


I. Introduction

The vector spherioal harmonics (VSH) and elementary vector po-~
tentials (EVE) /1y2/ closely related to them are the powerful tools
for the solving of radiation 1 and scattering /3/ problems occur-
ing in optical 4 s barticle, nuclear ,5 and atomic’ pnyoics. EVP
are the vector solutions of the Helmholtz equation([&ﬂ-KL)jq 0.
Much less is known about the vector solutions of the Laplace Eq.
ﬂLQ 0 . 4t first, it seems to be strange. In fact, as the Helm-
holtz Eq. in the long-wavelengths limit (k —> 0) transforms into
the Laplace Eq., one may expect the same for their vector solutions.
It turns out, however, that contributions of EVP corresponding to
electric (E) and longitudinal (L) multipoles diverge in the k—> O
limit. This has given rise to numerous fallacles and controversies
in physical literature, Part of them was discussed in the review
article /6 . It is the aim of the present consideration to f£ind the.
correct limiting procedure to the static case.

For the statio case, there are known configurations of .charges
and currents which being enolosed to the finite fegion of space S
generate electric and magnetic fields vanishing outside S. The typi-
cal representatives are the electrlic oapacitors and magnetio sole-

noids. Is the same situation possible for the charge and current
densities periodically varying with time? Particular examples of
that kind were given in refs. 7 . In the present consideration,

we find conditions which satisfy nonradlating oharge and particle
densities.

An arbitrary distribution of the magnetic field enclosed into
the finite space reglon S may be charaoterizéd by the number of topo-
logical invariants which are not changed under an arbltrary continu-
ous deformation of S 8/_ The simplest one 1is the magnetic.flux. The
next (in complexity) imvariant 1s helicity. We oonstruct TS with non-
zero heliclty and investigate how .1t affects on the charge partiole
scattering.

The plan of our exposition is as follows. The main facts ooncer—
ning VSH and EVP are given in § 2. The orthonormal vector solutions
of the Laplace Eq. are obtained in § 3. Their properties are discus-~
sed. The simplest physical applications of these vector solutions are
treated in § 4, The conditions under which the periodical charge and
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. current densities do hot radiate are formulated in § 5. The electro-
magnetio properties of TS with non-zero helicity and the influence
of the latter on the Aharonov-Bohm scattering are imvestigated 1n§ 6.

2. Main facts concerning vector qpheiical harmonics
The usual method to solve the Helnholtz equation

(A+K1)ﬂ--“rd . (2

is to present its solution 1n terms of VSH /1’2/ :

9 -' A l\rm XLQ(K"L\ \AQ(E) Q) :‘AQ, o (2.2)
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The VSH 1Ag are defined-as vectorially coupled quantlties of usual

scalar spherical harmonics \(Q and unit spherical vectors

R.M \no-“% n+|£+(hx+ln\5)/ﬁ,)
EDRERYH w+M,AM§\’h+M-ﬁ_N . (2.3)

Further )3,1&- S(\z“’\’?—\\‘ J AV 5 he o= r HH.(m)

r B
and Ak(‘)()_ lrx ;}H‘ (o(_) are the spherical Hankel and eqsel

funotions. It is implicitly assumed in (2.2) that the vector poten- ' -
tial (VP) is defined at the point P lying outside the source current

region. VSH a.re orthonomal

g Y ' -df] = gu«' gqq‘ g»nw. )

They are the eigenfunctlons of the orbital and total angular moments
Squares and of the: third proJection of the latter-

TV = vty Y,y Y, Q—)\u+l\\;\g TN

(Bere L ——L(‘lx V) . The definition of :X may be found, e.g.,

in /1 2/ ). It is clear that JO_ \(M_ and l\QYAQ are the vector
solutions of (2.1). Instead of VSH one may equally use the EVP QQ {L)
which are the linear corbinations of VSH
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SETRTIN L

gt T e

"

R

ﬂ(’. \E\—(‘ﬁr \r\q - QQ\ —-r\’\u\\wf\\/mﬂ,

(2.4)
—_ -
i 7 ™ VAL .
: UQJ\'\ \\u! \e)h. + E LQ-\ \Q,l-\ ) /J 1led .
The values '"(, = E,M and L correspond to the electric, magnetic

and longitudinal multipoles. EVP are orthogonal on the surface of
the sphere »
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The same is valid for the EVP BQ (,~"‘ which are obtained from
L
ﬂ@ {?) by changing x\l(\’ﬂ.'\ by A,_(K'l\ . The VP (2.2) bveing
expressed in terms of EVP is given by ‘

