial (VP) is defined at the point P lying outside the source current 
region. VSH are orthono?'l!lal 

__.. --f'~I 

~ )I A: , 'G 't' . Ji I)_ = bu' & ~ e • ~ ~ ~• . 
They are the eigenfunctions of the orbital and total angular moments 
squares and of the, ~ird projection of the l~ter: ~ 

.... 'l...-...._ \I..,_ .... :i.- ➔~ ',/h-\ 11 1~ _·\.1""' 
L Y~e.-=- He+i) '~o. ' ~ Y ... o.-= A-l.1.+1) ,AQ , G.lfl"e. = M ,,\2 .. 

➔ . ➔.... ➔ 

(Here L = - L l 'l X 'v) · • The definition of ~ may be found, e.g., 

in /l, 21 ). It is clear that jl!. '(~ and ~~ Y.A~ are the vec~r 
solutions of (2.1). Instead of VSH one may equally use the· EVP fle ttJ 
which are the linear combinations of VSH 
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(2.4) 
--- ...... 

~;( L):: l~ ~e-t, Ye,:, + ff ~Q-1 YQ~-1) / J 'l.l-t1. 

The values t, = E,M and L correspond to the electric, magnetic 
and longitudinal multipoles. EVP are orthogonal on the surface of 
the sphere 

.... ---i--' * 
~ 9\:l'C) .JiQ, (t',·o\Jl=- Cov.~i -~n' ~QR' ~~~'. 

-,-~ 

The same is valid for the EVP Be l_'C \ which are obtained from 

.Atn:.) bychangingh!l..("'1.) by dtlV.'l..) . TheVP(2.2)being 
expressed in terms of EVP is given by 

- *-. ➔""' 
~:: 

4
"~~ J n~ ('C) .a~('l) ) 

~ r]~ • 
Oi lt)":: ~ be Ct\ <l JV c2.5) 

The advantage of EVP over VSH is that EVP may be obtained by the 
action of the ~ and L. operators on the solutions of the scalar 
Helmholtz equation -, ,._ 
➔ 'M \ -'I v'M () \->'- I ~ l, \/ rt 

.AQ ( M)::. ~Htt.O L. ht,~ ) .tt~ ( L):: K " Q l~ J 

➔ ~ \ I ...... I v\\\) Sin l E) = -;- -~ 'tot l L h~ 'Q 
"- t.1< ~tle-t\' 

➔\'),\ 

(2.6) 

The following differential relations between~~ {t) are valid 

...-\.,\ -.-\,,,\ -,. ...... M 

'urt~~ (M): l\"J\e. lt.), ~otBt'(E)=-,·KJ.lQ (G) . 

J. Vector solutions of the Laplace equation 

Now we turn tn the vector Poisson equation 
~ if = - t ttrr ~T 
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Although Eq.(J.l) is simpler than Eq.(2.1), much less is known on 
its vector solutions. This seems at first surprising. In fact, in 
the static limit (k-'lt 0) Eq.(2.2) is transformed into 

• - .... -t" ➔ :: lifi' \ _I_ 'l-t-1_ \/ \h \ ~ 
S1 c.. L 2.Q-d . ,A~ . O,\t. ) 

1-,\ s ~\I~.,... c\_,.q_: 1 IA~ . d r). V. (J. 2) 

..., ➔ 

tV~ ~,v~ 
Clearly,'t \,At. and"f- l,\Q are the vector solutions of the 

... 1 -i. "'1 
Laplace equation. They are eigenfunctions of L , d and '-'~ 
We are interested in those vector solutions which are expressible 

Q y,., in the form similar to (2.6). However, we cannot form from~ A e. 
. e_ \ ➔ M 
and 'l- - YAt. the linear combinations similar to (2.4) 11ince the 
terms with different Q.. ha~e different dimensionalities and there 
is no constant (such as·the wave number in the nonstatic case) to 
make these terms dimensionless. Since Eq11. (2.6) have the form whfch 

,we seek for it is natural to•f1nd their static limit qy performing 
expansion in powers of k 
_... ~ --f'VV\ 

C\'M -1!.-1..rC\~) 2..1\ l"\l 
u'\ e. l'C.) ::: \<. l n , <i. l 'l. + \< --111.Q.. \.. 1; . 

