


Introduction

In a recent cycle of papers [1] - [3] prof. N.A. Chernikov suc-
ceeded in showing that in the Einstein General Relativity (GR)
the important geometrical object was lost. It was a background
affine connection. This object appears when we consider the
gravitational action functional [4].

At present, physical meaning of the background connection is
unknown. Maybe, this geometrical object is the unusual descrip-
tion of the frame of reference. Another opinion was suggested in
[5], [6] where the background connection was used for describing
the external gravitational field created by the sources outside of
the observable universe. -

In present paper the model is suggested in which the back--
ground connection become the dynamical one. It means that the-
second connection coefficients f; « are the potentials of some real
physical field. :

1. Gravity as a compensating field

Let us consider the vacuum Maxwell equations
G;F"j =0 : (1)

where F;; = 0;A;— 0; A; is the strength tensor of the electromag-
netic field A;. If we write down (1) in curvilinear coordinates,
then we obtain

9*ViFy; =0 (2)

where g** is the metric tensor, V; is a covariant derivative with
respect to the Christoffel symbols T*,.
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Equations (2) are generally covariant and, consequently, they
are invariant under the diffeomorphisms group Di f f (M) of the
space-time manifold M:

a:i_)x/i — a:/i(xi); (3)
Ai(z) = Al(e") = Qx—k.Ak' (4)
1 . ) axh ) .
) . axn ax/k ‘
1k ke ! _ a
§*(@) = o) = S (5)

where z"(z¥) = z* outside the compact area.
But this invariance is not the dynamical one because trans-
formations (5) are those of the non-dynamic (background) fields
g**. Such invariance must be named a covariance because it can
be interpreted as follows:

at first, action of Dif f(M) on z* and A; damages the equations .
(2), but then it restores (2) by suitable transformations of gt

(5)-
] The background field g** is a set of functional parameters. It
is a characteristic of the scene like the Newtonian potential V in
the Newton equation

d*z ov
m— = —

dt? Bz

There are no "equations of motion” for a background objects

and they must be determined by a supplementary physical con--

siderations, although the latter may have a form of an equation,
for example, AV = ~4xp.

On the other hand, equations (2) are invariant under the
gauge transformations

Ai— Aj= A+ aiX (6)

with an arbitrary scalar field y.
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© Mathematical meaning of (6) is the same as of (3)-(5) but
from the physical point of view these transformations are es-
sentially different. Transformations (3)-(5) describe the form-
invariant properties of (2) under the general coordinate transfor-
mations, and have no physical content. On the contrary, (6) rep-
resent gauge transformations and appear as a symmetry group
of the electromagnetic interaction.

The simplest D:f f(M)-invariant generahzatlon of (2) con-
sists in adding to (2) the equations on g**

Ry = £Ty , -

where T is the electromagnetic energy-'momentum tensor; the
Ricci tensor Ry, = R” is derived from the Riemann-Christoffel
tensor R = 0, = 8 ;T + T5 T3, — T2, |
Unlike equations (2) describing electromagnetic field, the sys-
tem ' ‘

N «
g"ViFy; = 0 ’
{ Ryj &T3; | (®)

describes the electromagnetic field interacting with the gravi-
tational field. Since (8) is invariant under (3)-(5), the group
Dif f(M) takes new physical meaning and becomes the symme-
try group of the gravitational interaction. But (8) remains gener-
ally covariant. The generally coordinate transformation ”group”
is similar to the group Dt f f(M) and leads to some difficulties in

_ the analysis of symmetry properties. Luckily, if we turn to the

Lagrangian approach, the generally coordinate transformatlons
and Dif f(M) group can be separated

Let us apply the above scheme not to equations, but to La-
grangians. The electromagnetic Lagrangian is

La==99"¢" FuiFy;. 9)

It is both generally- and Dif f(M)- covariant.
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If we shall’ attempt to convert Diff (M)-covariance into
Dif f(M)- invariance, i.e. to make g*/ the dynamical field, then
we must find a suitable Lagrangian producing the Einstein tensor

1 ‘ '
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as a variational derivative. Usually, the Hilbert Lagrangian. -

Ly=v=gR

is used because it leads to the variational derivative /—g¢Gix.
But (10) can be considered as asecond-order differential operator
acting on g;;, and (11) contains the second-order derivatives too.
This leads to the known difficulties [7]. It seems probable that
these difficulties are result from the presence of two types, the
generally coordinate and Dif f(M), of possible transformations
which remain (11) invariant.