T URKRY A e KT
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The advantage of EvP over VSH 1s that EVP may be obtained by the
action of the V and L operators on the solutions of the scalar

Helmholtz equa.tion - " "
ﬂq (L\: \lk v LQYQ)

.QQ (M) W\LLQ Q

(2.6)
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The following differential relations between \qQ ") are valid
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3. Vector solutions of the Laplace equation

Now we turn to the vegtor Poisson equation

af=-dur g . ' G.1)



.Iraplace equation. They are eigenfunctions of L

. .
Although Eq.(3.1) 1s simpler than Eq.(2.1), much lelss is known on
its vector solutions. This seems at first surprising. In faect, in
the static limit (k ~» 0) Eq.(2.2) is transformed into

Ly § L et O™ m
L{Z‘i-qri.l .;\/AQ_‘:L\/\'Q_ > /\q_ SFL\Q, (\dv (3.2)

Clearly,rl, \(AQ— andrl— ¢ /\Q are the vector solutions of the

’ 3:\. and :]2

We are interested in those vector solutlons whioh are expres 'sible

in the form similar to (2.6). However, we cannot form from’l_ YAQ
and "l_~Q \YAO. the linear combinations similar to (2. 4) since the
terms with different Q, have different dimensionalities and there
is no constant (such as-the wave number in the nonStatic case) to
make these terms dimensionless. Since Egs. (2.6) have the form which
we seek for 1t is natural to 'find their static limit by perfoming

expansion in powers of %k

NG K_Qtigw(““gmt\l) |
= S L (3.3)
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The explicit values of the vector functions entering into the RHS
of this Eq. are given in Appendix. They are independent of k. ' The
terms with higher powers of k do not oontribute in the long-wave-
length 1imit and they are omitted in the development (3. 3). The co-

- efficients QQ(L) entering into the definition (2 5) of VP nay be

also developed 1n powers of k

By (0= K (A () + K 0 (0 ) 1= €L
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It follows from Egs. (2.5), (3.3) and (3.4) that the contributions .
of the E and 'L multipoles taken separately diverge in the long-wave-
length limit like K™ . On the other hand, the development (2.2)
wvhich 1s completely equivalent to ¢R 5) turns in the same 1limit inteo
(3.2). No singularities arise during this transition. This means
that singularities of the E and L multipoles in (2.5) compensate
each other. In fact, the singular “term appearing in (2.5) is given

K-L[at;(esﬁ\“lm v o (L) A (L],

It 1s easy to check that this Eq. vanlshes after substitution of the
exact values of a\?, {¢) and ﬂ\Q(u\ After these preliminaries
we may obtain the static l:l.mit of (2.5)
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These are Just expresslons which we need. The vector functions C

and 3) .are the vector solutions of the Iraplace equation —»

(ng =0 .'Z)a = 0) . This is not evident for CQ (E) and SDQ (B,

In fact, the particular terms entering into thelr definitions do not

satisfy the Laplace. Eq. Only their linear combination does. This

follows at once if we apply the 14 operator to Clh(E) and
Do lE) and use the 1dentity

at* Yoz (-0 lds t+i)'t*’1 A
withd«‘-i—q, for C:(E) and Q""J— for (DZ\(E ) « In addition,

™. v
- Co L0 and Dy (¢)  satisfy the following Egs.:
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They are orthogonal on the surface of the sphere
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In the static limit Eqs.(z 4) are transformed into
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It follows from this that CQ (t) and S}a ) are elgenfunctions

oflﬂ 3 ) n It is evident that the development (3.5) coincides

with (3 2). The novel is that we have succeeded in presenting’l Y&e

anaTH \( in terms of differential operators (see Eqs.(3.6) and

(3.7,

X
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4. Some applications of the Laplace vector
spherical harmonics

The VP representation (3.5) may be useful for the solution of
different physical problems (espeoially, magnetostatic). Consider,
e.g.y statlonary current (div J‘O) enclosed into the finite region‘
of space S. Under what oonditions the magnetic field H (=rot &)
does not fo beyond S? For the stationmary current the coefficients

[L) are equal to zero. In fact, integratipg by parts one gets

e

é»

d (L2 g.}?\w‘YQ“* ) ;So\\l == Y,,'”owj'o\v =0

Apply to Eq. (3.%) the rot operation. Then the third term in it dis-
appears and one has

e ) da v B0 a21w)