- ~ . -\'v, 

g~ C'i) :: .¼ Q_-\ [ B ~ lt) -\- \<1. B1<2. ('t\ JJ '[::- E, l 
(J.J) 

➔ ➔ -9' -f 

-At(M\ -::¼-~~IJ\~ (M)) B~(M)=\<t B,~(fv\). 

The explicit values of the vector functions entering into the RHS 
of this Eq. are given in Appendix. They are independent of k. · The 
terms with higher powers of k do not contribute in the long-wave
length limit and they are omitted in the development (J.J). The co
efficients C\~ (t) entering into the definition (2. 5) of VP may be 
also developed in powers of k 

at cc) = ~Q-, l °': t t) + \\ ,._ °'~[ l n 1 J r = E, \.. J 

"" ~ -~ . . VI'\ -, "" .,t -;t' 
Qe_(M)=~ Oqi(M) > °',i(t)=~ \3,e,('c) '<l • tAV (J.4) 

➔ ~ -f' a:~ (t> = s 13:_ t ·o -1 d\ v. 

4 

.~ 

.... 

It follows from Eq11. (2.5), (J.J) and (J.4) that the contributions 
of the E and L multipoles taken separately diverge in the long-wave
length limft like K_1, • On the other hand, the development (2.2) 
which is completely equivalent to (2.5) turns in the same limit intv 
(J.2). No singularities arise during this transition. This means 
that singularities of the E and L multipoles in (2.5) compensate 
each other. In fact, the singular"term appearing in (2.5) is given 
by 

'M ~ VI\ W\ - W\ 
K~'l.- ( Cl IQ. ( £) fLt \ t) + C\ I[ ( L) -A1Q. ( L \ 1 

It is easy to check that this E~. vanishes after substitution of the 
~ --~ exact values of (A It l 'C..) and .A I Q. ( 'c..) • After these preliminaries 

we may obtain the static limit of (2.5) 

a-= lif(2,_ _\_ J_ t~(M).~:(M) + 
Jl c H-d Ql~-d\ t (J.5) 

'lR'\ \ --("" \ ""t I\ 'l11\ I C\v,(L) J..y., . 
~ciyfL-i 12 (tJ-cAQ\i..J- C:Lt1h,H'l.Q~~,-~ Q_(E) 

Here➔ _ c: tM): l1)(~)T~-,y; ~~lM):e l'L)(Q~'l--~Yt'( 
\t. ) "- J . J. 6) 

➔ \'YI ... I ... - "\ \-~ V M ... W' ...- ...... :'\ et2Vi,, 
C (E\::[V-a'"tott'ti1.\7)j"t ,~ S'.)11. (£)=['v+-' 'l.ot('t:1'~)/. le 

Q v ) ~-1-1. 

➔ M -f -ll.-1 v"" _. M ~ \1iv. ~ r -f' "" ~ ~ V 
Ce (L)=\l'L le. , tQ ( L) = v'l Q , ~e ('q =.) !I\ ('C\ • ~ d -

... 
These➔are just expressions which we need. The vector functions l 
an4.. ~ are the vector solutions of the Laplac't. equation ➔ .. _ 

.. -... "" (l\"'(r:' Ii~ Ct -: Cl :ba :: 0 ) . This is not evident for ( 11 (E) and ~l c \. 
In fact, the particular terms entering into their definitions do not 
satisfy the Laplace. Eq. Only their linear combination does. This 
follows at once if we 11pply the Cl operator to c; ( {: ) and tr l£} and use the identity 

6.ttJ. Yt= (.,t_e.)LJ.+t+i)tt"'-2.Yt 

w1thd.=i-t for C~(c) and ~+t for 't)~(E) • In addition, 
Ctlt.\ and ~; Ir) satisfy the following Eqs.: 

5 



~M - ~ 
oli1\f C12 (E)=- l·l'l-t-i)'t-e-, Y,t', diol):-(G.1= l-l'l.~-\-~) 'l.<t Ye , 