The high-order derivatives are contained in (11) in a special
way. We can write down

Gi = Rix —

Ly = L + 0 | | (12)
Whére | R B :

Wi = \/’_(g"‘l‘"‘ —g"Th) . (13)
and the Einstein Lagranglan | |
Lg = /=gg™(I'%,I%,

contains only first-order derivatives. Although LE not generally
covariant, the action

—TeTS ) (14)

Sg = /LEd“a: S (15)

is invariant under Dif f(M) since the D1 f f(M)-transformations
add only the divergence-like term to Lg. Noncovariance (14) in
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fact means that the background affine connection is contained in
Lg.

Indeed, let us consider some background affine connection
r ;k We restrict our consideration to the case I"j-k =T i;- The
difference between the connection coeflicients

forms a tensor named the affine-deformation tensor. Let us con-

sider the Lagrangian

L = V=gg™ (P8, P}, — P&Ph,). Cooan.

For the action _ ‘
3=/£&x"' - (18)
the variational derivative ' k '

63
8Gmn

=g (19)

has been calc;llated in [1]. Tt is
\/—gma (R + Rbg'— Rijg7 s —2Ga).  (20)
If R(;k) = 0, then the equations ‘
| gmn = 0 o (21)
coincide with the vacuum Einstein ones
| Gy =0 (@
and the Lagrangian (17) differs from Ly by a divergence term
Ly~ L =%F . (23)
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where V; is a covariant derivative with respect to I' > and

=v=g(g™" P, — g™ Pr,) (24)

is a vector density of weight one.

If Rik, = 0, the coordinate map can be chosen in which all
I *x = 0. Then, P’ turns into —TI'% ko L turns into Lg, F'into wf,
and (23) transforms into (12). Convertlng Ly into Lg by (12) in
fact means converting Ly into L according to formula (23) with
the fixation of the background connection whose coefﬁaents in
this map are assumed to be zero.

So, instead of (9), (11) we have obtalned the system described
by the Lagrangian :

L=kLs+L=x/= gabgijFa.Fbj

+v —ggmn(P:zb PsaaP;ln) (25)
with the condition on the background connection
Rij=0. (26)
Now the generally coordinate transformations take the form
.'L'i N xli —_ xh'(xi); ) . (27)
') oz* | ‘
Aile) = ) = )
. . amh‘ ax/k
ik tiky 1 — 2 U ab, » . )
g (.'II) - g (.'II) - axa a.’l:bg ] Lo TR (29) ‘

1

P P
.ij(x) = i) P 53 Ok | 0z'i0z' | Oz’ (30)

But the Dif f(M)-transformations of the system (25) have an-
other form

(v,‘axp dz1 Oz’ ) oz"

gik(:lr) - g’ik(x),

A=) = Ale), i (31) -

Fj’k(x) - v;'ik(x)sf‘;k(x)

where ¢**(z) and Al(z) are obtained from (5) and (4), respec-
tively, by changing the arguments z’ by z after calculating the
right-hand sides of (5), (4).

2. The dynamical affine connection

So, the g**-dynamics derived from Ly (12) is determined only
by Lg but Lg is noncovariant. If we assume the action Sg (15)
to be invariant under the general coordinate transformations, we
must mterpret the appearing divergence term as the result of the
Diff(M). transformations. In other words, the general coordi-
nate transformations must be in agreement with the Di (M )
transformations. , :
Introducing of the background connectlon permlts us to sep-
arate the generally coordinate transformatlons and Dif f(M).
The Lagrangian I (17), determining the ¢** dynamics, is gener-
ally covariant and, therefore, we do not need the general COOI‘dl-_;
nates transformations to be in agreement with Diff (M). v
Now we may attempt to make that the background affine
connection to become a dynamical field. It would seem that this
returns us to the situation when the general coordinate trans-
formations were mixed with D:f f(M). But it is not right. The
mixing takes place only due to the noncovariance of the La-
grangian Lg. '
Let us consider the Lagranglan w1th the cosmologlcal term

Az R
Ly =L+20/=g. | - (32)
It is easy to see that (32) is équal ﬂ:o
Ly =v—g(R+ 2A2) V—gRi;g" — 0. F". (33)