Inqtead of the stationary current one may equally use the magnetiza-
tion (J o rotM) Then,

o(q -(_S('L%\Y\T \(q ‘lotMD\\/

--cqu 'l+i \d\er\\/

From this it follows at once that the magnetic field disappears out-
side the finite region ofqthe space filled by the substance with so-

lenoidal (i.e., with div M = 0) magnetization. This result was ob-

tained in refs. / in a quite different way. The corresponding cur-
rent 1is restored by the use of Eq. j=¢rot M . The simplest example
of such a substance is a closed uniformly magnetized filament C of
an arbitrary form. The magnetic field remains enclosed inside .C
when it undergoes an arbitrary continuous deformation., From these
filaments the solenoid of an'arbitrary forw can be constructed. The
conditions for the disappearance of H outside the reﬁion with nonzero
current were obtained earlier in an interesting ref. . Let Jy

be the spherical components ofJ ( Ao 32 \ A+ =5 &1~+\ A“)/Ji;
Then, the conitions mentioned above are given by

R%:M—(\QM \) Rehﬂ Rl ( 0t \‘/LR?W_\.‘

1 04mtd

e e\
R}A : S'l' \(Q ' A}A ‘AV . These Egs. may be used to check

the disappearance of H outside S. However, they are not constructive
in the sense that they do not give the prescription for the construc-
tion of currents satisfying the above conditions. In addition, the

(4.1)
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evaluation of Rff“ is not a trivial task even for the simplest
toroildal current configurations /10/ . On the other hand, the use
of magnetization formalism used here makes the construction of the
solenoids with an arbitrary form almost trivial. This is widely

used by experimentalists (Cf./ ). The current components corres—
ponaing to the chosen solenoidal magme tization satisfy the conditions
(4.1) automatically. It follows from (3.5) that if the current distri-
bution has the form 3.0 rot rot ? where the vector field ?~ is the
solenoidal one (div t°0), then VP differs from zgro only in those
space regions where t = 0, The presentation of t in such a form
is valid, e.g.y for the toroidal moments /6 . Physically, this means
that toroidal moments uniformly distridbuted along the arbltrary clo-
sed curve and being tangential to it gemerate VP that differs from
zero only on that curve. From these filaments the finite distribu-
tions of toroidal moments may be constructed having the same self—

~screening property.

5. Nonradiating charge and current sources

Now we turn again to the nonstatic case. The question arises:?
under what conditions the charge and current densities periodioally’
changing with time and confined to the finite space regilon 5 generate
electromagnetio: strengths E,H vanishing outside 5? To see this we
act by the rot operator on Eq.(2 5) Then

st l‘«“lf[aa (E) \-QQ (M)- Ge (M) ﬂc (E)J

As QQ (E\ and HQ (M ) are linear independent, so the conditions
for the disappearance of H are

QE[E\-‘ C{QM (M\:O- . : (5.1)
The corresponding scalar and vector potentials are given by
e Ty L) N L3
D - HRLKZ\\,\/Q C M\,e *_Po\V,
. C ek
5\:2\ VLKVZ\\Q\(e V(&Q\/Q a‘)(\d\/.

(The overall periodical factor exp(—iﬂt) is dropped in this and
other evident cases) @ and ﬂ satisfy the Lorentz’gauge condi-.
tion divqﬂ + 1 Q O . It is easy to cheok that the electric

{
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-field Ei—VQ- é ﬁ . also disappears outside S. To see
explicitly what Eqs.(ﬁ.l) mean we present J in the form

IR “’\6“\ e 1N G-

(An arbitrary vector function can bé presented in this form. ‘See,
€egey ). The functions szh depend only on the radial coor—
‘dinate r. Substitution of (5.2) into (5.1) gives

o) &W)m) gz § {, 6 AQMUL} =0 .

T
The current distribution with A satisfying these Egqs.do not

radiate because E =H=0 outside S, On the other _hand, it is
possible to comstruct a nonradiating system with E H # 0 outside S,
This happens if the Poynting vector P Hrc C* ¥R decreases
faster than r 2. Consider the explicit expressions for the electro-
magnetic potentials:

g - - -y { L' (\'\A\;z_—-"-l:‘\\
Q= § Gt ) per) dv , Gws= P\i'-’t" ’
) judl] v - ‘

( GV 3T dv'
At large distances one has

®, - %LQNP‘(\’K'L) Szxp(—\'\d\'ii‘)p(—{")g\\/') P = /2,

ﬁo: C—l;Lpr(\‘K’L) (exp(-ik n"U') Y () 0{\/}‘ :  .3)

. = — -
E=-tqny (Do+ (Y ﬂ\) ) H=dy (he fﬂo) .