'to-l(;'(£)=- }lU-i\(;(M) 'l.ot~~(E}=- 'l(te+3 li):'(M\ 
" ' ... Q.+ I "' J -~ ~~. -~ ~ 

'1.otCQ (M~:: e Ce lL)' 'lot :ti(!_ (M\ ~ - (f+ i) ~l (L) J ---~ -... -.- -,. 

cA,v Ce. ( M) = ot,\f rlt'( M) = dN Ct( L) = d,u 9lt'' (L} = ...,. ' 

lo,.. -.- "" :::'lot Ce (L)='tot-IDQ(L,=0. 
They are orthogonal on the surface of the sphere 

--r \.- -? 11,.1 * 
S le {t) Ce, ('(') dill = l{)nst · bee• &o.~• <h-;:• J 

..,.\-11- - .... , ,l( 

,S t)Q. (t) · (]Je., {t') cUl = Cor.S ~ • ~-'<fl' 6 """"' ~-c-c. 1 

In the static limit Eqs, (2.4) are transformed into 

't-e-1-yl'-\ =- I - fm(L 'lp_Ym = I . i~,(L) 
e-1,t '4H2J-1\ e-1 . ) J ~-t1,e W-+l)(t~+">\ J 

-~-\ I - J, Q.+ I Q. I 1'1-- - I Q. \',\ 
-fm ~ ➔}\.\ _. ...,. 

tt_ 'l e+1,Q "' l. 'l,Q-\-'.!> cl!.--\\ ( E.) ) 1_ \,_1,Q - -2: lie.-i niz_, ( t \} 
Q..:\\/1,,, l,. P""( ) QVM L ~M ) tf 1eQ:: r.::--.; \Q. M , '1. \Qe = ~ , .J.Jri lM . CJ.7) 

~HQ+\\ --,~ ~lQ-\-1 

It follows from this that \fl ('() and t: ( '() are eigenfunctions 
~ "1. ~'2.. "'1 " 

of L 'J 
I 

de . It is evident that the development (J.5) coincides 
I ey~ 

with (J.2). The novel is that we have succeede,l in presenting'l. ,1~ 

and 'l-e-, Y .Aw;. in terms ~f differential operators (see Eqs, (J. 6) and 

(J. 7). 

4. Some applications of the Laplace vector 
spherical harmonics 

The VP representation (J.5) may be useful for the solm;ion of 
different physical problems (especially, magnetostatic). Consider, 
e.g., stationary current (div ?o) enclosed into the finite region 
of space S, Under what conditions the magnetic field H (=rot A) 
does not go beyond S? For the stationary current the coefficients 
~rlL) are equal to zero. In fact, integrating by parts one gets 

6 

t 
t 

I 

( 

..... \\-- S -r e.v""* . <l\1""~ -:--vle (u= :7~1. \Q ) ~o\V=-~1 H o\ioJ cAV.::O. 

Apply to Eq. (J,5) the rot operation. Then the third term in it dis
appears and one has 

'ill -
..... r..., 2- I 
\-\ -= C U+1 

I _,. i,,.. 

~-d Ce (L) ~~(M). 

Instead of the stationary current one may equally use the magnetiza
tion (j:o rotid). 'l'hen, 

h-\ ➔ -. ~ .\f "'-" ..... o\ 
<AQ (M) =- (_~ l'l1.V \1, ,ii •loc·M V = 

"'-\"- 'd ...,. 
=-C ~1QY~ ·(1.-\-'l <)1.\clt\fMo\V. 

From this it follows at once that the magnetic field disappear~ out
side the finite region of.,the space filled by the substance with so
lenoidal (i.e., with div M = 0) magnetization. This result was ob
tained in refs. / 7 I in a quite different way. 'l'he corresponding cur
rent 18 restored by the use of Eq. j=( rot M • 'l'he simplest example 
of such a substance is a closed uniformly magnetized filament C of 
an arbitrary form. The magnetic field remains enclosed inside C 
when it undergoes an arbitrary continuous deformation .• From these 
filaments the solenoid of an.arbitrary form can be constructed. The 
conditions for the disappearance of H outside the region with nonzero 

. I I ' 
current were obtained earlier i~ 1l1?- interes~ing ref. 9 • Let J;, 
be the spherical comp:ments of j ( do= h 

I 
d±1 =+ ( ~:x.:!:'i i~)/,Ji. 