Let us denote
Ly=+=g(R+2h), (34)
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—\/—gRikgik. (35)

Up to a divergence term the Lagrangian Ly can be presented in
the form

La=Lg+ Ly | (36)

. The first term can be interpreted as a term correspondlng to
the pure gravitational field, the second is the "cross” g- -T' term
describing the interaction between the fields gix and’ FJk For
the background connection be dynamical, the Lagrangian needs

a "kinetic” term for pure I *¢- The simplest term like tha.t has

been proposed by A. Eddlngton [8]

w=%1wwmn'f N,

where A; is the coupling constant Then, the full Lagrangian
can be wrltten as ' ' '

Ly = Ly + Lyp + L. - (38)

Up to a divergence term
Ly = L + Lg. (39)

Let the Corrésponding actions be denoted by the same marks as
the Lagrangians:

Sy = fLA‘d“a:;

Sip = ‘fL pdiz;

Sp = JLpd's; (40)
Sy = fL2d4:1:. ‘

Let us find the variations. From (20) and (32) we obtain

857 _ 1

~U* 4 Ay /=g 41
5gik 2 + 2 g ( )

Then, we consider §S;/61,. Let us denote ldet(R(,-k))l =r. We

have
5 2 d4 _ 21 "(ik)é‘ » 4

where RU%) is the inverse matrix for R(,-k). It means

N /1 L 3 ) :
6Sp = / VPR Ry d'a. (43)
1 ' ‘
Using the known formula [9] ;
Ry, — Ry = V.P}, — VPQ +P13P3‘ Py P, (44)
we obtain

§Rxy = V, 6T — V613, (45)

Let us denote v , ' '
_L\/;R(ik) _ ik § (46)

ALY L

By substituting (45) into (43) and neglecting the divergénce
terms we get

§Sp = / S5 (V,TP*6E — ¥, T*)d . (47)

Since I'%, is symmetrical, it follows that

0S¢
6I‘

Now we begin varying S, with respect to N
6S,p = —6 / V—=9Riyg"*d'z = - / V=99*6Ryd*z.  (49)
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If we use (45) again and reject the divergence terms, we obtain
5,0 = [ 613 (Vo(—v=a0™)8 = V.(~v/=30")) d'z. (50)

Consequently,

5ng~ 1. kN o
oL o (—/=gg™)6:
6F;?k ) 2 P( gg ) s

5 V(—Vg")8: = V(—v=a5™). (51)

Since gr-‘-,ﬂ- = 0 from (38), (48) and (51) we get

65y _ 1
§Ts, 2

V(T — /=g g”")é‘+2V (T™ — V/=g4")é;
—V(T* — /=gg*). (52)

By contracting s and ¢ in (52) we see that V (T”k —v/— gg”k) = 0.
Finally, the system of equations on the fields ¢* k and T, is

5\1:"" A/ gg* =0, (53)
V(T - yTggty =0 (5Y)

An evident (but not single !) solution of (54) is
| =v=e*. (55)

We find R;; from (55) and then substitute it into (53). From
(55) we have

Ry = Argin.- - (36)
Substituting (56) into (53) oné can obtain
1 : "
5V =9974" (20100 — A1gmng™"gob — (57)
2Ga) + Aav/—gg™ =
10

From this formula the equatio.ns on g;. are
G* + (A — AJ)g* =0.

As we can see, the vacuum Einstein equations with the cosmo-
logical constant (A; — Az) are derived.

3. Discussion

It must be emphasized that if we want to consider the gravity

as a Dif f(M)-compensating field, then the second affine con-
nection must be introduced. Wlthout this connection the group
Diff(M) becomes mixed with the generally coordinate trans-
formations. Although equations may by invariant under both
the Diff(M) and generally covariant transformations, we can-
not construct local field invariants since a suitable Lagranglan is
absent. :

The simplest way is to consider the second connection as
a background. The resulting theory was observed in [10]. The
present paper concerns the theory with the dynamical affine con-
nection. A theory like that may be interesting from two points.

At first, the set of solutions of (53)-(54) is wider than (22). It
would be interesting to investigate possible physical meaning of
the non-Einstein solutions of (53)-(54). The second aspect is con-
nected with the opportunity of renormalizing the cosmological
constant. This may be useful in the gauge theory of gravitation.

‘and in the supergravity.
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