The terms of the order r~2 and higher'are omitted since they do not
contribute to the energy flux. The radial component of the Poynting
vector equals

g (V\'\_ (ExH‘) : yﬁm"(aox(ﬂ:*ﬁil))):
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: «%ra«“( 1o 1"~ (e §o 1) ::E"U‘ﬁolﬂ o 1Y) =

2k (1A 1Ag 1Y),



It follows from this that the energy flux into the surrounding space
vanishes 1f / ﬂg :ﬁ.;?-(}. These conditions were obtained ear-
13

lier in refs. . The particular realizations of such nonradiating

systems may be found, e.g., in /13’14/.

6. Magnetic solenolds with non-zero helilcity

For the pedagogical purposes we considey i‘irst the cylindrical
solenoid C of the radius R. Let the currenty = /- Y\g Sip-=)
flow on its surface. The corresponding VP is Q 'R y\g \:hereﬂ, YA
outside C and@P/lq’R - inside it. The magnetic field differs
from zero only inside C: H= Y\@ Q@ /TRY | Here CP is the magnetic
flux inside C: ®: SSH%Pde\Q-L\(”R?‘& . In the treated case the
magnetic field and VP are mutually orthogonal. So,

C- ¢A-Hdv:=0. .1

This quantity 1s called heliclty/ls’le/. Thus,

solenold has zero helicitz; Instead of the current J one may equally

use the magnetization M' J = C rot M For the treated case .

M M \'\7__ B(R-j)) M= ﬁ'R"-& . It is convenient to forget

the initial current and to treat the solenoid as a cylinde_:_-’ uniformly

magnetized along 1ts symmetry axis. Let the magnetigzation M has the
¥  component (in addition to the existing Z one)

M= M. R=P) (Mposd + g sin ).

The needed components of VP and magnetic inductlon are

A=k M(R-PSind, Hg=lgMpasd Bete Meind, Bozlie Meosd

-

[} -
inside the cylinder and QI:O , Ag= e R Mesafp , B0
outside 1t. As a result, the helicity per unit of the cylinder
length equals

g: 'LTSM Siwid. Rg

the usual cylindrical

We turn to the toroidal solenoid (TS). It may be viewed as the
dyF4 2% = R¥
set of magnetized filaments filling the torusT ¢ (P-d)™

In the toroidal coordinates ( P= ck”k};sg y 2= ‘:S‘“u?sev ) the
chp-

magnetization and induction are equal to

M- ws9

M:MWy , B2hgM M=M, —Mo) (6.2)
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The values M7y and p ¢ Uy correspond to the points lying in-
side and outside the torus T, resp. The VP of TS was obtained in
ref./17 s 1ts properties were discussed 1in /18/. The nonvanishing
toroidal components of VP are N, and Rg . It follows from this
that the torus with magnetization (6.2) possesses zero helicity. Let
the magnetization M has the 9 component (1n'add1‘tion to the exis-
ting ¥ one) )

- — - . g -
M =M Ngcosd + Np-Sind) , B=lkgM. (6.3)

—
The 6 component of M generates the ﬂ‘i’ component of VP which
is different from gzero only inside T:

S(».Q-SA\“;}-A"
Pez-~8aMoSind =2 thit =59 . gacty = )
g -~ aff Mo Sl Stn 0 el M0 s ©.cl, gt

The M  and e componentq of the VP are obtained from that of
refs /17 18/ by multiplying them by Cosdl- . It follows from this
that non-zero hellclty corresponds to the magnetization (6.3). Since
the W  andfp components are rather complicated for the finite
torus T we limit ourselves to the infinitely thin one (Rl  or
)10»1 ). In this case, the following components of VP and magnetic
induction differ from zero inside the TS

g = Hira Mo [expl-m) —~po ws© .exp (~Moy 1 - cosd |

g -8R0 Mo @xpl-tio) - sind
Bo= kaMogind , Bg=ht Modsd.