Then, the conitions mentioned above are given by 

R~'W\-:: ( l Q.-\\-\ \½,.Re,"'+' 
-1 l e;.~+i ) o 

R~"'= ( l e+~ \YL R!·\s.-1 
! l.. ~-~-+I 

(4.1) 

Q_\-, ~ e.yt'"' . 
Here RJA :: 'l ~ • !}A o{ V . These Eqs. may be used to check 

the disappearance of H outsides. However, they are not constructive 
in the sense that they do not give the prescription for the construc
tion of currents satisfying the above conditions. In addition, the 

i 



evaluation of Rt~ is not a trivial task even for the simplest 
~ /IO/ toroidal current configurations • On the other hand, the use 

of magnetization formalism used here makes the construction of the 
solenoids with an arbitrary form almost trivial. This is widely 
used by experimentalists (Cf.Ill/). The current components corres
ponding to the chosen solenoidal magmtization satisfy the conditions 
(4.i) automatically. It follows from (J.5) that if the current distri-

~ - ~ bution has the form j=O rot rot t where the vector field t is the 
solenoidal one (div t=O), then VP differs from zero only in those 

~ -space regions where t = O. The presentation of t in such a form 
is valid, e.g., for the toroidal moments 161• Physically, this means 
that toroidal moments uniformly distributed along the arbitrary clo
sed curve and being tangential to it generate VP that differs from 
zero only on that curve. From these filaments the finite distribu
tions of toroidal moments may be constructed having the same self
-screening property. 

5. Nonradiating charge and current sources 

Now we turn again to the nonstatio case. The question arises: 
under what conditions the charge and current densities periodically' 
changing with time and confined to the finite space region S generate 
electromagnetic strengths E,H vanishing outside S? To see 
act by the rot operator on Eq. (2. 5) •. Then 

~ -~:: t 4"~2.J[u:n~).J);(MJ- a~(M)Ji;tE)] 
n~ . ➔\,,\ 

this we 

As J1t {£\ and .AQ (M} are linear independent, so the conditions 

for the disappearance of Hare 

CA~ ( E ) ~ Ct; ( M' = 0 . (5.1) 

The corresponding scalar and vector potentials_are given by 

. \1· \1~r. \'\¥.-!( V <D= YIILI< Lht ll ~ l2. e. j)v\ , 

~ =- t 4tr~~ v l ~Q Yt ~ v ( ~ll Yt' ~) J c). V. 
(The overall periodical factor exp(-iWt) is dropped in this and 
other evident oases).~ and fl satisfy the Lorentz gauge condi-• 
tion div~+~~= 0 . It is easy to check that the electric 
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,, 
} 

.l 

' ' ,, 

l 
I 

.l 

· field £::. -V <\>- t Jf aiso disappears .outside s. To see 
explicitly what Eqs.(5.1) mean we present J in the form - . ' - \ [.... ll) 'l'l.) ➔- • lt,) ... -. '"\ \./\,,,\ d-L 1 6Q~ + ~2~ ·'1+ ·\ l'l')(\7\ j ,~ Ot\,,, 

(5. 2) 

(An arbitrary vector function can be presented in this form. See, 
/12/ • l•\ . 

e.g., ). The functions Jen,,. depend only on the radial coor-
dinate r. Substitution of (5.2) into (5.1) gives 

. · l1) • . lll,l l.. 

~ ~Q l¼1..) &Q\.-- ('1) 'ti.c;l'l = ~ ~l ()<'l) ~Q~ ('t\ 'l c-h = 0. 

. lt \ 
The current distribution with !12"°" satisfying these Eqs.do not 

➔ ... 
radiate because E = H = 0 outsides. On the other...,.h~d, it is 
possible to construct a nonradiating system..,.with E,H f O outsides. 
This happens if the Poynting vector ? :: ~c. E 'I( ~ decreases 
faster than r-2• Consider the explicit expressions for the electro-
magnetic potentials: 

~:: S G~t'i 5' > _pt'ri') rAV1 G - .Q')(.(.)l,,,\~-i'\\ 
1,- - -, , J \'1.. - 'l., 

-, I CG -r.....,, '7..,, ' ,A:: ( .\ -,"-'-'L,'L) c)C'l.) dV. 
At large distances one has 

(t:>0 = { Q.rxp(iK1..) ~~~()(-,¥,V\"-1'),r(i')o\V~ -~ ... 
n'I..::. 't /1.1 

➔ ➔ .... , -:-- -, \ 

~o::. ~ Qxr(i~'l) S 12xr(-iV-i Vh 'l) d l'l- 1

} rJ.V, (5.J) 

-i' ....., 

E c-t'1< Y\,_ (t)o+ L\'\ .!11> 
➔ ...,. -r 
\-\ :: t ,~ l V\'L 'I< JLJ) . 

The terms of the order r-2 and higher are omitted since they do not 
contribute to the energy flux. The radial component of the Poynting 

vector equals 'l.. . 4 ~-IC ➔ 

(4 ' .l ( V\'l ' ( ~ )( \4~ ) ::. l ~ (~'l.. • ( .AO )( ( J) 0 ){ n,._ ) ) ) 
. ~'t- '-lf.C. 7UC.. 

= ~(.\<.'I-( \Ho\'l,- \n'I..Ro 12.J;: ,tu~ \l~ol1.- \.~o't.1 1
).: 

-l \<2.(\"0\2..+ 1nol'2-) . 
1.irrt .;ne .rJi . 
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It follows from this that the energy flux into the surrounding space 
vanishes if fJe =JJ':1-:. O. These conditions were obtained ear-
lier in refs. /lJ/. The particular realizations of such nonradlating 
systems may be found, e.g., in /lJ,l4/. 

6. Magnetic solenoids with non-zero helicity 

For the pedagogical purposes we conside_, ftr~t the cylindrical 
solenoid C of the radius R. Let the currentJ :,.J•n~_: St_p-(2.) Ci) 
flow on its surface. The corresponding VP is ,f} ;:_A, Vl,g where,5l::o- l.t(:f· 

outside C and (t)p /1.\i'R'v -t- inside it. The magnetic field differs 
from zero only inside C: H: Y\i_ · <P / fTR. 2.-- • Here cp is the magnetic 
flux inside C:{f):$~l-h

0
J>cft.Pcl~=4111 Rl i . In the treated case the 

magnetic field and VP are mutually orthogonal. So, 

~= ~-R·Wd\V=O. (6.1) 

This quantity is called helicity1151161• Thus, the usual cylindrical 
solenoid has zero helicity. Instead of the current Jone may equally 

.... "T ➔ 

use the magnetization M: j = c rot M. For the treated case 
M:: M• n'l:-'0lR-J) ) M ~ IT' R'l. i . rt. is convenient to forget 
the initial current and to treat the solenoid as a cylinder.uniformly 
magnetized along its symmetry axis. Let the magnetization M has the 

':1 component (in addition to the existing Zone): 

M = M . ~ l ~ -2 ) . ( n t'c.o s J. + V) ~ . ~, ~ J._) . 

The needed components of VP and nugnetic induction are 

.At= 411 M ·{ R-J)).S,h d- , JI~= l.n- M.PC4si 1 8~=-4 r.' M ~\'-. d. 1 Bi=~" I'\ c.,sc:l 

inside the cylinder and.A1-~0 1 Jl~=1<iR'"Mwsck/J>, B =o 
outside it. As a result, the helicity per unit of the cylinder 
length equals 

r = Lb ii'.> M ,._ s,.._ .2. d.. p_'.>_ 
. • ~ 1:> 

We turn to the toroidal solenoid (TS). It may be viewed as the 
set of magnetized filaments filling the torus1f: (j)-c:-\)'1.+ l,.:: R2...-. 
In the toroid04- coordinates ( j)- C4 SkJ,\ ,'I , i_-:. Cl i;.,.,_ G •-" ) the 