As a result, we obtain for the helicity:
- o~ - .
C- (R B V= R Mo Sinld-exp 3,y

The question arises: 1s it possible to gét information on the hell-
city by performing experiments cutside T (which_ may be surrounded

by the impenetrable torus)? We note that the component of mag-
netization does not contribute to the VP outside T. The wave function
describing the scattering of the charged particles on the impenetrable
toroidal solenoid depends on the geometric‘al dlmensions (d,R) of
impenetrable torus and oum the 5’ component of the magnetic flux

11



inside the solenoid (it is just this component that generates non-
zero VP outside T8) /197:

W: P e+
W

fexp (vwy W, —exp ((X- \'WB-V\/L] .

Here g% and Tl are the scattering angle and distance from the
solenold to the observation point, W= ‘i:‘{_ 9 b’“ —-—-C Cosd} W, and
VJ;,' are the linear combinations of the Lommel functions of two

variables:
tp\* +
W, ,- u\{‘ﬂ:‘i—:m, K (di’R\S(h@]- (UI{K%:R‘Q;K(M: 2500

- 2

It follows from this Eq. that the.intensity.1: \KYW is a periodi-
cal function of the angle ¢l . The helicity and magnetic flux are
the simplest representatives of'the topological invariants, charac-
terizing the structure of the magnetio field. These invariants re-

main the same for the arbitrary continuous deformation of the sole-
noids.  There exist topologioal invariants different from (D and :

/20/ which describe more subtle features of the magnetic field.

7. Conclusion
We briefly summarize the main results obtained:

1. The vector solutions of the Laplace Eq. aré presented in the
differential form. This makes easier thelqolution of magnetostatic
problems. The simplest applications are given.

2. The conditions are formulated for the non—radiation of
charge and particle densities periodically changing with time.

3. The electromagnetic properties of the toroidal solenoid with
non-zero helicity and the influence of the latter on the Aharonov--Bohm
scattering are studied.

This consideration‘has arisen from the numerous discussions
with Prof. J.A.Smorodinsky‘who passed away so prematurely.
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Appendix

Here are the explicit values of the vector functions occurring
in the development (3.3): '

4‘“ - 1<>Lo, N —Q—\‘ LN
HielB): oo wt LT ,911\\-_\ TS Lot L

'll)'& plf—i-'l \/ )

\e(E\ Lﬁa_'u,t\,'ﬁ\/ \giz(t\ W&am)

- e -> ‘d — . 1-2 /W
ﬂ\:(L\:l‘:AQ\I’LQ \(;« Al (Ly= ;Qei v \(Q

B by = HTTN" B (L) -2, 91 e

cd - _ T ha W
ﬂm (Mi= “}—E—% L’L‘Q\(Q,BQ(M\ em-\r\\\‘rl" ¢

d = (-t IE 2T IR @
¢ Tie) 7 Tieas) |
For k ~— 0 Eqs. (2.7) are transformed into

"ot ﬁ‘v; (M\=t‘ﬂ|;‘ (E‘)

)

. . - (a.2)
Mot [\H‘Q(E) -\-K’L‘ﬂq_p_ (E)’):a\'\(""ﬂ\g (M\

It foXlows from (A.l)'that first of Eqs.(A.Z)‘is satisfied automa-
tically. In the second of them we equalize the terms at the same
power of k '

”LQ‘(ﬁ\?(E\:O : ot ﬁ'l‘z {E):_cﬂ:: (M} » (a.3)

The validity of these Eqs. may be proved without appealing to Eq.
(2.7) if we take into account the following relation

- ’ W . -
ot FIx§) Ay, = (o\+i)vz‘*\’;“+ (-0 a2 )T T Yo e
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Setting c\:—@-i  glves
ot (T )TN 2 e (4.5)

Since jx\m (:\ is proportional to the LHS of (A 5), the first Eq.
(a.3) 1s satisfied. For d= 4 .Q  one obtains from (4.4)

- - W n . i - -Q_’ ks
b (T Ve = e v e - 2 (e U Ne

Applying to both sides of this Eq. the'loff operator we arrive at
the seoond Eq. (A.3). For =0 and £+ 2 we find from (A.4)
the following relations

RSB0 wk B (E)-¢ B (M),

It follows from (A.5) that the same vector function may be simulta-
neously represented as the rot and grad. 4 similar relation for
the positive powers of r will be

ot ﬁi%a\qp\gm T~ (9*1)Y712\Qk_
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