- Cl..}l-l.0St1 C.I.J-1- Wiv 
magnetization and induction are equal to 

....- ➔ --r- ~ I. ➔ ~.,l,\-WS 0 · 
M: M. v\~ , ~ - ""' M , M=- Mo ~M e (,µ_.,4"). (6.2) 

10 

The values .),\'7 JAIJ and_M I. JAo correspond to the points lying in
side and outside the torus T, resp. The VP of TS was obtained in 
ref.1171, its. properties were discussed in /IS/. The nonvanishing 
toroidal components of VP are J\_,.. and .A e . It follows from this 
that the torus with magnetization (6.2) possesses zero helicity. Let 
the magnetization M has the 0 component (in addition to the exis
ting 'of one) 

-t --,. ➔ -,. .,.. 

M = M ~ V\i•Go)J- + 'f\e -~,v-.J) ) B = 4"M. (6.J) 
..... 

The e component of M generates the -A-,, component of VP which 
is different from zero only inside T: 

c-' A r, J..1-..Mu 

e "'" 'CJ • ¥1\ 2... n tJ M . J ct..M - ec.s -a'lc.·t~ 
Jl'S = - o 11' o $1 n s 1.)4 !:,._ 0 t-~ M:t .M" - Cos 0-c.k M-JJI) 

l, 'l-

The),)- and $ components of the VP are obtained· from that of 
refs.f17 ,lS/ by multiplying them by Cosd..- • It follows from this 
that non-zero helicity corresponds to the magnetization (6.J). Since 
the /Iµ and.J/e components are rather complicated for the finite 
torus T we limit ourselves to the infinitely thin one (Rttd or 
),1 0 '1)1. ), In this case, the following components of VP and magnetic 
induction d.iffer from zero inside the TS 

.Ae = \; fi'O. Mo [e.'Xp(-JJ.)-J,lo -c..:is0 .Q.'Xr t-.,.Uv) J -UJSd.) 

.A~: -i {(o. M\) .Q~trt-,Uo). S\'h.ds, 

B(t= ~riMo~ih.d. 1 B.g:e4"MoCt.iS~. 
As a result, we obtain for the helicity: 

S::: ~.A-~ JV::: \'-1(10,~M~ ~i--1-~-~,c\0l-~J.(o) _ 

The question arises: is it possible to get information on the heli
city by performing experiments outside T (which may be surrounded 
by the impenetrable torus)? Vie note that the e component of mag
netization does not contribute to the VP outside T. The wave function 
describing the scattering of the charged pi.rticles on the impenetrable 
toroidal solenoid depends on the geometrical dimensions (d,R) of 
impenetrable torus and on the 1 component of the magnetic flux 
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inside the solenoid (it is just this component that generates non
zero VP outside TS) /l9/: 

'l(:: Q ')(() U¥'.-'l.) t- \\fs ) 

'fs = ~ I-\- ~-9,s Qx(>UV,'t) <!')(.(> UK i'~~Q.) 

·L<!')l~(\'w) .vJ, -~~{>\Lo-iw)-W1--J 

Here \\ and '1.- are the scattering angle a.nd distance from the 
solenoid to the observation point, w::: v.,~f2.., '6'=- ~~ 4')d,~ W, and 

'VJ'!,, are the linear combinations of the Lommel functions of two 
variables: 

W 11 pi.cd:tR)4, (-'+ . "'] ·U f\<lcl1r<1e.. -'±") . ,~ l 
il1-=- "'' L ~ , I< c;\-~)~'"'\7 - ' l. l-,=- > K (Ci' r- s,1..CJJ. 

It follows from this Eq. that the.intensity}= \\.fl2. is a periodi-· 
cal function of the angle ti., • The helicity and magnetic flux are 
the simplest representatives of the topological invariants, charac
terizing the structure of the magnetio field, These invariants re
main the same for the arbitrary continuous deformation of the sole
noids.· There exist topologioal invariants different from (j) and ~ 
1201 which describe more subtle features of the magnetic field. 

7. Conclusion 

We briefly summarize the main results obtained: 

1. The vector solutions of the Laplace Eq. are presented in the 
differential form. This makes easier the solution of magnetostatic 
problems. The simplest applications are given. 

2. The conditions are formulated for the non-radiation of 
charge and particle densities periodically changing with time. 

J. The electromagnetic properties of the toroidal solenoid with 
non-zero helicity and the influence of the latter on the Aharonov-Bohm 

scattering are studied. 
This consideration has arisen from the numerous discussions 

with Prof. J.A.Smorodinsky who passed away so prematurely. 
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Appendix 

Here are the explicit values of the vector functions occurring 
in the development (J.J): 

~ ~ { t\: ld.12. 'lot L ~-e-i \"."" 
It .jQ(Q+!) 12. 

;- . 

~~o.. t£\:: JQ. -'->tot L '11
-~ Yi~ 

~QlH\\ 'H- I Q J 

BW\{E)= CJa _'tot\~/t~vt g~ (f\::. C:.fu _\ -'lotL'l.('-+'l.Yt 
Ill Hl~-+\\ } 1.12. ~rn*1\'l..C1e➔~r ) 

-,. ~ ' 1 -r · 1-e. \ / ~ 
.A,~tL\:: i~~Qv1_-e-

1 \'e~ > A:lL\= ~;~J. V 't ,Q, 
--.- I\'\ ➔ w. n h--lL\::: o. 'l ,_, Y . B h, ( L\= - .f..e. "1e-+2.. Y o,Q ~ e > :i..Q.. :i.-<'le-+'!.) · l1. , 

~ - JL - ~ r\~(M\-= 1.:do.. ~L1t-:-'-e.y1-1-i (f"'(M\=- \..'tQYe > 
J111l ~ql~+I) Q , I~ , ~ecu,, . 

r,;: e I r;:: '\-~-I J ::: (-l)HI ofl' f- j = ~ ~ (A.1) 

ri f'li-t) ' e r(e"f.) 
For k - 0 Eqs. (2. 7) are transformed into 

ti.a{ ~,; (M\:: ~ _A,~ ( ~\; 
(A. 2) 

"""" .... ➔..,_ 
'1.\lt" (.A,Ql£)-\-\<'l..S-l~ ( f:.ll:-\\(,z.J:11.e. (M')_ 

It follows from (A.l) that first of Eqs.(A.2) is satisfied automa
tically. In the second of them we equalize the terms at the same 
power of k 

-r\.½ ..... J,.. . ""' 

'lo-l A, e l 1: \:: 0 > 'l-o i J.l 1e l 8 l: -t.f.l I e ( M } . (A.J) 

The validity of these Eqs. may be proved without appealing to Eq. 
(2.7) if we take into account the following relation 

l. "'T .::? -~ "" . J. \r"'- ""1' d.-i.. \("" 
't.o·l. lttiv)'C Y.e.. ::-(J.+i)V't ,t+ (d-~Hd-\-Q+ifl1 · ,e__CA. 4 ) 
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Setting A-:.-e-1 gives 

'1ot t "ii. t. v) 'l-Q-1 Y"' -:: e.." ti-e-, \' v... e 12. • (A,5) 

Since .A,-2. lt) is proportional to the LHS of (A,5), the first Eq, 

(A,3) is satisfied, For cl,::. i _ Q. one obtai~s from (A,4) 

. ~ 

J. - -.\ ,_Q \1"-' I-~,,"" - -,-.e. \(i 
'l0·1.- t"L)(.V ,'l , 12 =: l~-1.) \I 7. t12 - i-(1.e-\) 'l ·'l e · 

Applying to both sides of this Eq, the riot operator we arrive at 

the second Eq. (A,3). For cl.= l and t + 2- we find from (A.4) 
the following relations 

-r "" 'lot B 1Q ( t\ = 0 
---,. _,. M 

'lot 8
1

: {E.\-= -l Bv2. (M). 

lt follows from (A.5) that the same vector function may be simulta

neously represented as the rot and grad. A similar relation for 
the positive powers of r will be 

'lot l°i 1- v \'iD Y.t' = _ U--t -i.) v 7:~ '{,._ "'-. 
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